Last updated: 2024-11-27
Checks: 7 0
Knit directory: Hanics_2024/
This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20241007)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version e1fb0b4. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: .cache/
Ignored: .config/
Ignored: .ipython/
Ignored: .jupyter/
Ignored: .nv/
Ignored: .snakemake/
Ignored: analysis/figure/
Ignored: cellbender/BSF_1105_Mouse_Cortex_SCGN_P02_1_filtered.h5ad
Ignored: cellbender/BSF_1105_Mouse_Cortex_SCGN_P02_1_output.h5
Ignored: cellbender/BSF_1105_Mouse_Cortex_SCGN_P02_1_output_filtered.h5
Ignored: cellbender/BSF_1105_Mouse_Cortex_SCGN_P02_1_output_posterior.h5
Ignored: cellranger_BSF_1105_Mouse_Cortex_SCGN_P02_1/
Ignored: ckpt.tar.gz
Ignored: data/SCP1290
Ignored: fastq/
Ignored: mm10_tdTomato
Ignored: scrublet/BSF_1105_Mouse_Cortex_SCGN_P02_1_initial_annotation.h5ad
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/01A-eda.Rmd
) and HTML (docs/01A-eda.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | e1fb0b4 | Evgenii O. Tretiakov | 2024-11-27 | analysis of Scgn-Cre mice with use of developmental reference |
Rmd | ec23581 | Evgenii O. Tretiakov | 2024-11-15 | initial workflowr pipeline for notebooks with use of all cells filtered after qc and cortex development dataset from single-cell portal as a reference on which we will project our data |
We will load and reprocess reference dataset of cortical development from (Di Bella et al. 2021).
# Create a vector with the stage of development for each object
stage_info <- c("E11.5", "E12.5", "E13.5", "E14.5", "E15.5", "E16", "E18.5", "E18", "P1", "P1", "E10", "E17.5", "P4")
merged_cortex_2 <- SeuratObject::LoadSeuratRds(here::here("data/azimuth_integrated.rds"))
merged_cortex_2$cell_name <- Cells(merged_cortex_2)
merged_cortex_2
An object of class Seurat
28186 features across 82415 samples within 5 assays
Active assay: RNA (27998 features, 2000 variable features)
25 layers present: data.E11.5, data.E12.5, data.E13.5, data.E14.5, data.E15.5, data.E16, data.E18.5, data.E18, data.P1, data.E10, data.E17.5, data.P4, scale.data, counts.E11.5, counts.E12.5, counts.E13.5, counts.E14.5, counts.E15.5, counts.E16, counts.E18.5, counts.E18, counts.P1, counts.E10, counts.E17.5, counts.P4
4 other assays present: prediction.score.class, prediction.score.cluster, prediction.score.subclass, prediction.score.cross_species_cluster
7 dimensional reductions calculated: pca, integrated_dr, ref.umap, integrated.cca, umap.cca, harmony, umap.harmony
orig_umap <- readr::read_tsv(
here("data/SCP1290/cluster/cluster_scDevSC.merged.umap.txt"),
skip = 2,
col_names = c("cell_name", "UMAP_1", "UMAP_2"),
col_types = list(col_character(), col_double(), col_double())
)
glimpse(orig_umap)
Rows: 98,047
Columns: 3
$ cell_name <chr> "E10_v1_AAACCTGAGGGTCTCC-1", "E10_v1_AAACCTGCACAACGCC-1", "E…
$ UMAP_1 <dbl> -3.0025911, -3.6729214, -3.8859395, -3.9020242, -2.9312939, …
$ UMAP_2 <dbl> -10.453364, -6.552985, -10.773631, -10.869657, -10.769403, -…
orig_umap %<>% tibble::column_to_rownames("cell_name")
orig_umap %<>% as.matrix()
orig_tsne <- readr::read_tsv(
here("data/SCP1290/cluster/cluster_scDevSC.merged.tsne.txt"),
skip = 2,
col_names = c("cell_name", "tSNE_1", "tSNE_2"),
col_types = list(col_character(), col_double(), col_double())
)
glimpse(orig_tsne)
Rows: 98,047
Columns: 3
$ cell_name <chr> "E10_v1_AAACCTGAGGGTCTCC-1", "E10_v1_AAACCTGCACAACGCC-1", "E…
$ tSNE_1 <dbl> 15.442958, 10.373660, 14.828413, 16.307658, 18.062250, 13.72…
$ tSNE_2 <dbl> -19.603245, -17.062466, -20.102599, -20.003542, -18.636268, …
orig_tsne %<>% tibble::column_to_rownames("cell_name")
orig_tsne %<>% as.matrix()
orig_metadata <- readr::read_tsv(here(
"data/SCP1290/metadata/metaData_scDevSC.txt"
))
orig_metadata %<>% dplyr::rename("cell_name" = "NAME")
orig_metadata_types <- orig_metadata[1, ] |> purrr::simplify()
orig_metadata %<>% dplyr::filter(!cell_name == "TYPE")
glimpse(orig_metadata)
Rows: 98,047
Columns: 28
$ cell_name <chr> "E10_v1_AAACCTGAGGGTCTCC-…
$ orig_ident <chr> "E10", "E10", "E10", "E10…
$ nCount_RNA <chr> "1544", "1157", "2081", "…
$ nFeature_RNA <chr> "1022", "783", "1200", "1…
$ percent_mito <chr> "0.02007772", "0.01469317…
$ n_hkgene <chr> "51", "39", "67", "71", "…
$ S_Score <chr> "0.356987282", "0.4538538…
$ G2M_Score <chr> "0.330795055", "0.2605599…
$ Phase <chr> "S", "S", "S", "G2M", "S"…
$ CC_Difference <chr> "0.026192226", "0.1932938…
$ seurat_clusters <chr> "34", "34", "34", "37", "…
$ RNA_snn_res_1 <chr> "20", "20", "20", "20", "…
$ scrublet_doublet <chr> "FALSE", "FALSE", "FALSE"…
$ RNA_snn_res_2 <chr> "34", "34", "34", "37", "…
$ Doublet_intersect <chr> NA, NA, NA, NA, NA, NA, N…
$ Gral_cellType <chr> NA, NA, NA, NA, NA, NA, N…
$ New_cellType <chr> "Apical progenitors", "In…
$ biosample_id <chr> "E10", "E10", "E10", "E10…
$ donor_id <chr> "mouse_E10", "mouse_E10",…
$ species <chr> "NCBITaxon_10090", "NCBIT…
$ disease <chr> "PATO_0000461", "PATO_000…
$ disease__ontology_label <chr> "normal", "normal", "norm…
$ organ <chr> "UBERON_0008930", "UBERON…
$ organ__ontology_label <chr> "somatosensory cortex", "…
$ library_preparation_protocol <chr> "EFO_0009899", "EFO_00098…
$ library_preparation_protocol__ontology_label <chr> "10X 3' v2 sequencing", "…
$ sex <chr> "mixed", "mixed", "mixed"…
$ species__ontology_label <chr> "Mus musculus", "Mus musc…
change_column_types <- function(df, types) {
for (col_name in names(types)) {
col_type <- types[col_name]
if (col_type == "character") {
df[[col_name]] <- as.character(df[[col_name]])
} else if (col_type == "numeric") {
df[[col_name]] <- as.numeric(df[[col_name]])
} else if (col_type == "integer") {
df[[col_name]] <- as.integer(df[[col_name]])
} else if (col_type == "logical") {
df[[col_name]] <- as.logical(df[[col_name]])
} else if (col_type == "factor") {
df[[col_name]] <- as.factor(df[[col_name]])
} else if (col_type == "group") {
df[[col_name]] <- as.factor(df[[col_name]])
} else {
warning(paste("Unknown type:", col_type, "for column", col_name))
}
}
return(df)
}
# Apply the function to the metadata
orig_metadata <- change_column_types(orig_metadata, orig_metadata_types)
# Print the modified metadata
glimpse(orig_metadata)
Rows: 98,047
Columns: 28
$ cell_name <chr> "E10_v1_AAACCTGAGGGTCTCC-…
$ orig_ident <fct> E10, E10, E10, E10, E10, …
$ nCount_RNA <dbl> 1544, 1157, 2081, 2490, 2…
$ nFeature_RNA <dbl> 1022, 783, 1200, 1430, 14…
$ percent_mito <dbl> 0.020077720, 0.014693172,…
$ n_hkgene <dbl> 51, 39, 67, 71, 70, 50, 4…
$ S_Score <dbl> 0.35698728, 0.45385381, 0…
$ G2M_Score <dbl> 0.33079506, 0.26055995, 0…
$ Phase <fct> S, S, S, G2M, S, S, S, S,…
$ CC_Difference <dbl> 0.026192226, 0.193293862,…
$ seurat_clusters <fct> 34, 34, 34, 37, 37, 34, 4…
$ RNA_snn_res_1 <fct> 20, 20, 20, 20, 20, 20, 3…
$ scrublet_doublet <fct> FALSE, FALSE, FALSE, FALS…
$ RNA_snn_res_2 <fct> 34, 34, 34, 37, 37, 34, 4…
$ Doublet_intersect <fct> NA, NA, NA, NA, NA, NA, N…
$ Gral_cellType <fct> NA, NA, NA, NA, NA, NA, N…
$ New_cellType <fct> Apical progenitors, Inter…
$ biosample_id <fct> E10, E10, E10, E10, E10, …
$ donor_id <fct> mouse_E10, mouse_E10, mou…
$ species <fct> NCBITaxon_10090, NCBITaxo…
$ disease <fct> PATO_0000461, PATO_000046…
$ disease__ontology_label <fct> normal, normal, normal, n…
$ organ <fct> UBERON_0008930, UBERON_00…
$ organ__ontology_label <fct> somatosensory cortex, som…
$ library_preparation_protocol <fct> EFO_0009899, EFO_0009899,…
$ library_preparation_protocol__ontology_label <fct> 10X 3' v2 sequencing, 10X…
$ sex <fct> mixed, mixed, mixed, mixe…
$ species__ontology_label <fct> Mus musculus, Mus musculu…
orig_srt <- Read10X(data.dir = here("data/SCP1290/expression/601ae2f4771a5b0d72588bfb"))
# Convert the log1p normalized matrix to a standard matrix if it's not already
normalized_matrix <- as.matrix(orig_srt)
# Reverse the log1p transformation to get the scaled count matrix
count_matrix <- expm1(normalized_matrix)
# Extract scaling factors
scaling_factors <- orig_metadata[orig_metadata$cell_name == colnames(count_matrix), ]$nCount_RNA / 1e4
# Multiply each column by its scaling factor and round the results (it's not necessary but just to be sure)
scaled_count_matrix <- sweep(count_matrix, 2, scaling_factors, FUN = "*")
scaled_count_matrix <- round(scaled_count_matrix)
# Convert the count matrix to a sparse matrix format (dgCMatrix) as needed
count_matrix_sparse <- as(scaled_count_matrix, "dgCMatrix")
# Create a Seurat object using the recovered count matrix
merged_cortex <- CreateSeuratObject(counts = count_matrix_sparse, meta.data = orig_metadata)
merged_cortex[["umap"]] <- CreateDimReducObject(embeddings = orig_umap, key = "UMAP_", assay = DefaultAssay(merged_cortex))
merged_cortex[["tsne"]] <- CreateDimReducObject(embeddings = orig_tsne, key = "tSNE_", assay = DefaultAssay(merged_cortex))
merged_cortex$stage <- merged_cortex$orig.ident
table(merged_cortex$New_cellType)
Apical progenitors Astrocytes Cajal Retzius cells
18491 2976 532
CThPN Cycling glial cells DL CPN
4607 1004 3106
DL_CPN_1 DL_CPN_2 Doublet
422 146 1854
Endothelial cells Ependymocytes Immature neurons
291 35 3092
Intermediate progenitors Interneurons Layer 4
8490 10469 5317
Layer 6b Low quality cells Microglia
194 4545 263
Migrating neurons NP Oligodendrocytes
12332 424 1098
Pericytes Red blood cells SCPN
236 330 2987
UL CPN VLMC
14041 765
Idents(merged_cortex) <- "New_cellType"
merged_cortex <- subset(merged_cortex, idents = c("Doublet", "Low quality cells", "Red blood cells"), invert = TRUE)
merged_cortex <-
Store_Palette_Seurat(
seurat_object = merged_cortex,
palette = rev(brewer.pal(n = 11, name = "Spectral")),
palette_name = "expr_Colour_Pal"
)
merged_cortex <- Store_Palette_Seurat(
seurat_object = merged_cortex,
palette = ggsci::pal_ucscgb("default")(length(levels(merged_cortex$New_cellType))),
palette_name = "types_Colour_Pal",
overwrite = T
)
names(merged_cortex@misc$types_Colour_Pal) <- levels(merged_cortex$New_cellType)
merged_cortex <- Store_Palette_Seurat(
seurat_object = merged_cortex,
palette = ggsci::pal_gsea("default")(length(levels(merged_cortex$stage))),
palette_name = "stage_Colour_Pal",
overwrite = T
)
names(merged_cortex@misc$stage_Colour_Pal) <- levels(merged_cortex$stage)
genes.embed <- c(
"Abcd1",
"Abcd2",
"Abcd3",
"Acaa1",
"Acaa2",
"Acox1",
"Agrn",
"Agt",
"Alcam",
"Aldh1a1",
"Aldh1l1",
"Aldoc",
"Angpt1",
"Apoe",
"App",
"Aqp4",
"Arf1",
"Bmp7",
"Bsg",
"Cacybp",
"Caf4",
"Ccl25",
"Ckb",
"Cnr1",
"Cnr2",
"Col4a5",
"Cst3",
"Dagla",
"Daglb",
"Decr2",
"Dcc",
"Dnm1",
"Drp1",
"Ech1",
"Efna5",
"Egfr",
"Enho",
"Eno1",
"Faah",
"Fgf1",
"Fgfr3",
"Fis1",
"Fos",
"Fth1",
"Ftl1",
"Gfap",
"Gja1",
"Gli1",
"Glul",
"Gnai2",
"Gnas",
"H2-K1",
"Hacd2",
"Hadhb",
"Hbegf",
"Hepacam",
"Hif1",
"Htra1",
"Igsf1",
"Il18",
"Il1rapl1",
"Itgav",
"Jam2",
"Lama2",
"Lamb2",
"Lcat",
"Lgi1",
"Lgi4",
"Lpcat3",
"Lrpap1",
"Lrrc4b",
"Lxn",
"Mdk",
"Mdv1",
"Mfn1",
"Mfn2",
"Mgll",
"Mief1",
"Napepld",
"Ncam1",
"Ncan",
"Ndrg2",
"Nfasc",
"Nfia",
"Nlgn3",
"Nrxn1",
"Nrxn2",
"Ntn1",
"Ntrk3",
"Opa1",
"Otp",
"Pex1",
"Pex10",
"Pex12",
"Pex13",
"Pex14",
"Pex16",
"Pex2",
"Pex26",
"Pex3",
"Pex6",
"Pkm",
"Pla2g7",
"Plcb1",
"Psap",
"Ptn",
"Pygb",
"Ralyl",
"Rgma",
"Rtn4",
"S100a1",
"S100a6",
"S100b",
"Siah1a",
"Siah1b",
"Scd2",
"Sdc2",
"Sema6a",
"Sema6d",
"Sgcd",
"Sirpa",
"Slc1a2",
"Slc1a3",
"Slc38a1",
"Slc4a4",
"Slc6a11",
"Slc7a10",
"Slit1",
"Slit2",
"Slitrk2",
"Sorbs1",
"Sox9",
"Sparc",
"Spon1",
"Tafa1",
"Timp3",
"Tkt",
"Trpv1",
"Vcam1",
"Vegfa"
) %>% .[. %in% rownames(merged_cortex)]
merged_cortex <- FindVariableFeatures(merged_cortex, nfeatures = 5000, verbose = FALSE)
merged_cortex <- NormalizeData(
merged_cortex,
features = rownames(merged_cortex),
verbose = FALSE
)
# Scale data
merged_cortex <- ScaleData(
merged_cortex,
features = rownames(merged_cortex),
verbose = FALSE
)
# Create DimPlot
p1 <- DimPlot(
merged_cortex,
reduction = "umap",
group.by = c("stage", "New_cellType"),
combine = FALSE, label.size = 2,
alpha = 0.7,
cols = c(merged_cortex@misc$types_Colour_Pal, merged_cortex@misc$stage_Colour_Pal)
)
p2 <- DimPlot(
merged_cortex,
reduction = "tsne",
group.by = c("stage", "New_cellType"),
combine = FALSE, label.size = 2,
alpha = 0.7,
cols = c(merged_cortex@misc$types_Colour_Pal, merged_cortex@misc$stage_Colour_Pal)
)
wrap_plots(c(p1, p2), ncol = 2, byrow = F)
In this document we are going to read in the RAW filtered counts matrix produced by Cell Ranger
, the RNA filtered counts matrix, where we removed Ambient RNA using by CellBender
at the false positive rate FPR=0.001
threshold and results of Cell Doublets call that was done using Scrublet
then using summary statistics we determine which of those genes affected the most by our filtering procedure visualising results by scCustomize
package and derive several categories of low quality cells using set of manually adjusted threshold parameters. Next, we use filtered high quality dataset to perform initial annotation using Seurat
, leidenalg
and clustree
packages and deduce stable multi-resolution reconcile clustering tree with mrtree
that we need to identify major cell groups for further analysis.
For the quality control we going to use set of well-known technical parameters reflecting sources of bias in data such as total mRNA content, percentage of mitochondrial mRNA content, fraction of molecules aligned to ribosomal genes, hemoglobine genes transcripts and overall cell complexity, which is determined as ratio between number of observed genes per molecule in logarithmic scale. As for doublets, we will use default Scrublet
results.
samples_table <- readr::read_tsv(here("samples.tsv")) %>% arrange(Run)
srr_set <- samples_table$Run
scrublet <-
purrr::reduce(
srr_set %>% map(~ read_scrublet(.x, fpr = cb_fpr)),
bind_rows
)
options(Seurat.object.assay.version = "v5")
cell_bender_merged <-
Read_CellBender_h5_Mat(
file_name = here(
"cellbender", glue::glue("{srr_set}_output_filtered.h5")
)
)
cell_ranger_merged <-
Read10X_h5(
filename = here(
"cellranger_BSF_1105_Mouse_Cortex_SCGN_P02_1/outs",
"filtered_feature_bc_matrix.h5"
)
)
cell_intersect <- intersect(
x = colnames(x = cell_bender_merged),
y = colnames(x = cell_ranger_merged)
)
cell_bender_merged <- cell_bender_merged[, cell_intersect]
combined_srt <- CreateSeuratObject(
counts = cell_bender_merged,
min.cells = 3,
min.features = 200
)
cell_names_seurat <- colnames(x = combined_srt)
gene_names_seurat <- rownames(x = combined_srt)
counts <- CreateAssay5Object(
counts = cell_ranger_merged, min.cells = 0,
min.features = 0
)
counts <- subset(
x = counts, cells = Cells(x = combined_srt),
features = rownames(x = combined_srt)
)
combined_srt[["RAW"]] <- counts
rm(cell_bender_merged, cell_ranger_merged)
combined_srt
An object of class Seurat
39038 features across 10078 samples within 2 assays
Active assay: RNA (19519 features, 0 variable features)
1 layer present: counts
1 other assay present: RAW
combined_srt@assays
$RNA
Assay (v5) data with 19519 features for 10078 cells
First 10 features:
Xkr4, Gm1992, Gm19938, Gm37381, Rp1, Sox17, Gm37587, Mrpl15, Lypla1,
Tcea1
Layers:
counts
$RAW
Assay (v5) data with 19519 features for 10078 cells
First 10 features:
Xkr4, Gm1992, Gm19938, Gm37381, Rp1, Sox17, Gm37587, Mrpl15, Lypla1,
Tcea1
Layers:
counts
Idents(object = combined_srt) <- "WT"
Idents(object = combined_srt, cells = WhichCells(combined_srt@assays$RAW, expression = tdTomato > 0)) <- "Scgn_Cre"
combined_srt$Scgn_tdTomato <- Idents(combined_srt)
plan(sequential)
invisible(gc())
options(future.globals.maxSize = 999999 * 1024^2)
set.seed(seed = reseed)
plan(multisession, workers = n_cores)
orig.ident | nCount_RNA | nFeature_RNA | nCount_RAW | nFeature_RAW | Scgn_tdTomato | nFeature_Diff | nCount_Diff | |
---|---|---|---|---|---|---|---|---|
ACCCTCACAATAGGGC-1 | SeuratProject | 56962 | 8121 | 57010 | 8122 | WT | 1 | 48 |
CGGGACTGTGTTACAC-1 | SeuratProject | 31199 | 6950 | 31246 | 6951 | WT | 1 | 47 |
CTCATGCCAACGACAG-1 | SeuratProject | 27900 | 6033 | 27942 | 6033 | WT | 0 | 42 |
CTTTCGGGTTCATCGA-1 | SeuratProject | 27802 | 6399 | 27846 | 6399 | Scgn_Cre | 0 | 44 |
CCTCAGTAGATAGCTA-1 | SeuratProject | 23506 | 5371 | 23564 | 5379 | Scgn_Cre | 8 | 58 |
Scgn_tdTomato | Median_nCount_RNA | Median_nFeature_RNA | Median_nCount_Diff | Median_nFeature_Diff |
---|---|---|---|---|
Scgn_Cre | 2208.5 | 1185.5 | 77 | 25.5 |
WT | 1066.5 | 628.0 | 85 | 35.0 |
Totals (All Cells) | 1069.0 | 629.0 | 85 | 35.0 |
Raw_Counts | CellBender_Counts | Count_Diff | Pct_Diff | |
---|---|---|---|---|
8430422H06Rik | 40 | 9 | 31 | 77.50000 |
1700054A03Rik | 862 | 202 | 660 | 76.56613 |
Il27 | 68 | 20 | 48 | 70.58824 |
Ctcflos | 54 | 21 | 33 | 61.11111 |
Fyb2 | 33 | 13 | 20 | 60.60606 |
Gm50306 | 92 | 37 | 55 | 59.78261 |
Gm33125 | 21 | 9 | 12 | 57.14286 |
Gm14582 | 58 | 26 | 32 | 55.17241 |
Gm13219 | 23 | 11 | 12 | 52.17391 |
Klhl14 | 43 | 21 | 22 | 51.16279 |
4930532G15Rik | 12 | 6 | 6 | 50.00000 |
1700047F07Rik | 10 | 5 | 5 | 50.00000 |
Mpl | 18 | 9 | 9 | 50.00000 |
5830416I19Rik | 14 | 7 | 7 | 50.00000 |
Asb15 | 10 | 5 | 5 | 50.00000 |
Poteg | 6 | 3 | 3 | 50.00000 |
Gm45554 | 14 | 7 | 7 | 50.00000 |
Muc13 | 6 | 3 | 3 | 50.00000 |
Pde6a | 43 | 22 | 21 | 48.83721 |
Gm28638 | 37 | 19 | 18 | 48.64865 |
In addition to returning the data.frame it can be useful to visually examine the changes/trends after running CellBender.
combined_srt <-
Store_Palette_Seurat(
seurat_object = combined_srt,
palette = rev(brewer.pal(n = 11, name = "RdYlGn")),
palette_name = "mdat_Colour_Pal"
)
combined_srt <-
Store_Palette_Seurat(
seurat_object = combined_srt,
palette = rev(brewer.pal(n = 11, name = "Spectral")),
palette_name = "expr_Colour_Pal"
)
combined_srt <-
Store_Palette_Seurat(
seurat_object = combined_srt,
palette = qc_palette,
palette_name = "qc_Colour_Pal"
)
combined_srt <-
Add_Mito_Ribo(combined_srt, species = "mouse")
combined_srt[["percent_hb"]] <-
PercentageFeatureSet(combined_srt, pattern = "^Hb[^(p)]")
combined_srt <-
Add_Cell_Complexity(combined_srt)
# Visualize QC metrics as a violin plot
p1 <-
QC_Plots_Complexity(
combined_srt,
high_cutoff = high_cutoff_complexity,
plot_median = TRUE,
color_seed = reseed,
ggplot_default_colors = TRUE
)
p2 <-
QC_Plots_Genes(
combined_srt,
low_cutoff = low_cutoff_gene,
high_cutoff = high_cutoff_gene,
plot_median = TRUE,
plot_title = "Genes per Cell",
color_seed = reseed,
ggplot_default_colors = TRUE
)
p3 <-
QC_Plots_UMIs(
combined_srt,
low_cutoff = low_cutoff_umis,
high_cutoff = high_cutoff_umis,
plot_median = TRUE,
plot_title = "UMIs per Cell",
color_seed = reseed,
ggplot_default_colors = TRUE
)
p4 <-
QC_Plots_Mito(
combined_srt,
high_cutoff = high_cutoff_pc_mt,
plot_median = TRUE,
plot_title = "Mito genes % per Cell",
color_seed = reseed,
ggplot_default_colors = TRUE
)
p5 <-
QC_Plots_Feature(
combined_srt,
feature = "percent_ribo",
high_cutoff = high_cutoff_pc_ribo,
plot_median = TRUE,
y_axis_label = "% Ribosomal Genes Counts",
plot_title = "Ribo genes % per Cell",
color_seed = reseed,
ggplot_default_colors = TRUE
)
p6 <-
QC_Plots_Feature(
combined_srt,
feature = "percent_hb",
high_cutoff = high_cutoff_pc_hb,
plot_median = TRUE,
y_axis_label = "% Hemoglobin Genes Counts",
plot_title = "Hemoglobin genes % per Cell",
color_seed = reseed,
ggplot_default_colors = TRUE
)
wrap_plots(p1, p2, p3, p4, p5, p6, ncol = 3)
plot1 <-
QC_Plot_GenevsFeature(
seurat_object = combined_srt,
feature1 = "percent_mito",
low_cutoff_gene = low_cutoff_gene,
high_cutoff_gene = high_cutoff_gene,
high_cutoff_feature = high_cutoff_pc_mt,
color_seed = reseed,
ggplot_default_colors = TRUE,
pt.size = 0.3,
shuffle_seed = reseed
) &
scale_y_log10()
plot2 <-
QC_Plot_UMIvsGene(
seurat_object = combined_srt,
low_cutoff_gene = low_cutoff_gene,
high_cutoff_gene = high_cutoff_gene,
low_cutoff_UMI = low_cutoff_umis,
high_cutoff_UMI = high_cutoff_umis,
color_seed = reseed,
ggplot_default_colors = TRUE,
pt.size = 0.3,
shuffle_seed = reseed
) &
scale_x_log10() & scale_y_log10()
plot3 <-
QC_Plot_GenevsFeature(
seurat_object = combined_srt,
feature1 = "percent_ribo",
low_cutoff_gene = low_cutoff_gene,
high_cutoff_gene = high_cutoff_gene,
high_cutoff_feature = high_cutoff_pc_ribo,
color_seed = reseed,
ggplot_default_colors = TRUE,
pt.size = 0.3,
shuffle_seed = reseed
) &
scale_y_log10()
plot4 <-
FeatureScatter(
combined_srt,
feature1 = "percent_ribo",
feature2 = "percent_mito",
shuffle = TRUE,
pt.size = 0.3,
seed = reseed
) +
geom_hline(yintercept = high_cutoff_pc_mt, color = "red", linetype = "dashed") +
geom_vline(xintercept = high_cutoff_pc_ribo, color = "blue", linetype = "dashed")
(plot1 + plot2) / (plot3 + plot4)
QC_Plot_UMIvsGene(
seurat_object = combined_srt,
meta_gradient_name = "percent_mito",
low_cutoff_gene = low_cutoff_gene,
high_cutoff_gene = high_cutoff_gene,
low_cutoff_UMI = low_cutoff_umis,
high_cutoff_UMI = high_cutoff_umis,
meta_gradient_low_cutoff = high_cutoff_pc_mt,
meta_gradient_color = combined_srt@misc$mdat_Colour_Pal,
combination = TRUE,
color_seed = reseed,
ggplot_default_colors = TRUE,
pt.size = 1,
shuffle_seed = reseed
) &
scale_x_log10() & scale_y_log10()
QC_Plot_UMIvsGene(
seurat_object = combined_srt,
meta_gradient_name = "percent_ribo",
low_cutoff_gene = low_cutoff_gene,
high_cutoff_gene = high_cutoff_gene,
low_cutoff_UMI = low_cutoff_umis,
high_cutoff_UMI = high_cutoff_umis,
meta_gradient_low_cutoff = high_cutoff_pc_ribo,
meta_gradient_color = combined_srt@misc$mdat_Colour_Pal,
combination = TRUE,
color_seed = reseed,
ggplot_default_colors = TRUE,
pt.size = 1,
shuffle_seed = reseed
) &
scale_x_log10() & scale_y_log10()
QC_Plot_UMIvsGene(
seurat_object = combined_srt,
meta_gradient_name = "log10GenesPerUMI",
low_cutoff_gene = low_cutoff_gene,
high_cutoff_gene = high_cutoff_gene,
low_cutoff_UMI = low_cutoff_umis,
high_cutoff_UMI = high_cutoff_umis,
meta_gradient_low_cutoff = high_cutoff_complexity,
meta_gradient_color = combined_srt@misc$mdat_Colour_Pal,
combination = TRUE,
color_seed = reseed,
ggplot_default_colors = TRUE,
pt.size = 1,
shuffle_seed = reseed
) &
scale_x_log10() & scale_y_log10()
QC_Plot_UMIvsGene(
seurat_object = combined_srt,
meta_gradient_name = "doublet_score",
low_cutoff_gene = low_cutoff_gene,
high_cutoff_gene = high_cutoff_gene,
low_cutoff_UMI = low_cutoff_umis,
high_cutoff_UMI = high_cutoff_umis,
meta_gradient_low_cutoff = high_cutoff_doublet_score,
meta_gradient_color = combined_srt@misc$mdat_Colour_Pal,
combination = TRUE,
color_seed = reseed,
ggplot_default_colors = TRUE,
pt.size = 1,
shuffle_seed = reseed
) &
scale_x_log10() & scale_y_log10()
combined_srt$QC <-
ifelse(
combined_srt@meta.data$log10GenesPerUMI < high_cutoff_complexity &
combined_srt@meta.data$QC == "Pass",
"Low_Complexity",
combined_srt@meta.data$QC
)
combined_srt$QC <-
ifelse(
combined_srt@meta.data$log10GenesPerUMI < high_cutoff_complexity &
combined_srt@meta.data$QC != "Pass" &
combined_srt@meta.data$QC != "Low_Complexity",
paste("Low_Complexity", combined_srt@meta.data$QC, sep = ","),
combined_srt@meta.data$QC
)
combined_srt$QC <-
ifelse(
combined_srt@meta.data$nFeature_RNA < low_cutoff_gene &
combined_srt@meta.data$QC == "Pass",
"Low_nFeature",
combined_srt@meta.data$QC
)
combined_srt$QC <-
ifelse(
combined_srt@meta.data$nFeature_RNA < low_cutoff_gene &
combined_srt@meta.data$QC != "Pass" &
combined_srt@meta.data$QC != "Low_nFeature",
paste("Low_nFeature", combined_srt@meta.data$QC, sep = ","),
combined_srt@meta.data$QC
)
combined_srt$QC <-
ifelse(
combined_srt@meta.data$percent_mito > high_cutoff_pc_mt &
combined_srt@meta.data$QC == "Pass",
"High_MT",
combined_srt@meta.data$QC
)
combined_srt$QC <-
ifelse(
combined_srt@meta.data$percent_mito > high_cutoff_pc_mt &
combined_srt@meta.data$QC != "Pass" &
combined_srt@meta.data$QC != "High_MT",
paste("High_MT", combined_srt@meta.data$QC, sep = ","),
combined_srt@meta.data$QC
)
combined_srt$QC <-
ifelse(
combined_srt@meta.data$nCount_RNA > high_cutoff_umis &
combined_srt@meta.data$QC == "Pass",
"High_UMIs",
combined_srt@meta.data$QC
)
combined_srt$QC <-
ifelse(
combined_srt@meta.data$nCount_RNA > high_cutoff_umis &
combined_srt@meta.data$QC != "Pass" &
combined_srt@meta.data$QC != "High_UMIs",
paste("High_UMIs", combined_srt@meta.data$QC, sep = ","),
combined_srt@meta.data$QC
)
combined_srt$QC <-
ifelse(
combined_srt@meta.data$percent_ribo > high_cutoff_pc_ribo &
combined_srt@meta.data$QC == "Pass",
"High_Ribo",
combined_srt@meta.data$QC
)
combined_srt$QC <-
ifelse(
combined_srt@meta.data$percent_ribo > high_cutoff_pc_ribo &
combined_srt@meta.data$QC != "Pass" &
combined_srt@meta.data$QC != "High_Ribo",
paste("High_Ribo", combined_srt@meta.data$QC, sep = ","),
combined_srt@meta.data$QC
)
combined_srt$QC <-
ifelse(
combined_srt@meta.data$percent_hb > high_cutoff_pc_hb &
combined_srt@meta.data$QC == "Pass",
"High_Hgb",
combined_srt@meta.data$QC
)
combined_srt$QC <-
ifelse(
combined_srt@meta.data$percent_hb > high_cutoff_pc_hb &
combined_srt@meta.data$QC != "Pass" &
combined_srt@meta.data$QC != "High_Hgb",
paste("High_Hgb", combined_srt@meta.data$QC, sep = ","),
combined_srt@meta.data$QC
)
table(combined_srt$QC)
Doublet
435
High_Hgb
480
High_Hgb,Doublet
56
High_Hgb,High_MT
4
High_Hgb,High_MT,Doublet
2
High_Hgb,High_MT,Low_Complexity
3
High_Hgb,High_Ribo
27
High_Hgb,High_Ribo,Doublet
1
High_Hgb,High_Ribo,High_MT
1
High_Hgb,High_Ribo,High_MT,Low_Complexity
1
High_Hgb,High_Ribo,High_MT,Low_Complexity,Doublet
1
High_Hgb,High_Ribo,Low_Complexity
2
High_Hgb,High_Ribo,Low_Complexity,Doublet
1
High_Hgb,High_UMIs,High_MT,Low_Complexity
2
High_Hgb,High_UMIs,Low_Complexity
1
High_Hgb,Low_Complexity
72
High_Hgb,Low_Complexity,Doublet
9
High_MT
144
High_MT,Doublet
11
High_MT,Low_Complexity
462
High_MT,Low_Complexity,Doublet
7
High_Ribo
216
High_Ribo,Doublet
4
High_Ribo,High_MT
7
High_Ribo,High_MT,Doublet
2
High_Ribo,High_MT,Low_Complexity
62
High_Ribo,Low_Complexity
7
High_UMIs,High_MT,Low_Complexity
38
High_UMIs,Low_Complexity
33
Low_Complexity
430
Low_Complexity,Doublet
15
Pass
7542
Let’s see how Scrublet score match distributed across our categories
Idents(combined_srt) <- combined_srt$QC
DefaultAssay(combined_srt) <- "RNA"
cells <- WhichCells(combined_srt, idents = "Pass")
combined_srt <- subset(combined_srt, idents = "Pass")
Idents(combined_srt) <- combined_srt$Scgn_tdTomato
p1 <-
QC_Plots_Complexity(
seurat_object = combined_srt,
plot_median = TRUE,
color_seed = reseed,
ggplot_default_colors = TRUE
)
p2 <-
QC_Plots_Genes(
seurat_object = combined_srt,
low_cutoff = low_cutoff_gene,
high_cutoff = high_cutoff_gene,
plot_median = TRUE,
plot_title = "Genes per Cell",
color_seed = reseed,
ggplot_default_colors = TRUE
)
p3 <-
QC_Plots_UMIs(
seurat_object = combined_srt,
low_cutoff = low_cutoff_umis,
high_cutoff = high_cutoff_umis,
plot_median = TRUE,
plot_title = "UMIs per Cell",
color_seed = reseed,
ggplot_default_colors = TRUE
)
p4 <-
QC_Plots_Mito(
seurat_object = combined_srt,
high_cutoff = high_cutoff_pc_mt,
plot_median = TRUE,
plot_title = "Mito genes % per Cell",
color_seed = reseed,
ggplot_default_colors = TRUE
)
p5 <-
QC_Plots_Feature(
seurat_object = combined_srt,
feature = "percent_ribo",
high_cutoff = high_cutoff_pc_ribo,
plot_median = TRUE,
y_axis_label = "% Ribosomal Genes Counts",
plot_title = "Ribo genes % per Cell",
color_seed = reseed,
ggplot_default_colors = TRUE
)
p6 <-
QC_Plots_Feature(
seurat_object = combined_srt,
feature = "percent_hb",
high_cutoff = high_cutoff_pc_hb,
plot_median = TRUE,
y_axis_label = "% Hemoglobin Genes Counts",
plot_title = "Hemoglobin genes % per Cell",
color_seed = reseed,
ggplot_default_colors = TRUE
)
wrap_plots(p1, p2, p3, p4, p5, p6, ncol = 3)
plan("sequential")
invisible(gc())
set.seed(reseed)
plan(multisession, workers = n_cores)
# normalize and run dimensionality reduction on control dataset
npcs <- 100
metadata <- combined_srt@meta.data
rownames(metadata) <- colnames(combined_srt)
combined_srt <-
SCTransform(
combined_srt,
vst.flavor = "v2",
ncells = ncol(combined_srt),
variable.features.n = 5000,
vars.to.regress = c(
"log10GenesPerUMI",
"percent_mito_ribo"
),
return.only.var.genes = FALSE,
seed.use = reseed,
verbose = FALSE
)
hvg <- VariableFeatures(combined_srt)
var_regex <- "^Hla-|^Ig[hjkl]|^Rna|^mt-|^Rp[sl]|^Hb[^(p)]|^Gm"
hvg <- hvg[str_detect(pattern = var_regex, string = hvg, negate = TRUE)]
keep_genes <-
c("tdTomato", "Scgn", gene_int, hvg) %>%
unique() %>%
.[!. %in% housekeeping_mouse] %>%
.[!. %in% sex_genes] %>%
.[!. %in% stress_genes]
glimpse(keep_genes)
chr [1:5981] "tdTomato" "Scgn" "Adcyap1r1" "Avpr1a" "Calcr" "Calcrl" ...
out_of_hvg <- keep_genes[!keep_genes %in% hvg]
kable_material(
kable(out_of_hvg, "html"),
bootstrap_options = c(
"bordered",
"condensed",
"responsive",
"striped"
),
position = "left",
font_size = 14
)
x |
---|
tdTomato |
Scgn |
Avpr1a |
Calcr |
Cckar |
Cckbr |
Crhr1 |
Crhr2 |
Esr1 |
Galr1 |
Galr2 |
Ghrhr |
Ghsr |
Glp1r |
Gpr55 |
Gpr83 |
Gpr149 |
Grpr |
Hcrtr1 |
Hcrtr2 |
Insrr |
Lepr |
Mc1r |
Mc3r |
Mc4r |
Mchr1 |
Nmbr |
Nmur1 |
Nmur2 |
Npffr2 |
Npr1 |
Npr2 |
Npr3 |
Npsr1 |
Npsr2 |
Npy1r |
Npy2r |
Npy5r |
Ntsr1 |
Oprd1 |
Oprk1 |
Oprl1 |
Oprm1 |
Oxtr |
Prlhr |
Prlr |
Prokr2 |
Qrfpr |
Rxfp1 |
Rxfp2 |
Sstr1 |
Sstr2 |
Sstr3 |
Tacr1 |
Tacr3 |
Trhr |
Trhr2 |
Tshr |
Vipr1 |
Vipr2 |
Adcyap1 |
Agrp |
Avp |
Bdnf |
Cartpt |
Cntf |
Crh |
Gal |
Ghrh |
Ghrl |
Grp |
Hcrt |
Kiss1 |
Lep |
Nmb |
Nms |
Nmu |
Npvf |
Nts |
Oxt |
Pdyn |
Pmch |
Pnoc |
Pomc |
Qrfp |
Rln1 |
Rln3 |
Sst |
Tac2 |
Trh |
Adra1a |
Adra1b |
Adra1d |
Adra2a |
Adra2b |
Adra2c |
Adrb1 |
Adrb2 |
Adrb3 |
Adrbk1 |
Adrbk2 |
Adora2b |
Adora3 |
Chrm1 |
Chrm2 |
Chrm4 |
Chrm5 |
Chrna1 |
Chrna2 |
Chrna3 |
Chrna4 |
Chrna5 |
Chrna6 |
Chrna7 |
Chrna9 |
Chrna10 |
Chrnb2 |
Chrnb3 |
Chrnd |
Chrng |
Grin2d |
Grin3b |
Grm2 |
Grm4 |
Grm6 |
Gabra1 |
Gabra3 |
Gabra5 |
Gabra6 |
Gabrg1 |
Gabrg2 |
Gabrd |
Gabre |
Gabrp |
Gabrq |
Gabrr1 |
Gabrr2 |
Gabrr3 |
Drd1 |
Drd3 |
Drd4 |
Drd5 |
Htr1a |
Htr1b |
Htr1d |
Htr1f |
Htr2a |
Htr2b |
Htr3a |
Htr3b |
Htr4 |
Htr5a |
Htr5b |
Htr6 |
Htr7 |
Gnao2 |
Gnasxl |
Gnb2 |
Gng3 |
Gng4 |
Gng5 |
Gng8 |
Gng10 |
Gng11 |
Gng13 |
Gngt1 |
Gngt2 |
P2rx1 |
P2rx2 |
P2rx3 |
P2rx5 |
P2rx6 |
P2rx7 |
P2ry1 |
P2ry2 |
P2ry4 |
P2ry6 |
P2ry12 |
P2ry13 |
P2ry14 |
Ryr1 |
Cnr1 |
Cnr2 |
Dagla |
Daglb |
Napepld |
Trpv1 |
Pparg |
Ltk |
Mdk |
Fam150a |
Fam150b |
Sim1 |
Slc2a3 |
Drp1 |
Mid49 |
Mid51 |
Ppargc1b |
Nrf2 |
Tfam |
Prdx3 |
Uqcrc2 |
Cox4i2 |
Bak1 |
Bax |
Bnip3 |
Casp9 |
Cybb |
Gpx1 |
Nfe2l2 |
Nox4 |
Polg |
Polg2 |
Pink1 |
Park2 |
Ogg1 |
Mutyh |
Sod3 |
Ucp1 |
Ucp2 |
Ucp3 |
Ucp4 |
Ucp5 |
Fgf21 |
Klb |
Bdh1 |
Bdh2 |
Hmgcs2 |
Gck |
Pkm |
Pdha2 |
Pdk1 |
Pdk2 |
Pdk4 |
Cpt1a |
Cpt1b |
Cpt2 |
Acsl4 |
Acsl5 |
Scd1 |
Acaa1 |
Acaa2 |
Hadhb |
Mc2r |
Alx1 |
Arid3a |
Arid3b |
Arid3c |
Bcl3 |
Barhl1 |
Barx2 |
Bmi1 |
Ctbp2 |
Cebpa |
Cebpb |
Cebpe |
Cops2 |
Cited1 |
Cited2 |
Cited4 |
Dbp |
Dpf2 |
Ddx5 |
Ddit3 |
Ets2 |
E2f1 |
E2f2 |
E2f4 |
E2f5 |
E2f6 |
E2f7 |
Elf3 |
Elf4 |
Elf5 |
Elk1 |
Eid2 |
Ewsr1 |
Fev |
Fezf2 |
Gabpa |
Gata1 |
Gata2 |
Gata3 |
Gata4 |
Gata5 |
Gata6 |
Gli1 |
Glis2 |
Gsx1 |
Gsx2 |
Hmx2 |
Hnf1b |
Ikzf1 |
Ikzf3 |
Isl1 |
Irx3 |
Irx4 |
Irx6 |
Kat2a |
Kat5 |
Klf1 |
Klf10 |
Klf15 |
Klf16 |
Klf5 |
Lhx1 |
Lhx2 |
Lhx3 |
Lhx4 |
Lmx1b |
Mkl2 |
Mybbp1a |
Mycbp |
Maz |
Mdfi |
Nkx3-1 |
Nkx2-1 |
Nkx2-3 |
Nkx2-6 |
Nkx2-9 |
Nkx3-2 |
Nkx6-1 |
Nobox |
Nanog |
Nab2 |
Paxip1 |
Pou2af1 |
Pou3f2 |
Pou3f4 |
Pou4f1 |
Pou4f3 |
Pou5f1 |
Prdm1 |
Rest |
Rcor2 |
Rrn3 |
Spdef |
Sertad1 |
Smyd1 |
Smad9 |
Snw1 |
Sox13 |
Sox14 |
Sox15 |
Sox17 |
Sox21 |
Sox3 |
Smarca1 |
Smarcd2 |
Smarce1 |
Sp7 |
Spib |
Spic |
Tal1 |
Tal2 |
Tlx1 |
Tbx1 |
Tbx19 |
Tbx2 |
Tbx20 |
Tbx21 |
Tbx22 |
Tbx3 |
Tbx5 |
Tbx6 |
Tbr1 |
Tbpl1 |
Taf10 |
Taf11 |
Taf12 |
Taf4b |
Taf6 |
Taf7l |
Taf8 |
Taf1a |
Taf1c |
Tead2 |
Tead3 |
Tead4 |
Tgif1 |
Tgif2lx1 |
Traf4 |
Txk |
Snrpc |
Wt1 |
Xbp1 |
Ascl1 |
Ascl3 |
Atf5 |
Aes |
Ar |
Arx |
Ahr |
Atoh1 |
Atoh7 |
Atoh8 |
Aire |
Relb |
Bhlhe41 |
Blzf1 |
Batf |
Bmp4 |
Bmp7 |
T |
Abl1 |
Creb3l3 |
Creb3l4 |
Camta2 |
Cic |
Cdx1 |
Cdx2 |
Cdc6 |
Creg1 |
Clock |
Ciita |
Crx |
Crxos |
Cbfa2t3 |
Cdk9 |
Cdkn1a |
Cdkn2a |
Ddb2 |
Dmbx1 |
Dlx2 |
Dlx3 |
Dlx4 |
Dlx5 |
Dlx6 |
Egr2 |
Egr3 |
Egr4 |
Emx1 |
Emx2 |
En1 |
En2 |
Ezh1 |
Eomes |
Esr2 |
Esrra |
Esrrb |
Ehf |
Etv3 |
Etv4 |
Evx2 |
Esx1 |
Figla |
Foxa1 |
Foxa2 |
Foxc1 |
Foxd1 |
Foxd2 |
Foxd4 |
Foxe1 |
Foxf1 |
Foxf2 |
Foxg1 |
Foxh1 |
Foxi1 |
Foxk1 |
Foxl1 |
Foxl2 |
Foxm1 |
Foxo4 |
Foxo6 |
Foxp3 |
Fosl2 |
Fhl2 |
Fus |
Gbx2 |
Gtf2h2 |
Gtf2h4 |
Gtf2a1l |
Gtf3a |
Gcm1 |
Gcm2 |
Gmeb1 |
Gsc |
Grhl1 |
Grhl3 |
Gadd45a |
Gfi1 |
Hes2 |
Hes3 |
Hes5 |
Hes6 |
Hes7 |
Hey1 |
Hand1 |
Hand2 |
Hsbp1 |
Hsf4 |
Helt |
Hhex |
Hnf4a |
Hnrnph2 |
Hnrnpu |
Hmga1 |
Hdac6 |
Hoxa1 |
Hoxa10 |
Hoxa11 |
Hoxa2 |
Hoxa5 |
Hoxa7 |
Hoxa9 |
Hoxb1 |
Hoxb13 |
Hoxb2 |
Hoxb3 |
Hoxb4 |
Hoxb5 |
Hoxb7 |
Hoxb8 |
Hoxb9 |
Hoxc10 |
Hoxc11 |
Hoxc4 |
Hoxc6 |
Hoxd1 |
Hoxd10 |
Hoxd12 |
Hoxd13 |
Hoxd3 |
Hoxd4 |
Hoxd8 |
Hoxd9 |
Hesx1 |
Hcfc1 |
Hic1 |
Id3 |
Isl2 |
Itgb3bp |
Ifi204 |
Irf3 |
Irf5 |
Irf7 |
Irf8 |
Irf9 |
Jade1 |
Lbx1 |
Lztfl1 |
Lcor |
Maml1 |
Mnt |
Med12 |
Med17 |
Mn1 |
Meox1 |
Meox2 |
Mesp2 |
Mta1 |
Mta2 |
Mapk7 |
Msx1 |
Msx2 |
Msc |
Myb |
Mybl1 |
Mybl2 |
Myc |
Mzf1 |
Mllt1 |
Mllt11 |
Mef2b |
Myf5 |
Myf6 |
Myog |
Nhlh1 |
Nhlh2 |
Neurod2 |
Neurod4 |
Neurod6 |
Neurog1 |
Neurog3 |
Npas1 |
Npas4 |
Notch3 |
Noto |
Sp100 |
Nfatc1 |
Nfatc4 |
Nfkb2 |
Nfkbie |
Nfe2 |
Nfil3 |
Nufip1 |
Gm6740 |
Ncor1 |
Ncoa4 |
Nrip3 |
Nr0b1 |
Nr1d1 |
Nr1h3 |
Nr1h4 |
Nr1h5 |
Nr1i2 |
Nr1i3 |
Nr2c1 |
Nr2e1 |
Nr2e3 |
Nr2f6 |
Nr5a1 |
Nr5a2 |
Nfya |
Nfyb |
Npm1 |
Onecut1 |
Onecut3 |
Otx2 |
Ovol1 |
Ovol2 |
Pax1 |
Pax2 |
Pax3 |
Pax4 |
Pax5 |
Pax6 |
Pax7 |
Pax8 |
Pax9 |
Prop1 |
Prrx1 |
Prrx2 |
Prrxl1 |
Phox2b |
Pitx1 |
Pitx2 |
Pitx3 |
Ptf1a |
Pdx1 |
Per2 |
Ppara |
Pgs1 |
Plag1 |
Plagl1 |
Plagl2 |
Parp1 |
Parp12 |
Pabpn1 |
Pcbp2 |
Pcgf2 |
Pqbp1 |
Polr2k |
Pbx4 |
Pgr |
Pdcd7 |
Pml |
Pin1 |
Pias3 |
Pcbd1 |
Rbpjl |
Rsl1 |
Rfx1 |
Rfx5 |
Rfxank |
Rfxap |
Rhox11 |
Rhox4e |
Rhox5 |
Rhox8 |
Rel |
Rax |
Rbbp7 |
Rbl1 |
Rara |
Rarg |
Rxra |
Rxrb |
Rpl7 |
Rpl7a |
Ring1 |
Rnf2 |
Rnf25 |
Rnf4 |
Runx2 |
Runx3 |
Sall1 |
Sall2 |
Sall3 |
Sall4 |
Scx |
Scrt1 |
Srf |
Scml2 |
Sry |
Stat4 |
Stat5a |
Stat6 |
Six1 |
Six2 |
Six3 |
Six4 |
Sim2 |
Sirt3 |
Snapc4 |
Snai1 |
Snai2 |
Snai3 |
Spz1 |
Spi1 |
Sra1 |
Srebf1 |
Strn |
Supt4a |
Suv39h1 |
Suv39h2 |
Tdg |
Thra |
Tcea2 |
Tceb2 |
Tceb3 |
Tcf12 |
Tcf15 |
Tcf7 |
Tfap2b |
Tfap2a |
Tfap2e |
Tfap4 |
Tfdp1 |
Tfe3 |
Tfec |
Tada3 |
Tle2 |
Tle6 |
Trp53 |
Trp63 |
Mdm4 |
Tgfb1i1 |
Trib3 |
Trim28 |
Trim30a |
Tsc2 |
Twist1 |
Twist2 |
Utf1 |
Mafb |
Maff |
Mafg |
Mafk |
Mycn |
Rela |
Vav1 |
Vax1 |
Vgll2 |
Vsx2 |
Vdr |
Vhl |
Zrsr1 |
Zc3h8 |
Zbtb14 |
Zbtb17 |
Zbtb7b |
Zscan21 |
Zfp110 |
Zfp239 |
Zfp263 |
Zfp354a |
Zfp422 |
Zfp467 |
Zfp472 |
Zfp503 |
Zfp60 |
Zfp64 |
Zfp68 |
Zik1 |
Zic2 |
Zic3 |
Zic5 |
Zmynd10 |
Ahrr |
Aip |
Alx3 |
Alx4 |
Atbf1 |
Neurog2 |
Hnrpd |
Bapx1 |
Bard1 |
Bcl6b |
Bnc1 |
Brca1 |
C2ta |
Catnb |
Cbfa2t1h |
Cbx2 |
Ccnk |
Cdk2 |
Cdk4 |
Cdkn2b |
Cdkn2c |
Cdkn2d |
Cdx4 |
Chx10 |
Cnbp1 |
Crebl1 |
Cutl1 |
Cutl2 |
Dbx1 |
Pcbd |
Ddef1 |
Dlx1 |
Dnmt1 |
Dnmt3a |
Drg1 |
Ebf2 |
Ercc2 |
Ercc3 |
Etsrp71 |
Evi1 |
Evx1 |
Ewsh |
Fusip1 |
Fem1a |
Fem1b |
Fkhl18 |
Foxb2 |
Fxr1h |
Gcn5l2 |
Dsip1 |
Gli |
Glrp1 |
Gsh1 |
Gsh2 |
Baz1a |
Hcls1 |
Hdgfrp2 |
Hes1 |
Hey2 |
Foxj1 |
Foxf1a |
Hipk2 |
Hlx |
Hlxb9 |
Hmgn2 |
Hmg20b |
Hmgb3 |
Hmga2 |
Hmx1 |
Foxa3 |
Hnf4 |
Hnrpab |
Hoxa11s |
Hoxa13 |
Hoxa4 |
Hoxa6 |
Hoxb6 |
Hoxc12 |
Hoxc13 |
Hoxc5 |
Hoxc8 |
Hoxc9 |
Hoxd11 |
hr |
Icsbp1 |
Idb1 |
Idb2 |
Idb3 |
Idb4 |
Ifi16 |
Ikbkg |
Irf4 |
Irx1 |
Irx2 |
Isgf3g |
Jund1 |
Bteb1 |
Labx |
Laf4 |
Lbx1h |
Lbx2h |
Lhx5 |
Lhx6 |
Lhx8 |
Lhx9 |
Lmo2 |
Lmyc1 |
Zbtb7 |
Lyl1 |
Mad |
Mad3 |
Mad4 |
Madh1 |
Madh2 |
Madh3 |
Madh4 |
Madh5 |
Madh6 |
Madh7 |
Maf |
Ascl2 |
Mbd3 |
Mcm3 |
Mcm2 |
Mcm4 |
Mcm5 |
Mcm6 |
Mcm7 |
Rab8a |
Mist1 |
Miz1 |
Mllt10 |
Mllt2h |
Mpl |
Mrg1 |
Mrg2 |
Msl31 |
Msx3 |
Mycs |
Naca |
Ndn |
Nedd8 |
Nfatc2ip |
Nfkbib |
Nfkbil1 |
Nkx2-2 |
Nmyc1 |
Notch4 |
Uhrf1 |
Musk |
Og2x |
Og9x |
Orc2l |
Otp |
Otx1 |
Pcaf |
Ipf1 |
Pem |
Pit1 |
Papola |
Pou2f3 |
Pou3f-rs1 |
Pou4f-rs1 |
Pou4f2 |
Pparbp |
Ppp5c |
Mapk8ip |
Psmc3 |
Psx1 |
Ptma |
Rbpsuh |
Rbpsuhl |
Recc1 |
Rnf12 |
Rorc |
Rpo1-1 |
Rpo1-2 |
Rpo1-3 |
Rpo1-4 |
Polr2c |
Polr2j |
Rpo2tc1 |
Trim30 |
Ruvbl2 |
Rxrg |
Nkx1-1 |
Sfpi1 |
Sfrs5 |
Shox2 |
Siah2 |
Six6 |
Skd3 |
Smarca3 |
Ighmbp2 |
Jarid1c |
Sox12 |
Sox19 |
Srst |
Bhlhb2 |
Strm |
Supt4h |
Supt4h2 |
Supt5h |
Tbx13 |
Tbx14 |
Tbx15 |
Tbx4 |
Tcea3 |
Tcf1 |
Tcf2 |
Tcf21 |
Zfhx1a |
Tcfap2a |
Tcfap2b |
Tcfap2c |
Tcfcp2 |
Tcfe2a |
Tcfeb |
Tcfec |
Tcfl1 |
Tcfl4 |
Tgfb1i4 |
Tgif |
Thrsp |
Tieg1 |
Titf1 |
Tnfaip3 |
Trip6 |
Trp73 |
Ube1c |
Uncx4.1 |
Wbp7 |
Nsep1 |
Zfa |
Zfp1 |
Zfp100 |
Zfp13 |
Rnf110 |
Zfp161 |
Zfp162 |
Zfp2 |
Zfp27 |
Zfp29 |
Zfp35 |
Zfp37 |
Zipro1 |
Zfp40 |
Zfp42 |
Zfp46 |
Zfp51 |
Zfp52 |
Zfp57 |
Zfp59 |
Zfp9 |
Zfp92 |
Zfp93 |
Zfp94 |
Zfp95 |
Zfp96 |
Zfp97 |
Zim1 |
Zfpn1a1 |
Zfpn1a2 |
Zfpn1a3 |
Ash2l |
Bpnt1 |
Copeb |
Creg |
Gcl |
Nr0b2 |
Thrap4 |
Vax2 |
Whsc2 |
Zfhx1b |
AW210570 |
Map3k12 |
Zfp146 |
Irebf1 |
Cops5 |
Zfp275 |
Tlx3 |
Ing4 |
Zfp385 |
Neud4 |
Pdlim4 |
Fbxl10 |
Foxe3 |
Zfp238 |
Hnf4g |
Zfp354c |
Abt1 |
Cbx8 |
Sirt6 |
Nrbf2 |
Lsm4 |
Dmrt1 |
Solh |
Keap1 |
Nsbp1 |
Ppp2r1a |
D19Ertd675e |
D1Ertd161e |
D15Ertd417e |
D11Ertd530e |
Hrb2 |
D12Ertd748e |
Zfp535 |
D11Bwg0517e |
Psmd10 |
Htatip2 |
Insm1 |
Rab25 |
Deaf1 |
Pdlim1 |
Irf6 |
Myst4 |
Irx5 |
Hils1 |
Lrrc6 |
Mllt7 |
Zfp108 |
Madh9 |
D1Bwg0491e |
Ttrap |
Heyl |
Zfp278 |
Zfp386 |
Hdac7a |
Nupr1 |
Zfp113 |
Mint |
Csda |
Zfp288 |
Gbif |
Ruvbl1 |
Papolb |
Pmfbp1 |
Zfp235 |
Rps6ka4 |
Ankrd2 |
Zfp111 |
Garnl1 |
Insm2 |
Zfp109 |
Hcngp |
Th1l |
Ehox |
Zfp112 |
Fhl5 |
Hic2 |
A730008L03Rik |
Rog |
Wbscr14 |
Piasy |
Rab2 |
Tnrc11 |
Ureb1 |
Carm1 |
Zfp191 |
Bhlhb5 |
Nrip2 |
Sap30 |
Gas41 |
Sp5 |
D10Jhu82e |
Nmi |
Asb1 |
Asb4 |
Asb2 |
2300009P13Rik |
1110005A23Rik |
Znrd1 |
Crsp9 |
3100002L24Rik |
Polr2e |
Polr2l |
5730410I19Rik |
Mcm8 |
4733401N12Rik |
4921520G13Rik |
6130401J04Rik |
1200013F24Rik |
2610016F04Rik |
Fank1 |
2310043K02Rik |
2400009B11Rik |
Polr3d |
Nrarp |
Psmd9 |
Pfdn1 |
Zfp99 |
Lass4 |
3110004H13Rik |
3110031B13Rik |
1810007M14Rik |
Zfp606 |
Dedd2 |
Vdrip |
1110035L05Rik |
3632451O06Rik |
Xab2 |
4930430A15Rik |
Rabl3 |
1700020N01Rik |
Polr2g |
Sec14l2 |
2410018C20Rik |
Mki67ip |
Ssxb1 |
Nudt12 |
3110024A21Rik |
Gtf2e2 |
Sirt5 |
Phf5a |
Ankra2 |
1110033I14Rik |
1110054N06Rik |
Tulp4 |
Asb11 |
1190004M21Rik |
1500031N24Rik |
Cnot8 |
1810037G04Rik |
Mll5 |
2810407K09Rik |
2610028L19Rik |
Ing1l |
Asb9 |
1700001F22Rik |
1700014N06Rik |
2300002D11Rik |
2310020P08Rik |
2310042L19Rik |
Trip13 |
Thrap6 |
1810060D16Rik |
Zfp219 |
Polr2i |
2810021J22Rik |
1700030J15Rik |
3010019O03Rik |
2610303A01Rik |
5730461K03Rik |
Crsp7 |
5730521P14Rik |
4631416I11Rik |
Hmgb2l1 |
4921509B22Rik |
4931423N10Rik |
Rnf134 |
Zfp597 |
4933416E05Rik |
4933426I21Rik |
Fbxo24 |
Dmrtc2 |
4933429H19Rik |
Ches1 |
Obox1 |
Pogk |
9130012O13Rik |
1300004C11Rik |
1300019N10Rik |
Ing3 |
1110001J12Rik |
1110020M19Rik |
Gtf2a1lf |
Zfp297b |
Phf7 |
1700012B18Rik |
2310076O14Rik |
Lass5 |
Ddx54 |
Ckn1 |
Phf10 |
Harp |
2600014C22Rik |
2810405K07Rik |
2610524B01Rik |
Mms19l |
Lsm11 |
Nkd2 |
Asb6 |
2410004N05Rik |
Ankrd3 |
2600017A12Rik |
Zfp131 |
2700043M03Rik |
2700067D09Rik |
Zfp248 |
B3Gat3 |
Skz1 |
2810455B10Rik |
2900054J07Rik |
1700065O13Rik |
Mbd3l1 |
1700123A16Rik |
1700123J19Rik |
4933409K03Rik |
4933417L02Rik |
D8Ertd69e |
Gasz |
1200006M05Rik |
1300003B13Rik |
Zdhhc16 |
Gtf2e1 |
1700086D15Rik |
Hod |
Cxxc1 |
Hnrpr |
Xrcc3 |
Zfp84 |
Hsf2bp |
4933430F08Rik |
Zfp336 |
9130417I07Rik |
9130423L19Rik |
Narg1 |
4930532L20Rik |
4930539I12Rik |
Zbtb3 |
4930564N15Rik |
4930548G07Rik |
Sirt4 |
Hspb9 |
1700013G10Rik |
2010005A06Rik |
Jarid1b |
4932409F11Rik |
Mitc1 |
Zfp198 |
5830417I10Rik |
Asb5 |
1110011F09Rik |
Tbx18 |
1700012M14Rik |
Mrsb |
1700012H05Rik |
2210008I11Rik |
Snip1 |
2410141K09Rik |
Jmjd2c |
2810438M17Rik |
Lass2 |
Ssbp4 |
4921524J06Rik |
6030426L16Rik |
6720457D02Rik |
Zfp142 |
9430034D17Rik |
C030011J08Rik |
C330002I19Rik |
9230102N17Rik |
9230110K08Rik |
A030003K21Rik |
4930522L14Rik |
5730467H21Rik |
2410141M05Rik |
4921504N20Rik |
1700090G07Rik |
9530049C15Rik |
C330022B21Rik |
C330013J21Rik |
Brpf1 |
0610009M14Rik |
Asb15 |
Sp2 |
9130019O22Rik |
Polr3h |
Zfp319 |
Bhlhb3 |
Abtb1 |
2210021A15Rik |
AA408868 |
Zfp202 |
Htatip |
Zfp297 |
Jundm2 |
Bat4 |
Tcfcp2l1 |
Sp6 |
Lin28 |
Cml3 |
Zfp192 |
Rbm9 |
Sirt1 |
Wdr9 |
Cecr6 |
Pcqap |
Ptges2 |
2310058J06Rik |
2810405L04Rik |
Taf13 |
Hkr3 |
AF013969 |
Aprin |
AW538212 |
Tada3l |
2310058A11Rik |
Hfh7 |
Zfp119 |
Psx2 |
Rab15 |
C730024G01Rik |
C330003B14Rik |
AI481750 |
Tcf19 |
A630042L21Rik |
D330024H06Rik |
Gsh5 |
Myt2 |
8030445B08Rik |
Zfp339 |
Ankrd1 |
Bmyc |
Nkx2-7 |
Surb7 |
Zdhhc15 |
Supt3h |
Tbx10 |
Lmo1 |
Zfp98 |
Hfh5 |
Hfh6 |
Hfh3 |
Tcfap4 |
Gsh3 |
Dbx2 |
Nol1 |
Bat8 |
Sprm1 |
Mjd |
Hoxb3s |
Nztf2 |
Sdccag33 |
Pou5f1-rs10 |
Mop3 |
Zfp295 |
Brdt |
Pawr |
Foxn4 |
Sox16 |
Otx3 |
Centb5 |
Rem2 |
Zfp287 |
Rnpc2 |
Zfp617 |
Clp1 |
Bhc80 |
MGC39058 |
Jmjd2b |
Gscl |
A930021G21Rik |
9030612M13Rik |
Kbtbd9 |
Sirt7 |
D5Ertd679e |
DXImx41e |
Tcfe3 |
Mlr1 |
9430065N20Rik |
6720489N17Rik |
Zswim4 |
BC055310 |
Mlr2 |
A830025F02Rik |
Centg3 |
Sox30 |
Mll |
Myocd |
Jarid1a |
Thrap5 |
Cart1 |
Gls2 |
9630006B20Rik |
Tada2l |
Myst2 |
6030408C04Rik |
D130006K24Rik |
6430502M16Rik |
Btf3 |
Glmr |
6720456H20Rik |
F830020C16Rik |
C730048E16Rik |
Mkl1 |
ORF63 |
6720480D16Rik |
Zfp523 |
Hszfp36 |
AI255170 |
AU018122 |
Fbxl11 |
Dmrt2 |
Taf5 |
Zfp281 |
Elys |
Tcfap2d |
Pms1 |
XPMC2H |
5830435C13Rik |
Zdhhc5 |
Ebf4 |
Nkx2-4 |
6820402O20Rik |
Tgif2 |
Zfp334 |
3632413B07Rik |
Taf4a |
D3Jfr1 |
Ddx58 |
Zfp189 |
Glis1 |
Jmjd2a |
C330039G02Rik |
B930041F14Rik |
Gbx1 |
Mll3 |
A730098D12Rik |
AI591476 |
LOC232337 |
5730403M16Rik |
A230102I05Rik |
Hkr2 |
6430596G11Rik |
6330581L23Rik |
Zf |
Zfp553 |
BC026432 |
LOC233987 |
Zfp612 |
Crsp6 |
Zfp426 |
Ankrd25 |
BC005471 |
Zfp145 |
6230410P16Rik |
AW610627 |
BC021921 |
Tceal1 |
BC024063 |
G431002C21Rik |
Zfp454 |
3526402J09Rik |
Homez |
6030449J21 |
9930016F01Rik |
6030490I01Rik |
BC031441 |
Fem1c |
BC024969 |
6430585N13Rik |
Dmrt3 |
Carf |
Lass6 |
D430039N05Rik |
Dmrta1 |
Dmrta2 |
E130309B19Rik |
4732429I09Rik |
Zfp537 |
D030014N22Rik |
Hip14l |
Myst3 |
D230022C05Rik |
Bsx |
6030424L22Rik |
Tgifx1 |
D030011N01Rik |
Obox3 |
Obox5 |
4921515A04Rik |
G431001E03Rik |
Zbtb1 |
5730589K01Rik |
Gtf3c4 |
Cyln2 |
A630035I11Rik |
Gcdh |
B430306D02Rik |
BC024139 |
A730032D07Rik |
Zfp398 |
Tcfl5 |
Ankrd5 |
4921509E05Rik |
6330583I20Rik |
A830014H24Rik |
5830403E09Rik |
E430039K05Rik |
6330416L07Rik |
4932422E22Rik |
D130026O16Rik |
D830019J24Rik |
B930011H20Rik |
Lba1 |
A630089N07Rik |
A730019I05Rik |
A830023I12Rik |
Rfxdc1 |
A730012O14Rik |
AW146020 |
Zfp82 |
Tcfap2e |
D030022P06Rik |
Tieg2 |
2810021G02Rik |
9130211I03Rik |
Mzf6d |
Cri2 |
Abcd1 |
Abcd2 |
Aldh1l1 |
App |
Caf4 |
Ccl25 |
Col4a5 |
Decr2 |
Ech1 |
Enho |
Hbegf |
Hif1 |
Igsf1 |
Lamb2 |
Lcat |
Lgi4 |
Lrpap1 |
Lxn |
Mdv1 |
Mief1 |
Ntn1 |
Pex10 |
Pex12 |
Pex16 |
Pex2 |
Pex26 |
Pex6 |
Psap |
Rtn4 |
S100a1 |
S100a6 |
Slitrk2 |
Chat |
Slc18a3 |
Ache |
Slc5a7 |
Gnaz |
Th |
Slc6a3 |
Slc18a2 |
Slc17a8 |
Slc1a6 |
Slc32a1 |
Mbnl3 |
Pgf |
Irs4 |
Gpr101 |
Agtr1 |
hvg <- hvg[hvg %in% keep_genes]
combined_srt <- combined_srt %>%
RunPCA(features = keep_genes, npcs = npcs, seed.use = reseed, verbose = FALSE)
source(here(src_dir, "genes.R"))
npr %<>% .[. %in% rownames(GetAssayData(combined_srt, slot = "scale.data"))]
np %<>% .[. %in% rownames(GetAssayData(combined_srt, slot = "scale.data"))]
neurotrans %<>% .[. %in% rownames(GetAssayData(combined_srt, slot = "scale.data"))]
glut %<>% .[. %in% rownames(GetAssayData(combined_srt, slot = "scale.data"))]
gaba %<>% .[. %in% rownames(GetAssayData(combined_srt, slot = "scale.data"))]
dopam %<>% .[. %in% rownames(GetAssayData(combined_srt, slot = "scale.data"))]
ach %<>% .[. %in% rownames(GetAssayData(combined_srt, slot = "scale.data"))]
genes.embed %<>% .[. %in% rownames(GetAssayData(combined_srt, slot = "scale.data"))]
print(combined_srt[["pca"]], dims = 1:5, nfeatures = 5)
PC_ 1
Positive: Plp1, Pcdh9, Tmeff2, Mbp, Pde4b
Negative: Rbfox1, Meg3, Cntnap2, Celf2, Nrg3
PC_ 2
Positive: Plp1, Rbfox1, Pcdh9, Meg3, Nkain2
Negative: Slc1a2, Flt1, Atp1a2, Gpc5, Ptprg
PC_ 3
Positive: Flt1, Ptprg, Slco1a4, Mecom, Cldn5
Negative: Slc1a2, Gpc5, Lsamp, Nrxn1, Atp1a2
PC_ 4
Positive: Cfap299, Dnah6, Dnah12, Cfap46, Syne1
Negative: Slc1a2, Flt1, Gpc5, Lsamp, Slco1a4
PC_ 5
Positive: Rbfox1, Pde10a, Phactr1, Celf2, Grm5
Negative: Kcnma1, Nwd2, Asic2, Trpm3, Scube1
VizDimLoadings(combined_srt, dims = 1:4, reduction = "pca")
DimHeatmap(combined_srt, dims = 1:15, cells = 500, balanced = TRUE)
ElbowPlot(combined_srt, ndims = npcs)
plan("sequential")
invisible(gc())
set.seed(reseed)
plan(multicore, workers = n_cores)
selected_pcs <-
seq_len(50)
if (!file.exists(here(data_dir, glue::glue("{project}-init/{project}-init-umap-search.Rds")))) {
umap_example <- scDEED(
input_data = combined_srt,
K = length(selected_pcs),
n_neighbors = seq(from = 15, to = 35, by = 10),
min.dist = c(0.01, 0.05, 0.1, 0.25, 0.5, 0.8),
reduction.method = "umap",
default_assay = "SCT"
)
dir.create(here(data_dir, sprintf("%s-init", project)))
readr::write_rds(
x = umap_example,
file = here(data_dir, glue::glue("{project}-init/{project}-init-umap-search.Rds"))
)
} else {
umap_example <-
read_rds(here(data_dir, glue::glue("{project}-init/{project}-init-umap-search.Rds")))
}
plan(sequential)
invisible(gc())
set.seed(seed = reseed)
plan(multisession, workers = n_cores)
registerDoParallel(cores = n_cores)
if (!file.exists(here(data_dir, glue::glue("{project}-init/{project}-init-tsne-search.Rds")))) {
tsne_example <- scDEED(
combined_srt,
K = length(selected_pcs),
reduction.method = "tsne",
default_assay = "SCT"
)
dir.create(here(data_dir, sprintf("%s-init", project)))
readr::write_rds(
x = tsne_example,
file = here(data_dir, glue::glue("{project}-init/{project}-init-tsne-search.Rds"))
)
} else {
tsne_example <-
read_rds(here(data_dir, glue::glue("{project}-init/{project}-init-tsne-search.Rds")))
}
plan(sequential)
invisible(gc())
set.seed(seed = reseed)
plan(multisession, workers = n_cores)
combined_srt <-
combined_srt |>
FindNeighbors(
dims = selected_pcs,
k.param = umap_example$num_dubious |>
dplyr::slice_min(order_by = number_dubious_cells, n = 1) |>
pull(n_neighbors),
annoy.metric = "euclidean",
n.trees = 100,
verbose = FALSE
) |>
RunUMAP(
dims = selected_pcs,
reduction.name = "umap",
reduction.key = "UMAP_",
return.model = FALSE,
umap.method = "uwot",
n.epochs = 1000L,
n.neighbors = umap_example$num_dubious |>
dplyr::slice_min(order_by = number_dubious_cells, n = 1) |>
pull(n_neighbors),
min.dist = umap_example$num_dubious |>
dplyr::slice_min(order_by = number_dubious_cells, n = 1) |>
pull(min.dist),
seed.use = reseed,
verbose = FALSE
)
combined_srt <-
RunTSNE(
combined_srt,
reduction = "pca",
dims = selected_pcs,
seed.use = reseed,
reduction.name = "tsne",
reduction.key = "tSNE_",
perplexity = tsne_example$num_dubious |>
dplyr::slice_min(order_by = number_dubious_cells, n = 1) |>
pull(perplexity) |> as.integer()
)
pacmap <- reticulate::import("pacmap")
# Initialize PaCMAP instance
reducer <- pacmap$PaCMAP(
n_components = 2L,
MN_ratio = 0.5,
FP_ratio = 2.0,
apply_pca = FALSE
)
# Perform dimensionality Reduction
pacmap_embedding <-
reducer$fit_transform(Embeddings(combined_srt[["pca"]])[, selected_pcs])
colnames(pacmap_embedding) <- paste0("PaCMAP_", 1:2)
rownames(pacmap_embedding) <- colnames(combined_srt)
# We will now store this as a custom dimensional reduction called 'pacmap'
combined_srt[["pacmap"]] <-
CreateDimReducObject(
embeddings = pacmap_embedding,
key = "PaCMAP_",
assay = DefaultAssay(combined_srt)
)
FeaturePlot_scCustom(
combined_srt,
features = "percent_mito",
label.size = 4,
repel = TRUE,
pt.size = 1,
label = TRUE,
colors_use = combined_srt@misc$mdat_Colour_Pal,
order = TRUE,
alpha_na_exp = 0.1,
alpha_exp = 0.45
) &
theme(plot.title = element_text(size = 16))
FeaturePlot_scCustom(
combined_srt,
features = "percent_mito",
reduction = "pacmap",
label.size = 4,
repel = TRUE,
pt.size = 1,
label = TRUE,
colors_use = combined_srt@misc$mdat_Colour_Pal,
order = TRUE,
alpha_na_exp = 0.1,
alpha_exp = 0.45
) &
theme(plot.title = element_text(size = 16))
FeaturePlot_scCustom(
combined_srt,
features = "percent_mito",
reduction = "tsne",
label.size = 4,
repel = TRUE,
pt.size = 1,
label = TRUE,
colors_use = combined_srt@misc$mdat_Colour_Pal,
order = TRUE,
alpha_na_exp = 0.1,
alpha_exp = 0.45
) &
theme(plot.title = element_text(size = 16))
QC_Plots_Mito(
combined_srt,
high_cutoff = high_cutoff_pc_mt,
plot_median = TRUE,
plot_title = "Mito genes % per Cell",
color_seed = reseed,
ggplot_default_colors = TRUE
)
FeaturePlot_scCustom(
combined_srt,
features = "percent_ribo",
label.size = 4,
repel = TRUE,
pt.size = 1,
label = TRUE,
colors_use = combined_srt@misc$mdat_Colour_Pal,
order = TRUE,
alpha_na_exp = 0.1,
alpha_exp = 0.45
) &
theme(plot.title = element_text(size = 16))
FeaturePlot_scCustom(
combined_srt,
features = "percent_ribo",
reduction = "pacmap",
label.size = 4,
repel = TRUE,
pt.size = 1,
label = TRUE,
colors_use = combined_srt@misc$mdat_Colour_Pal,
order = TRUE,
alpha_na_exp = 0.1,
alpha_exp = 0.45
) &
theme(plot.title = element_text(size = 16))
FeaturePlot_scCustom(
combined_srt,
features = "percent_ribo",
reduction = "tsne",
label.size = 4,
repel = TRUE,
pt.size = 1,
label = TRUE,
colors_use = combined_srt@misc$mdat_Colour_Pal,
order = TRUE,
alpha_na_exp = 0.1,
alpha_exp = 0.45
) &
theme(plot.title = element_text(size = 16))
QC_Plots_Feature(
combined_srt,
feature = "percent_ribo",
plot_median = TRUE,
high_cutoff = high_cutoff_pc_ribo,
y_axis_label = "% Ribosomal Genes Counts",
plot_title = "Ribo genes % per Cell",
color_seed = reseed,
ggplot_default_colors = TRUE
)
p1 <-
QC_Plots_Genes(
combined_srt,
low_cutoff = low_cutoff_gene,
high_cutoff = high_cutoff_gene,
plot_median = TRUE,
plot_title = "Genes per Cell",
color_seed = reseed,
ggplot_default_colors = TRUE
)
p2 <-
QC_Plots_UMIs(
combined_srt,
low_cutoff = low_cutoff_umis,
high_cutoff = high_cutoff_umis,
plot_median = TRUE,
plot_title = "UMIs per Cell",
color_seed = reseed,
ggplot_default_colors = TRUE
)
p1 | p2
plan("sequential")
invisible(gc())
set.seed(reseed)
plan(multicore, workers = n_cores)
combined_srt <-
CellCycleScoring(
combined_srt,
s.features = str_to_sentence(
cc.genes.updated.2019$s.genes
) %>%
.[. %in% rownames(combined_srt)],
g2m.features = str_to_sentence(
cc.genes.updated.2019$g2m.genes
) %>%
.[. %in% rownames(combined_srt)],
assay = "SCT"
)
table(combined_srt[[]]$Phase)
G1 G2M S
3450 2320 1772
FeaturePlot_scCustom(
combined_srt,
features = c("S.Score", "G2M.Score"),
reduction = "umap",
label.size = 4,
repel = TRUE,
pt.size = 1,
label = TRUE,
colors_use = combined_srt@misc$mdat_Colour_Pal,
na_cutoff = NA,
order = TRUE,
alpha_na_exp = 0.1,
alpha_exp = 0.45
) &
theme(plot.title = element_text(size = 16))
FeaturePlot_scCustom(
combined_srt,
features = c("S.Score", "G2M.Score"),
reduction = "pacmap",
label.size = 4,
repel = TRUE,
pt.size = 1,
label = TRUE,
colors_use = combined_srt@misc$mdat_Colour_Pal,
na_cutoff = NA,
order = TRUE,
alpha_na_exp = 0.1,
alpha_exp = 0.45
) &
theme(plot.title = element_text(size = 16))
FeaturePlot_scCustom(
combined_srt,
features = c("S.Score", "G2M.Score"),
reduction = "tsne",
label.size = 4,
repel = TRUE,
pt.size = 1,
label = TRUE,
colors_use = combined_srt@misc$mdat_Colour_Pal,
na_cutoff = NA,
order = TRUE,
alpha_na_exp = 0.1,
alpha_exp = 0.45
) &
theme(plot.title = element_text(size = 16))
plt_s_phase <- VlnPlot_scCustom(seurat_object = combined_srt, features = c("S.Score"), plot_median = TRUE) & NoLegend()
plt_g2m_phase <- VlnPlot_scCustom(seurat_object = combined_srt, features = c("G2M.Score"), plot_median = TRUE) & NoLegend()
(plt_s_phase | plt_g2m_phase)
pl_emb_comb_batch <- DimPlot_scCustom(
seurat_object = combined_srt,
reduction = "umap",
group.by = "Scgn_tdTomato",
pt.size = 1,
ggplot_default_colors = TRUE,
color_seed = reseed,
shuffle = TRUE,
seed = reseed,
repel = TRUE,
label = TRUE,
label.size = 5
) + NoLegend()
pl_emb_comb_batch
pl_emb_comb_batch <- DimPlot_scCustom(
seurat_object = combined_srt,
reduction = "pacmap",
group.by = "Scgn_tdTomato",
pt.size = 1,
ggplot_default_colors = TRUE,
color_seed = reseed,
shuffle = TRUE,
seed = reseed,
repel = TRUE,
label = TRUE,
label.size = 5
) + NoLegend()
pl_emb_comb_batch
pl_emb_comb_batch <- DimPlot_scCustom(
seurat_object = combined_srt,
reduction = "tsne",
group.by = "Scgn_tdTomato",
pt.size = 1,
ggplot_default_colors = TRUE,
color_seed = reseed,
shuffle = TRUE,
seed = reseed,
repel = TRUE,
label = TRUE,
label.size = 5
) + NoLegend()
pl_emb_comb_batch
Coloured by clustering resolution.
plan("sequential")
invisible(gc())
set.seed(reseed)
plan(multicore, workers = n_cores)
metadata <- combined_srt@meta.data
rownames(metadata) <- colnames(combined_srt)
resolutions <-
modularity_event_sampling(
A = combined_srt@graphs$SCT_snn,
n.res = 10,
gamma.min = 0.2,
gamma.max = 2.000001
) # sample based on the similarity matrix
plan("sequential")
invisible(gc())
set.seed(reseed)
plan(multicore, workers = n_cores)
# clustering using Suerat
combined_srt <- combined_srt %>%
FindClusters(
algorithm = "leiden",
partition.type = "ModularityVertexPartition",
method = "igraph",
n.iter = -1,
resolution = resolutions,
random.seed = reseed,
verbose = FALSE
)
ref_labels <- combined_srt$seurat_clusters
# initial cluster tree from Seurat flat clustering
plot_clustree(
labelmat = combined_srt@meta.data,
prefix = "SCT_snn_res.",
ref_labels = ref_labels,
plot.ref = FALSE,
layout = "sugiyama",
use_core_edges = FALSE
)
Coloured by the SC3 stability metric.
plot_clustree(
labelmat = combined_srt@meta.data,
prefix = "SCT_snn_res.",
node_colour = "sc3_stability",
plot.ref = FALSE,
layout = "sugiyama",
use_core_edges = FALSE
)
# Adjusted Multiresolution Rand Index (AMRI)
ks_flat <- apply(
out$labelmat.flat,
2,
FUN = function(x) {
length(unique(x))
}
)
ks_mrtree <- apply(
out$labelmat.mrtree,
2,
FUN = function(x) {
length(unique(x))
}
)
amri_flat <- sapply(seq_len(ncol(out$labelmat.flat)), function(i) {
AMRI(out$labelmat.flat[, i], ref_labels)$amri
})
amri_flat <- aggregate(amri_flat, by = list(k = ks_flat), FUN = mean)
amri_recon <- sapply(seq_len(ncol(out$labelmat.mrtree)), function(i) {
AMRI(out$labelmat.mrtree[, i], ref_labels)$amri
})
df <- rbind(
data.frame(
k = amri_flat$k,
amri = amri_flat$x,
method = "Seurat flat"
),
data.frame(k = ks_mrtree, amri = amri_recon, method = "MRtree")
)
ggplot2::ggplot(data = df, aes(x = k, y = amri, color = method)) +
geom_line() +
theme_bw()
stab_out <- stability_plot(out)
stab_out$plot
kable_material(
kable(
stab_out$df,
"html"
),
bootstrap_options = c(
"bordered",
"condensed",
"responsive",
"striped"
),
position = "left",
font_size = 14
)
resolution | ari |
---|---|
15 | 0.9761475 |
16 | 0.9968033 |
21 | 0.9579564 |
24 | 0.9467431 |
26 | 0.9509819 |
32 | 0.9532974 |
res_k <- select_resolution(stab_out$df)
kable_material(
kable(
table(
out$labelmat.mrtree[, which.min(
abs(as.integer(
str_remove(dimnames(
out$labelmat.mrtree
)[[2]], "K")
) - res_k)
)]
),
"html"
),
bootstrap_options = c(
"bordered",
"condensed",
"responsive",
"striped"
),
position = "left",
font_size = 14
)
Var1 | Freq |
---|---|
1 | 1891 |
2 | 971 |
3 | 808 |
4 | 587 |
5 | 547 |
6 | 492 |
7 | 414 |
8 | 410 |
9 | 348 |
10 | 306 |
11 | 290 |
12 | 202 |
13 | 104 |
14 | 77 |
15 | 59 |
16 | 36 |
combined_srt$k_tree <- out$labelmat.mrtree[, which.min(
abs(as.integer(
str_remove(dimnames(
out$labelmat.mrtree
)[[2]], "K")
) - res_k)
)] %>%
as.numeric() %>%
as.factor()
p1 <-
DimPlot_scCustom(
combined_srt,
pt.size = 1,
ggplot_default_colors = TRUE,
color_seed = reseed,
shuffle = TRUE,
seed = reseed,
alpha = 0.5,
repel = TRUE,
label = TRUE,
label.size = 5
) + ggtitle("Unsupervised overclustering") + NoLegend()
p2 <-
DimPlot_scCustom(
combined_srt,
group.by = "k_tree",
pt.size = 1,
ggplot_default_colors = TRUE,
color_seed = reseed,
shuffle = TRUE,
seed = reseed,
alpha = 0.5,
repel = TRUE,
label = TRUE,
label.size = 5
) + ggtitle("MRTree") + NoLegend()
p1 | p2
p1 <-
DimPlot_scCustom(
combined_srt,
pt.size = 1,
ggplot_default_colors = TRUE,
color_seed = reseed,
reduction = "pacmap",
shuffle = TRUE,
seed = reseed,
alpha = 0.5,
repel = TRUE,
label = TRUE,
label.size = 5
) + ggtitle("Unsupervised overclustering") + NoLegend()
p2 <-
DimPlot_scCustom(
combined_srt,
group.by = "k_tree",
pt.size = 1,
ggplot_default_colors = TRUE,
color_seed = reseed,
reduction = "pacmap",
shuffle = TRUE,
seed = reseed,
alpha = 0.5,
repel = TRUE,
label = TRUE,
label.size = 5
) + ggtitle("MRTree") + NoLegend()
p1 | p2
p1 <-
DimPlot_scCustom(
combined_srt,
pt.size = 1,
ggplot_default_colors = TRUE,
color_seed = reseed,
reduction = "tsne",
shuffle = TRUE,
seed = reseed,
alpha = 0.5,
repel = TRUE,
label = TRUE,
label.size = 5
) + ggtitle("Unsupervised overclustering") + NoLegend()
p2 <-
DimPlot_scCustom(
combined_srt,
group.by = "k_tree",
pt.size = 1,
ggplot_default_colors = TRUE,
color_seed = reseed,
reduction = "tsne",
shuffle = TRUE,
seed = reseed,
alpha = 0.5,
repel = TRUE,
label = TRUE,
label.size = 5
) + ggtitle("MRTree") + NoLegend()
p1 | p2
VlnPlot_scCustom(seurat_object = combined_srt, assay = "RNA", layer = "counts", features = c("tdTomato"), plot_median = TRUE) & NoLegend()
src_list <- map(genes.embed, function(gene) {
src <- c(
"### {{gene}} {.unnumbered}",
"```{r pl-umap-expression-{{gene}}}",
"FeaturePlot_scCustom(",
"seurat_object = combined_srt, features = '{{gene}}',",
"pt.size = 1, order = TRUE,",
"colors_use = combined_srt@misc$expr_Colour_Pal,",
"alpha_na_exp = 0.1, alpha_exp = 0.45) +",
"ggtitle(sprintf('%s: ', '{{gene}}')) +",
"theme(plot.title = element_text(size = 24))",
"```",
""
)
knitr::knit_expand(text = src)
})
out <- knitr::knit_child(text = unlist(src_list), options = list(cache = FALSE))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Abcd1',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Abcd1')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Abcd2',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Abcd2')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Abcd3',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Abcd3')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Acaa2',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Acaa2')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Acox1',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Acox1')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Agrn',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Agrn')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Agt',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Agt')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Alcam',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Alcam')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Aldh1a1',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Aldh1a1')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Aldh1l1',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Aldh1l1')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Aldoc',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Aldoc')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Angpt1',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Angpt1')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Apoe',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Apoe')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'App',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'App')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Aqp4',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Aqp4')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Arf1',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Arf1')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Bmp7',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Bmp7')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Bsg',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Bsg')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Ccl25',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Ccl25')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Ckb',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Ckb')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Cnr1',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Cnr1')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Col4a5',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Col4a5')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Cst3',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Cst3')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Dagla',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Dagla')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Daglb',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Daglb')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Decr2',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Decr2')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Dcc',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Dcc')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Dnm1',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Dnm1')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Ech1',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Ech1')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Efna5',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Efna5')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Egfr',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Egfr')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Enho',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Enho')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Eno1',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Eno1')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Faah',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Faah')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Fgf1',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Fgf1')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Fgfr3',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Fgfr3')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Fis1',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Fis1')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Fos',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Fos')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Fth1',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Fth1')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Ftl1',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Ftl1')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Gfap',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Gfap')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Gja1',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Gja1')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Gli1',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Gli1')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Glul',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Glul')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Gnai2',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Gnai2')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Gnas',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Gnas')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'H2-K1',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'H2-K1')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Hacd2',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Hacd2')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Hadhb',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Hadhb')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Hbegf',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Hbegf')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Hepacam',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Hepacam')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Htra1',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Htra1')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Igsf1',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Igsf1')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Il18',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Il18')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Il1rapl1',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Il1rapl1')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Itgav',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Itgav')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Jam2',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Jam2')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Lama2',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Lama2')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Lamb2',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Lamb2')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Lcat',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Lcat')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Lgi1',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Lgi1')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Lgi4',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Lgi4')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Lpcat3',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Lpcat3')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Lrpap1',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Lrpap1')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Lrrc4b',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Lrrc4b')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Lxn',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Lxn')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Mdk',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Mdk')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Mfn1',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Mfn1')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Mfn2',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Mfn2')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Mgll',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Mgll')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Mief1',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Mief1')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Napepld',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Napepld')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Ncam1',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Ncam1')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Ncan',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Ncan')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Ndrg2',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Ndrg2')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Nfasc',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Nfasc')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Nfia',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Nfia')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Nlgn3',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Nlgn3')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Nrxn1',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Nrxn1')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Nrxn2',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Nrxn2')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Ntn1',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Ntn1')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Ntrk3',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Ntrk3')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Opa1',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Opa1')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Pex1',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Pex1')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Pex10',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Pex10')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Pex12',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Pex12')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Pex13',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Pex13')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Pex14',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Pex14')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Pex16',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Pex16')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Pex2',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Pex2')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Pex26',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Pex26')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Pex3',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Pex3')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Pex6',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Pex6')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Pkm',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Pkm')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Pla2g7',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Pla2g7')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Plcb1',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Plcb1')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Psap',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Psap')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Ptn',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Ptn')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Pygb',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Pygb')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Ralyl',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Ralyl')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Rgma',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Rgma')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Rtn4',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Rtn4')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'S100a1',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'S100a1')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'S100a6',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'S100a6')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'S100b',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'S100b')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Scd2',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Scd2')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Sdc2',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Sdc2')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Sema6a',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Sema6a')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Sema6d',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Sema6d')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Sgcd',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Sgcd')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Sirpa',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Sirpa')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Slc1a2',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Slc1a2')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Slc1a3',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Slc1a3')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Slc38a1',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Slc38a1')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Slc4a4',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Slc4a4')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Slc6a11',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Slc6a11')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Slc7a10',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Slc7a10')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Slit1',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Slit1')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Slit2',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Slit2')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Slitrk2',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Slitrk2')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Sorbs1',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Sorbs1')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Sox9',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Sox9')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Sparc',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Sparc')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Spon1',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Spon1')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Tafa1',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Tafa1')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Timp3',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Timp3')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Tkt',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Tkt')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Vcam1',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Vcam1')) +
theme(plot.title = element_text(size = 24))
FeaturePlot_scCustom(
seurat_object = combined_srt, features = 'Vegfa',
pt.size = 1, order = TRUE,
colors_use = combined_srt@misc$expr_Colour_Pal,
alpha_na_exp = 0.1, alpha_exp = 0.45) +
ggtitle(sprintf('%s: ', 'Vegfa')) +
theme(plot.title = element_text(size = 24))
plt_g_tf <- transcription_factors %>% .[. %in% hvg]
DotPlot_scCustom(
seurat_object = combined_srt,
assay = "SCT",
features = plt_g_tf,
flip_axes = TRUE,
x_lab_rotate = TRUE,
colors_use = viridis(n = 30, alpha = .55, direction = -1, option = "G")
)
DotPlot_scCustom(
seurat_object = combined_srt,
assay = "RNA",
features = plt_g_tf,
flip_axes = TRUE,
x_lab_rotate = TRUE,
colors_use = viridis(n = 30, alpha = .55, direction = -1, option = "E")
)
plt_g_glut <- c(glut, glutr) %>% .[. %in% hvg]
DotPlot_scCustom(
seurat_object = combined_srt,
assay = "SCT",
features = plt_g_glut,
flip_axes = TRUE,
x_lab_rotate = TRUE,
colors_use = viridis(n = 30, alpha = .55, direction = -1, option = "G")
)
DotPlot_scCustom(
seurat_object = combined_srt,
assay = "RNA",
features = plt_g_glut,
flip_axes = TRUE,
x_lab_rotate = TRUE,
colors_use = viridis(n = 30, alpha = .55, direction = -1, option = "E")
)
plt_g_gaba <- c(gaba, gabar) %>% .[. %in% hvg]
DotPlot_scCustom(
seurat_object = combined_srt,
assay = "SCT",
features = unique(plt_g_gaba),
flip_axes = TRUE,
x_lab_rotate = TRUE,
colors_use = viridis(n = 30, alpha = .55, direction = -1, option = "G")
)
DotPlot_scCustom(
seurat_object = combined_srt,
assay = "RNA",
features = unique(plt_g_gaba),
flip_axes = TRUE,
x_lab_rotate = TRUE,
colors_use = viridis(n = 30, alpha = .55, direction = -1, option = "E")
)
plt_g_np <- c(np) %>% .[. %in% hvg]
DotPlot_scCustom(
seurat_object = combined_srt,
assay = "SCT",
features = unique(plt_g_np),
flip_axes = TRUE,
x_lab_rotate = TRUE,
colors_use = viridis(n = 30, alpha = .55, direction = -1, option = "G")
)
DotPlot_scCustom(
seurat_object = combined_srt,
assay = "RNA",
features = unique(plt_g_np),
flip_axes = TRUE,
x_lab_rotate = TRUE,
colors_use = viridis(n = 30, alpha = .55, direction = -1, option = "E")
)
plt_g_npr <- c(npr) %>% .[. %in% hvg]
DotPlot_scCustom(
seurat_object = combined_srt,
assay = "SCT",
features = unique(plt_g_npr),
flip_axes = TRUE,
x_lab_rotate = TRUE,
colors_use = viridis(n = 30, alpha = .55, direction = -1, option = "G")
)
DotPlot_scCustom(
seurat_object = combined_srt,
assay = "RNA",
features = unique(plt_g_npr),
flip_axes = TRUE,
x_lab_rotate = TRUE,
colors_use = viridis(n = 30, alpha = .55, direction = -1, option = "E")
)
plt_g_nmr <- c(nmr) %>%
.[. %in% hvg] %>%
.[!. %in% c(plt_g_glut, plt_g_gaba)]
DotPlot_scCustom(
seurat_object = combined_srt,
assay = "SCT",
features = unique(plt_g_nmr),
flip_axes = TRUE,
x_lab_rotate = TRUE,
colors_use = viridis(n = 30, alpha = .55, direction = -1, option = "G")
)
DotPlot_scCustom(
seurat_object = combined_srt,
assay = "RNA",
features = unique(plt_g_nmr),
flip_axes = TRUE,
x_lab_rotate = TRUE,
colors_use = viridis(n = 30, alpha = .55, direction = -1, option = "E")
)
plt_g_ecb <- c(cnbn) %>% .[. %in% hvg]
DotPlot_scCustom(
seurat_object = combined_srt,
assay = "SCT",
features = unique(plt_g_ecb),
flip_axes = TRUE,
x_lab_rotate = TRUE,
colors_use = viridis(n = 30, alpha = .55, direction = -1, option = "G")
)
DotPlot_scCustom(
seurat_object = combined_srt,
assay = "RNA",
features = unique(plt_g_ecb),
flip_axes = TRUE,
x_lab_rotate = TRUE,
colors_use = viridis(n = 30, alpha = .55, direction = -1, option = "E")
)
We see the spread of our targets across derived clusters, which isn’t optimal. Lets see if we will see some significant hits with proper statistical testing.
plan("sequential")
invisible(gc())
set.seed(reseed)
plan(multicore, workers = n_cores)
Idents(combined_srt) <- "k_tree"
combined_srt <-
PrepSCTFindMarkers(combined_srt, assay = "SCT")
markers_logreg <-
FindAllMarkers(
combined_srt,
assay = "SCT",
verbose = FALSE,
random.seed = reseed,
only.pos = TRUE,
min.pct = 0.2,
base = 10,
logfc.threshold = 0.2,
densify = TRUE,
test.use = "LR"
)
# markers_logreg %>%
# pull(gene) %>%
# gconvert(
# .,
# organism = "mmusculus",
# target = "MGI",
# numeric_ns = "",
# mthreshold = Inf,
# filter_na = TRUE
# ) %>%
# select(name, description) %>%
# right_join(markers_logreg, by = c("gene" = "name"))
write_csv(
markers_logreg,
here(
tables_dir,
docname,
sprintf(
"%s_all_mrk-logreg_sct-combined-whole_dataset-fpr_%s.csv",
project, cb_fpr
)
)
)
markers_logreg %>%
group_by(cluster) %>%
slice_max(n = 20, order_by = avg_log10FC) %>%
kable("html") %>%
kable_material(
bootstrap_options = c(
"bordered",
"condensed",
"responsive",
"striped"
),
position = "left",
font_size = 14
)
p_val | avg_log10FC | pct.1 | pct.2 | p_val_adj | cluster | gene |
---|---|---|---|---|---|---|
0 | 1.6209648 | 0.297 | 0.009 | 0.0e+00 | 1 | Hapln2 |
0 | 1.3190035 | 0.353 | 0.019 | 0.0e+00 | 1 | Anln |
0 | 1.1383225 | 0.737 | 0.080 | 0.0e+00 | 1 | Trf |
0 | 1.0522038 | 0.234 | 0.022 | 0.0e+00 | 1 | Hcn2 |
0 | 1.0374340 | 0.206 | 0.019 | 0.0e+00 | 1 | Kcnk13 |
0 | 1.0350104 | 0.863 | 0.125 | 0.0e+00 | 1 | Prr5l |
0 | 1.0181583 | 0.464 | 0.047 | 0.0e+00 | 1 | Apod |
0 | 0.9779225 | 0.200 | 0.022 | 0.0e+00 | 1 | Fgd3 |
0 | 0.9768928 | 0.959 | 0.215 | 0.0e+00 | 1 | Fth1 |
0 | 0.9106105 | 0.363 | 0.048 | 0.0e+00 | 1 | Rftn1 |
0 | 0.8949042 | 0.346 | 0.047 | 0.0e+00 | 1 | Carns1 |
0 | 0.8908094 | 0.208 | 0.028 | 0.0e+00 | 1 | Adam19 |
0 | 0.8851835 | 0.363 | 0.042 | 0.0e+00 | 1 | Enpp6 |
0 | 0.8805379 | 0.489 | 0.076 | 0.0e+00 | 1 | Gatm |
0 | 0.8596478 | 0.209 | 0.029 | 0.0e+00 | 1 | Dock5 |
0 | 0.8399110 | 0.392 | 0.069 | 0.0e+00 | 1 | Tmem117 |
0 | 0.8303882 | 0.282 | 0.048 | 0.0e+00 | 1 | Kctd3 |
0 | 0.8241909 | 0.293 | 0.043 | 0.0e+00 | 1 | Ndrg1 |
0 | 0.8104694 | 0.386 | 0.064 | 0.0e+00 | 1 | Slco3a1 |
0 | 0.8062539 | 0.736 | 0.134 | 0.0e+00 | 1 | Gsn |
0 | 1.2036073 | 0.264 | 0.019 | 0.0e+00 | 2 | Gm32633 |
0 | 1.0164049 | 0.218 | 0.022 | 0.0e+00 | 2 | Tnni1 |
0 | 0.9838140 | 0.260 | 0.028 | 0.0e+00 | 2 | C030029H02Rik |
0 | 0.9631501 | 0.591 | 0.082 | 0.0e+00 | 2 | Synpr |
0 | 0.9062614 | 0.575 | 0.083 | 0.0e+00 | 2 | Opalin |
0 | 0.8853478 | 0.679 | 0.116 | 0.0e+00 | 2 | Ablim2 |
0 | 0.8579505 | 0.454 | 0.098 | 0.0e+00 | 2 | Ptgds |
0 | 0.8219893 | 0.600 | 0.108 | 0.0e+00 | 2 | Sh3gl3 |
0 | 0.8192472 | 0.455 | 0.077 | 0.0e+00 | 2 | Tmod1 |
0 | 0.8179436 | 0.485 | 0.106 | 0.0e+00 | 2 | Fam214a |
0 | 0.8046050 | 0.530 | 0.109 | 0.0e+00 | 2 | Man1a |
0 | 0.7922918 | 0.366 | 0.063 | 0.0e+00 | 2 | Mcam |
0 | 0.7804220 | 0.458 | 0.086 | 0.0e+00 | 2 | 1700047M11Rik |
0 | 0.7648205 | 0.661 | 0.134 | 0.0e+00 | 2 | Lgi3 |
0 | 0.7601628 | 0.688 | 0.164 | 0.0e+00 | 2 | Prickle1 |
0 | 0.7584761 | 0.400 | 0.078 | 0.0e+00 | 2 | Ninj2 |
0 | 0.7552239 | 0.961 | 0.316 | 0.0e+00 | 2 | Bin1 |
0 | 0.7483199 | 0.586 | 0.118 | 0.0e+00 | 2 | Olig1 |
0 | 0.7456168 | 0.252 | 0.047 | 0.0e+00 | 2 | Tyro3 |
0 | 0.7392018 | 0.844 | 0.200 | 0.0e+00 | 2 | Ano4 |
0 | 1.6853299 | 0.970 | 0.106 | 0.0e+00 | 3 | Slc1a2 |
0 | 1.3345483 | 0.302 | 0.019 | 0.0e+00 | 3 | Htra1 |
0 | 1.3145373 | 0.816 | 0.081 | 0.0e+00 | 3 | Gpc5 |
0 | 1.3055228 | 0.873 | 0.108 | 0.0e+00 | 3 | Slc1a3 |
0 | 1.2553896 | 0.798 | 0.093 | 0.0e+00 | 3 | Cst3 |
0 | 1.2132916 | 0.204 | 0.014 | 0.0e+00 | 3 | F3 |
0 | 1.1829051 | 0.442 | 0.040 | 0.0e+00 | 3 | Mertk |
0 | 1.1761343 | 0.210 | 0.016 | 0.0e+00 | 3 | Aldoc |
0 | 1.1416954 | 0.635 | 0.068 | 0.0e+00 | 3 | Prex2 |
0 | 1.1252629 | 0.632 | 0.095 | 0.0e+00 | 3 | Tspan7 |
0 | 1.1044352 | 0.304 | 0.027 | 0.0e+00 | 3 | Nwd1 |
0 | 1.0728424 | 0.927 | 0.137 | 0.0e+00 | 3 | Atp1a2 |
0 | 1.0599244 | 0.722 | 0.094 | 0.0e+00 | 3 | Gabrb1 |
0 | 1.0358371 | 0.434 | 0.055 | 0.0e+00 | 3 | Rgs20 |
0 | 1.0306564 | 0.376 | 0.048 | 0.0e+00 | 3 | Rorb |
0 | 1.0154493 | 0.337 | 0.039 | 0.0e+00 | 3 | Cspg5 |
0 | 1.0092837 | 0.262 | 0.030 | 0.0e+00 | 3 | Gli3 |
0 | 1.0084536 | 0.859 | 0.174 | 0.0e+00 | 3 | Cpe |
0 | 1.0061784 | 0.351 | 0.046 | 0.0e+00 | 3 | Gpr37l1 |
0 | 1.0054572 | 0.234 | 0.025 | 0.0e+00 | 3 | Arhgef26 |
0 | 1.7002947 | 0.555 | 0.019 | 0.0e+00 | 4 | Sox11 |
0 | 1.5624399 | 0.245 | 0.012 | 0.0e+00 | 4 | Dlx6os1 |
0 | 1.3690852 | 0.313 | 0.016 | 0.0e+00 | 4 | Dcx |
0 | 1.3006627 | 0.235 | 0.028 | 0.0e+00 | 4 | Unc5d |
0 | 1.1928454 | 0.208 | 0.017 | 0.0e+00 | 4 | Epha3 |
0 | 1.1640244 | 0.559 | 0.064 | 0.0e+00 | 4 | Sox4 |
0 | 1.1107389 | 0.305 | 0.046 | 0.0e+00 | 4 | Gm26871 |
0 | 1.0614437 | 0.414 | 0.068 | 0.0e+00 | 4 | Plxna4 |
0 | 1.0569533 | 0.279 | 0.033 | 0.0e+00 | 4 | Bcl11a |
0 | 1.0367877 | 0.247 | 0.034 | 0.0e+00 | 4 | Tiam2 |
0 | 1.0314614 | 0.257 | 0.028 | 0.0e+00 | 4 | Dpysl3 |
0 | 1.0283565 | 0.288 | 0.050 | 0.0e+00 | 4 | Ccnd2 |
0 | 1.0169078 | 0.511 | 0.173 | 0.0e+00 | 4 | Nrxn3 |
0 | 0.9979383 | 0.336 | 0.051 | 0.0e+00 | 4 | 2610307P16Rik |
0 | 0.9975689 | 0.506 | 0.095 | 0.0e+00 | 4 | Meis2 |
0 | 0.9975689 | 0.334 | 0.049 | 0.0e+00 | 4 | 5730522E02Rik |
0 | 0.9935625 | 0.215 | 0.024 | 0.0e+00 | 4 | Srrm4 |
0 | 0.9734674 | 0.428 | 0.071 | 0.0e+00 | 4 | Nol4 |
0 | 0.9535298 | 0.216 | 0.061 | 0.0e+00 | 4 | Adarb2 |
0 | 0.9268525 | 0.390 | 0.090 | 0.0e+00 | 4 | Robo2 |
0 | 2.6740745 | 0.792 | 0.007 | 0.0e+00 | 5 | Flt1 |
0 | 2.5981621 | 0.550 | 0.003 | 0.0e+00 | 5 | Adgrl4 |
0 | 2.5421669 | 0.283 | 0.001 | 0.0e+00 | 5 | Zfp366 |
0 | 2.5027505 | 0.601 | 0.004 | 0.0e+00 | 5 | Cldn5 |
0 | 2.3406675 | 0.623 | 0.008 | 0.0e+00 | 5 | Slco1a4 |
0 | 2.3036211 | 0.303 | 0.002 | 0.0e+00 | 5 | Apold1 |
0 | 2.2665012 | 0.336 | 0.002 | 0.0e+00 | 5 | Tek |
0 | 2.1792421 | 0.654 | 0.011 | 0.0e+00 | 5 | Mecom |
0 | 2.1583102 | 0.541 | 0.007 | 0.0e+00 | 5 | Ptprb |
0 | 2.1238337 | 0.256 | 0.002 | 0.0e+00 | 5 | Fgd5 |
0 | 2.1210408 | 0.236 | 0.003 | 0.0e+00 | 5 | Rgs5 |
0 | 2.1163457 | 0.272 | 0.002 | 0.0e+00 | 5 | Egfl7 |
0 | 2.1001698 | 0.399 | 0.004 | 0.0e+00 | 5 | Abcb1a |
0 | 2.0947915 | 0.267 | 0.002 | 0.0e+00 | 5 | Vwf |
0 | 2.0438165 | 0.252 | 0.003 | 0.0e+00 | 5 | Erg |
0 | 2.0390486 | 0.393 | 0.005 | 0.0e+00 | 5 | Eng |
0 | 2.0362193 | 0.433 | 0.006 | 0.0e+00 | 5 | Cyyr1 |
0 | 1.9902948 | 0.229 | 0.002 | 0.0e+00 | 5 | Ly6c1 |
0 | 1.9713962 | 0.525 | 0.011 | 0.0e+00 | 5 | Atp10a |
0 | 1.9712036 | 0.238 | 0.003 | 0.0e+00 | 5 | Hspa12b |
0 | 1.6258295 | 0.917 | 0.087 | 0.0e+00 | 6 | Tnr |
0 | 1.5686199 | 0.201 | 0.009 | 0.0e+00 | 6 | Gm36988 |
0 | 1.5101472 | 0.459 | 0.017 | 0.0e+00 | 6 | Tmem132d |
0 | 1.5091262 | 0.224 | 0.009 | 0.0e+00 | 6 | 4930588A03Rik |
0 | 1.4581971 | 0.431 | 0.030 | 0.0e+00 | 6 | Lhfpl3 |
0 | 1.4491361 | 0.201 | 0.007 | 0.0e+00 | 6 | Pdgfra |
0 | 1.4216137 | 0.488 | 0.038 | 0.0e+00 | 6 | Pcdh15 |
0 | 1.3720107 | 0.329 | 0.025 | 0.0e+00 | 6 | Arhgap24 |
0 | 1.3492160 | 0.346 | 0.020 | 0.0e+00 | 6 | Vcan |
0 | 1.3362456 | 0.278 | 0.017 | 0.0e+00 | 6 | 9630013A20Rik |
0 | 1.3298121 | 0.242 | 0.014 | 0.0e+00 | 6 | Megf11 |
0 | 1.3174237 | 0.209 | 0.012 | 0.0e+00 | 6 | Sema3d |
0 | 1.3079245 | 0.305 | 0.024 | 0.0e+00 | 6 | Gm13052 |
0 | 1.2794788 | 0.783 | 0.102 | 0.0e+00 | 6 | Dscam |
0 | 1.2409114 | 0.559 | 0.064 | 0.0e+00 | 6 | Xylt1 |
0 | 1.2369910 | 0.616 | 0.075 | 0.0e+00 | 6 | Itpr2 |
0 | 1.2045885 | 0.425 | 0.026 | 0.0e+00 | 6 | Nxph1 |
0 | 1.1973263 | 0.372 | 0.032 | 0.0e+00 | 6 | Ppfibp1 |
0 | 1.1626581 | 0.350 | 0.032 | 0.0e+00 | 6 | Sez6l |
0 | 1.1529330 | 0.927 | 0.240 | 0.0e+00 | 6 | Opcml |
0 | 3.1934150 | 0.432 | 0.000 | 0.0e+00 | 7 | Ccdc180 |
0 | 2.8891799 | 0.498 | 0.001 | 0.0e+00 | 7 | Tmem212 |
0 | 2.8343931 | 0.408 | 0.001 | 0.0e+00 | 7 | Cdhr3 |
0 | 2.7500722 | 0.225 | 0.000 | 0.0e+00 | 7 | Lrrc43 |
0 | 2.7186822 | 0.633 | 0.002 | 0.0e+00 | 7 | Dnah12 |
0 | 2.7148944 | 0.425 | 0.001 | 0.0e+00 | 7 | Lrrc36 |
0 | 2.6171556 | 0.710 | 0.004 | 0.0e+00 | 7 | Cfap299 |
0 | 2.4744696 | 0.546 | 0.003 | 0.0e+00 | 7 | Hydin |
0 | 2.4519866 | 0.316 | 0.001 | 0.0e+00 | 7 | Gm10714 |
0 | 2.4262990 | 0.336 | 0.002 | 0.0e+00 | 7 | Cfap77 |
0 | 2.3891957 | 0.367 | 0.002 | 0.0e+00 | 7 | 3300002A11Rik |
0 | 2.3870027 | 0.635 | 0.005 | 0.0e+00 | 7 | Dnah6 |
0 | 2.3751465 | 0.273 | 0.001 | 0.0e+00 | 7 | Ttc29 |
0 | 2.3538233 | 0.367 | 0.002 | 0.0e+00 | 7 | Spag17 |
0 | 2.3209470 | 0.541 | 0.004 | 0.0e+00 | 7 | Cfap43 |
0 | 2.3013603 | 0.348 | 0.002 | 0.0e+00 | 7 | Armc4 |
0 | 2.3004253 | 0.261 | 0.001 | 0.0e+00 | 7 | Gm28729 |
0 | 2.2681520 | 0.307 | 0.002 | 0.0e+00 | 7 | Wdr49 |
0 | 2.2680486 | 0.517 | 0.004 | 0.0e+00 | 7 | Ak7 |
0 | 2.2655898 | 0.348 | 0.002 | 0.0e+00 | 7 | Dnah3 |
0 | 2.9773434 | 0.580 | 0.003 | 0.0e+00 | 8 | Nwd2 |
0 | 2.2290479 | 0.563 | 0.007 | 0.0e+00 | 8 | Cpne4 |
0 | 2.1624853 | 0.254 | 0.002 | 0.0e+00 | 8 | Robo3 |
0 | 2.1485549 | 0.498 | 0.009 | 0.0e+00 | 8 | Scube1 |
0 | 1.7294480 | 0.229 | 0.005 | 0.0e+00 | 8 | Lrrc3b |
0 | 1.6740830 | 0.293 | 0.008 | 0.0e+00 | 8 | Necab2 |
0 | 1.6500159 | 0.512 | 0.025 | 0.0e+00 | 8 | Vav3 |
0 | 1.6184173 | 0.229 | 0.007 | 0.0e+00 | 8 | Necab3 |
0 | 1.5683338 | 0.878 | 0.192 | 0.0e+00 | 8 | Kcnma1 |
0 | 1.5597677 | 0.456 | 0.027 | 0.0e+00 | 8 | Syt9 |
0 | 1.5235827 | 0.222 | 0.007 | 0.0e+00 | 8 | Kcnj6 |
0 | 1.5024617 | 0.466 | 0.028 | 0.0e+00 | 8 | Kcnip1 |
0 | 1.4905451 | 0.356 | 0.011 | 0.0e+00 | 8 | Slc17a7 |
0 | 1.4894285 | 0.229 | 0.008 | 0.0e+00 | 8 | Cntnap4 |
0 | 1.4752967 | 0.266 | 0.012 | 0.0e+00 | 8 | Cplx1 |
0 | 1.4721310 | 0.578 | 0.027 | 0.0e+00 | 8 | St6galnac5 |
0 | 1.4557125 | 0.327 | 0.015 | 0.0e+00 | 8 | Pld5 |
0 | 1.4517236 | 0.710 | 0.108 | 0.0e+00 | 8 | Asic2 |
0 | 1.4512808 | 0.261 | 0.011 | 0.0e+00 | 8 | Cygb |
0 | 1.4279518 | 0.800 | 0.066 | 0.0e+00 | 8 | Cntnap2 |
0 | 2.8327592 | 0.828 | 0.002 | 0.0e+00 | 9 | Ush2a |
0 | 2.6812950 | 0.457 | 0.001 | 0.0e+00 | 9 | Gm32884 |
0 | 2.6238452 | 0.759 | 0.003 | 0.0e+00 | 9 | Gm44196 |
0 | 2.4972348 | 0.210 | 0.001 | 0.0e+00 | 9 | Gm47480 |
0 | 2.4737537 | 0.477 | 0.002 | 0.0e+00 | 9 | Rbp3 |
0 | 2.4659283 | 0.664 | 0.003 | 0.0e+00 | 9 | Tulp1 |
0 | 2.4321096 | 0.580 | 0.003 | 0.0e+00 | 9 | Gm31615 |
0 | 2.3798492 | 0.761 | 0.005 | 0.0e+00 | 9 | Cngb3 |
0 | 2.3603583 | 0.322 | 0.001 | 0.0e+00 | 9 | Pde6c |
0 | 2.3453544 | 0.213 | 0.001 | 0.0e+00 | 9 | Crx |
0 | 2.3345075 | 0.457 | 0.002 | 0.0e+00 | 9 | Cplx3 |
0 | 2.3163142 | 0.707 | 0.005 | 0.0e+00 | 9 | Rpgrip1 |
0 | 2.2194671 | 0.661 | 0.007 | 0.0e+00 | 9 | Sag |
0 | 2.2034174 | 0.385 | 0.003 | 0.0e+00 | 9 | Gnb3 |
0 | 2.1796524 | 0.362 | 0.003 | 0.0e+00 | 9 | Mpp4 |
0 | 2.1183660 | 0.261 | 0.002 | 0.0e+00 | 9 | Tph1 |
0 | 2.0650539 | 0.313 | 0.003 | 0.0e+00 | 9 | Samsn1 |
0 | 1.9600035 | 0.210 | 0.002 | 0.0e+00 | 9 | Fabp12 |
0 | 1.8924073 | 0.460 | 0.008 | 0.0e+00 | 9 | Col7a1 |
0 | 1.8808223 | 0.284 | 0.005 | 0.0e+00 | 9 | Tc2n |
0 | 1.6802022 | 0.389 | 0.010 | 0.0e+00 | 10 | Agt |
0 | 1.2595827 | 0.471 | 0.039 | 0.0e+00 | 10 | Slc6a11 |
0 | 1.2024848 | 0.235 | 0.017 | 0.0e+00 | 10 | Aqp4 |
0 | 1.0237024 | 0.824 | 0.135 | 0.0e+00 | 10 | Slc4a4 |
0 | 0.9736382 | 0.356 | 0.041 | 0.0e+00 | 10 | Slc7a11 |
0 | 0.9453237 | 0.392 | 0.075 | 0.0e+00 | 10 | Slc38a1 |
0 | 0.9427607 | 0.330 | 0.042 | 0.0e+00 | 10 | Bmpr1b |
0 | 0.9219528 | 0.536 | 0.089 | 0.0e+00 | 10 | Sfxn5 |
0 | 0.9118849 | 0.657 | 0.106 | 0.0e+00 | 10 | Sparcl1 |
0 | 0.9112603 | 0.418 | 0.080 | 0.0e+00 | 10 | Camk2g |
0 | 0.8984468 | 0.225 | 0.031 | 0.0e+00 | 10 | Pla2g7 |
0 | 0.8813931 | 0.892 | 0.238 | 0.0e+00 | 10 | Npas3 |
0 | 0.8805419 | 0.297 | 0.072 | 0.0e+00 | 10 | Ptch1 |
0 | 0.8776880 | 0.261 | 0.043 | 0.0e+00 | 10 | Lgi1 |
0 | 0.8709505 | 0.225 | 0.034 | 0.0e+00 | 10 | Lrig1 |
0 | 0.8610014 | 0.356 | 0.060 | 0.0e+00 | 10 | Lhfp |
0 | 0.8311888 | 0.252 | 0.035 | 0.0e+00 | 10 | Slc39a12 |
0 | 0.8311279 | 0.356 | 0.074 | 0.0e+00 | 10 | Nhsl1 |
0 | 0.8182101 | 0.693 | 0.139 | 0.0e+00 | 10 | Gabrb1 |
0 | 0.8147879 | 0.288 | 0.065 | 0.0e+00 | 10 | Pdgfd |
0 | 2.4672568 | 0.359 | 0.001 | 0.0e+00 | 11 | Gm10754 |
0 | 2.3669018 | 0.355 | 0.002 | 0.0e+00 | 11 | Scn4b |
0 | 2.3274787 | 0.283 | 0.002 | 0.0e+00 | 11 | Drd2 |
0 | 2.2583978 | 0.300 | 0.002 | 0.0e+00 | 11 | Tac1 |
0 | 2.2475670 | 0.293 | 0.002 | 0.0e+00 | 11 | Adora2a |
0 | 2.2197916 | 0.548 | 0.004 | 0.0e+00 | 11 | Cpne5 |
0 | 2.1556245 | 0.276 | 0.002 | 0.0e+00 | 11 | Penk |
0 | 2.1513875 | 0.276 | 0.002 | 0.0e+00 | 11 | Gpr88 |
0 | 2.0850209 | 0.348 | 0.003 | 0.0e+00 | 11 | Actn2 |
0 | 1.9799164 | 0.483 | 0.006 | 0.0e+00 | 11 | Pde1b |
0 | 1.9679351 | 0.390 | 0.004 | 0.0e+00 | 11 | Gprin3 |
0 | 1.9518151 | 0.221 | 0.002 | 0.0e+00 | 11 | Sh3rf2 |
0 | 1.8953844 | 0.217 | 0.003 | 0.0e+00 | 11 | Gabrd |
0 | 1.8572430 | 0.841 | 0.021 | 0.0e+00 | 11 | Rgs9 |
0 | 1.8527769 | 0.821 | 0.021 | 0.0e+00 | 11 | Camk4 |
0 | 1.8136088 | 0.410 | 0.007 | 0.0e+00 | 11 | Ppp1r1b |
0 | 1.7104495 | 0.855 | 0.031 | 0.0e+00 | 11 | Ryr3 |
0 | 1.6961049 | 0.369 | 0.009 | 0.0e+00 | 11 | 6530403H02Rik |
0 | 1.6662470 | 0.810 | 0.027 | 0.0e+00 | 11 | Caln1 |
0 | 1.6620185 | 0.293 | 0.007 | 0.0e+00 | 11 | Gm15155 |
0 | 2.6603095 | 0.391 | 0.002 | 0.0e+00 | 12 | Bnc2 |
0 | 2.4869158 | 0.322 | 0.001 | 0.0e+00 | 12 | Aox3 |
0 | 2.3702104 | 0.302 | 0.001 | 0.0e+00 | 12 | Lum |
0 | 2.0484613 | 0.723 | 0.012 | 0.0e+00 | 12 | Cped1 |
0 | 1.9761963 | 0.351 | 0.005 | 0.0e+00 | 12 | Alpl |
0 | 1.9678300 | 0.342 | 0.005 | 0.0e+00 | 12 | Olfr1033 |
0 | 1.8736091 | 0.332 | 0.004 | 0.0e+00 | 12 | Col1a1 |
0 | 1.8227453 | 0.381 | 0.006 | 0.0e+00 | 12 | Eya2 |
0 | 1.7833348 | 0.465 | 0.009 | 0.0e+00 | 12 | Col1a2 |
0 | 1.7696043 | 0.297 | 0.005 | 0.0e+00 | 12 | Adamts12 |
0 | 1.7389683 | 0.267 | 0.007 | 0.0e+00 | 12 | Cemip |
0 | 1.6999254 | 0.728 | 0.042 | 0.0e+00 | 12 | Adam12 |
0 | 1.6638853 | 0.535 | 0.015 | 0.0e+00 | 12 | Igfbp4 |
0 | 1.6091933 | 0.218 | 0.006 | 0.0e+00 | 12 | Tbx15 |
0 | 1.4962272 | 0.213 | 0.007 | 0.0e+00 | 12 | Col26a1 |
0 | 1.4354060 | 0.292 | 0.011 | 0.0e+00 | 12 | Mrc2 |
0 | 1.3227017 | 0.248 | 0.016 | 0.0e+00 | 12 | Bmper |
0 | 1.3181814 | 0.252 | 0.013 | 0.0e+00 | 12 | Igf2 |
0 | 1.2630748 | 0.500 | 0.042 | 0.0e+00 | 12 | Slc7a11 |
0 | 1.2049570 | 0.203 | 0.013 | 0.0e+00 | 12 | Cfh |
0 | 2.5921917 | 1.000 | 0.023 | 0.0e+00 | 13 | Htr2c |
0 | 2.5050882 | 0.606 | 0.002 | 0.0e+00 | 13 | Gmnc |
0 | 2.2771864 | 0.683 | 0.004 | 0.0e+00 | 13 | Tmem72 |
0 | 2.1958815 | 0.654 | 0.005 | 0.0e+00 | 13 | Kl |
0 | 2.0885060 | 0.394 | 0.004 | 0.0e+00 | 13 | Prlr |
0 | 2.0843895 | 0.625 | 0.007 | 0.0e+00 | 13 | Rbm47 |
0 | 2.0652762 | 0.625 | 0.006 | 0.0e+00 | 13 | Slc4a5 |
0 | 2.0247612 | 1.000 | 0.250 | 0.0e+00 | 13 | Ttr |
0 | 2.0157908 | 0.625 | 0.008 | 0.0e+00 | 13 | Clic6 |
0 | 1.9793616 | 0.433 | 0.005 | 0.0e+00 | 13 | Car12 |
0 | 1.9513328 | 0.471 | 0.006 | 0.0e+00 | 13 | Folr1 |
0 | 1.9336041 | 0.337 | 0.004 | 0.0e+00 | 13 | Baiap2l1 |
0 | 1.8399450 | 0.510 | 0.007 | 0.0e+00 | 13 | Lmx1a |
0 | 1.8272706 | 0.260 | 0.004 | 0.0e+00 | 13 | Slc13a4 |
0 | 1.7517605 | 0.404 | 0.008 | 0.0e+00 | 13 | Steap2 |
0 | 1.7263930 | 0.288 | 0.006 | 0.0e+00 | 13 | Trpv4 |
0 | 1.7242829 | 0.567 | 0.012 | 0.0e+00 | 13 | Igf2 |
0 | 1.7178401 | 0.413 | 0.008 | 0.0e+00 | 13 | Fap |
0 | 1.6968150 | 0.567 | 0.014 | 0.0e+00 | 13 | Ecrg4 |
0 | 1.6642038 | 0.923 | 0.062 | 0.0e+00 | 13 | Esrrg |
0 | 2.0834491 | 0.506 | 0.006 | 0.0e+00 | 14 | Cd83 |
0 | 1.9139884 | 0.403 | 0.006 | 0.0e+00 | 14 | Plek |
0 | 1.7016959 | 0.494 | 0.010 | 0.0e+00 | 14 | Inpp5d |
0 | 1.6046859 | 0.260 | 0.007 | 0.0e+00 | 14 | Apbb1ip |
0 | 1.5448902 | 0.208 | 0.006 | 0.0e+00 | 14 | Tnfaip3 |
0 | 1.4079602 | 0.234 | 0.010 | 0.0e+00 | 14 | Dock8 |
0 | 1.3844791 | 0.416 | 0.021 | 0.0e+00 | 14 | Pde3b |
0 | 1.3816313 | 0.377 | 0.019 | 0.0e+00 | 14 | Lyn |
0 | 1.3412955 | 0.494 | 0.025 | 0.0e+00 | 14 | Runx1 |
0 | 1.3044370 | 0.247 | 0.013 | 0.0e+00 | 14 | Maf |
0 | 1.2949720 | 0.481 | 0.043 | 0.0e+00 | 14 | Sirpa |
0 | 1.2803905 | 0.338 | 0.019 | 0.0e+00 | 14 | Adap2 |
0 | 1.2586054 | 0.312 | 0.020 | 0.0e+00 | 14 | Itgb5 |
0 | 1.2154211 | 0.532 | 0.053 | 0.0e+00 | 14 | Lrmda |
0 | 1.2008347 | 0.312 | 0.027 | 0.0e+00 | 14 | Entpd1 |
0 | 1.1120943 | 0.532 | 0.063 | 0.0e+00 | 14 | Mef2c |
0 | 1.0997167 | 0.208 | 0.017 | 0.0e+00 | 14 | Rel |
0 | 1.0925925 | 0.377 | 0.048 | 0.0e+00 | 14 | Mapkapk2 |
0 | 1.0627096 | 0.234 | 0.025 | 0.0e+00 | 14 | Ctsz |
0 | 1.0502364 | 0.649 | 0.115 | 0.0e+00 | 14 | Ptprj |
0 | 3.4456464 | 0.288 | 0.000 | 0.0e+00 | 15 | Rprm |
0 | 2.1820846 | 0.966 | 0.023 | 0.0e+00 | 15 | Hs3st4 |
0 | 2.1800638 | 0.542 | 0.004 | 0.0e+00 | 15 | Ipcef1 |
0 | 2.0306731 | 1.000 | 0.079 | 0.0e+00 | 15 | Dpp10 |
0 | 1.9094037 | 0.441 | 0.007 | 0.0e+00 | 15 | Vxn |
0 | 1.8621917 | 0.458 | 0.007 | 0.0e+00 | 15 | Ttc9b |
0 | 1.8521677 | 0.339 | 0.005 | 0.0e+00 | 15 | Tbr1 |
0 | 1.8230439 | 0.407 | 0.008 | 0.0e+00 | 15 | Htr1f |
0 | 1.8223971 | 0.288 | 0.005 | 0.0e+00 | 15 | Hs3st2 |
0 | 1.7874705 | 0.407 | 0.008 | 0.0e+00 | 15 | Hpcal4 |
0 | 1.7178729 | 0.390 | 0.009 | 0.0e+00 | 15 | Npas4 |
0 | 1.6370979 | 0.763 | 0.024 | 0.0e+00 | 15 | Slc17a7 |
0 | 1.6307976 | 0.458 | 0.012 | 0.0e+00 | 15 | Nptx1 |
0 | 1.6196684 | 0.763 | 0.024 | 0.0e+00 | 15 | Tmem178 |
0 | 1.5863354 | 0.780 | 0.028 | 0.0e+00 | 15 | A830018L16Rik |
0 | 1.5781789 | 0.559 | 0.015 | 0.0e+00 | 15 | Vsnl1 |
0 | 1.5757974 | 0.288 | 0.008 | 0.0e+00 | 15 | Trabd2b |
0 | 1.5630161 | 0.881 | 0.039 | 0.0e+00 | 15 | Pde1a |
0 | 1.5591557 | 0.254 | 0.007 | 0.0e+00 | 15 | 1110008P14Rik |
0 | 1.5588618 | 0.949 | 0.059 | 0.0e+00 | 15 | Etl4 |
0 | 2.4362784 | 0.972 | 0.029 | 0.0e+00 | 16 | Reln |
0 | 2.0333160 | 0.611 | 0.007 | 0.0e+00 | 16 | Trp73 |
0 | 1.9122723 | 0.556 | 0.009 | 0.0e+00 | 16 | Ndnf |
0 | 1.8833775 | 0.472 | 0.007 | 0.0e+00 | 16 | Ebf3 |
0 | 1.7624574 | 0.972 | 0.056 | 0.0e+00 | 16 | Clstn2 |
0 | 1.7272174 | 0.861 | 0.040 | 0.0e+00 | 16 | Thsd7b |
0 | 1.6811718 | 0.972 | 0.060 | 0.0e+00 | 16 | Kcnh7 |
0 | 1.6201361 | 0.833 | 0.032 | 0.0e+00 | 16 | Cdh4 |
0 | 1.4951973 | 0.750 | 0.043 | 0.0e+00 | 16 | Dync1i1 |
0 | 1.4740080 | 0.583 | 0.030 | 0.0e+00 | 16 | Epha3 |
0 | 1.4344995 | 0.361 | 0.014 | 0.0e+00 | 16 | Col11a1 |
0 | 1.3958127 | 0.389 | 0.021 | 0.0e+00 | 16 | Hs3st5 |
0 | 1.3791710 | 0.444 | 0.026 | 0.0e+00 | 16 | Cacna2d2 |
0 | 1.3780536 | 0.472 | 0.022 | 0.0e+00 | 16 | Kcnc2 |
0 | 1.3647438 | 1.000 | 0.102 | 0.0e+00 | 16 | Cntnap2 |
0 | 1.2944836 | 0.278 | 0.017 | 1.3e-06 | 16 | Plxnd1 |
0 | 1.2918764 | 0.528 | 0.043 | 0.0e+00 | 16 | Plekha7 |
0 | 1.2752528 | 0.306 | 0.022 | 2.0e-07 | 16 | 5330417C22Rik |
0 | 1.2703730 | 0.389 | 0.017 | 1.9e-06 | 16 | Eln |
0 | 1.2590954 | 0.833 | 0.101 | 0.0e+00 | 16 | Kcnb2 |
top10 <-
markers_logreg %>%
group_by(cluster) %>%
top_n(n = 10, wt = avg_log10FC)
DoHeatmap(combined_srt, features = top10$gene) + NoLegend()
plan("sequential")
invisible(gc())
set.seed(reseed)
plan(multicore, workers = n_cores)
markers_MAST <-
FindAllMarkers(
combined_srt,
assay = "SCT",
verbose = FALSE,
random.seed = reseed,
only.pos = TRUE,
min.pct = 0.1,
base = 10,
logfc.threshold = 0.2,
test.use = "MAST"
)
# markers_MAST %>%
# pull(gene) %>%
# gconvert(
# .,
# organism = "mmusculus",
# target = "MGI",
# numeric_ns = "",
# mthreshold = Inf,
# filter_na = TRUE
# ) %>%
# select(name, description) %>%
# right_join(markers_MAST, by = c("gene" = "name"))
write_csv(
markers_MAST,
here(
tables_dir,
docname,
sprintf(
"%s_all_mrk-MAST_sct-combined-whole_dataset-fpr_%s.csv",
project, cb_fpr
)
)
)
markers_MAST %>%
group_by(cluster) %>%
slice_max(n = 20, order_by = avg_log10FC) %>%
kable("html") %>%
kable_material(
bootstrap_options = c(
"bordered",
"condensed",
"responsive",
"striped"
),
position = "left",
font_size = 14
)
p_val | avg_log10FC | pct.1 | pct.2 | p_val_adj | cluster | gene |
---|---|---|---|---|---|---|
0.0e+00 | 1.6209648 | 0.297 | 0.009 | 0.0000000 | 1 | Hapln2 |
0.0e+00 | 1.3190035 | 0.353 | 0.019 | 0.0000000 | 1 | Anln |
0.0e+00 | 1.3135830 | 0.177 | 0.009 | 0.0000000 | 1 | A330049N07Rik |
0.0e+00 | 1.1383225 | 0.737 | 0.080 | 0.0000000 | 1 | Trf |
0.0e+00 | 1.0892322 | 0.147 | 0.012 | 0.0000000 | 1 | Cyp2j12 |
0.0e+00 | 1.0522038 | 0.234 | 0.022 | 0.0000000 | 1 | Hcn2 |
0.0e+00 | 1.0374340 | 0.206 | 0.019 | 0.0000000 | 1 | Kcnk13 |
0.0e+00 | 1.0350104 | 0.863 | 0.125 | 0.0000000 | 1 | Prr5l |
0.0e+00 | 1.0181583 | 0.464 | 0.047 | 0.0000000 | 1 | Apod |
0.0e+00 | 0.9779225 | 0.200 | 0.022 | 0.0000000 | 1 | Fgd3 |
0.0e+00 | 0.9768928 | 0.959 | 0.215 | 0.0000000 | 1 | Fth1 |
0.0e+00 | 0.9718602 | 0.137 | 0.015 | 0.0000000 | 1 | Gjb1 |
0.0e+00 | 0.9106105 | 0.363 | 0.048 | 0.0000000 | 1 | Rftn1 |
0.0e+00 | 0.8949042 | 0.346 | 0.047 | 0.0000000 | 1 | Carns1 |
0.0e+00 | 0.8908094 | 0.208 | 0.028 | 0.0000000 | 1 | Adam19 |
0.0e+00 | 0.8853827 | 0.131 | 0.018 | 0.0000000 | 1 | Mboat1 |
0.0e+00 | 0.8851835 | 0.363 | 0.042 | 0.0000000 | 1 | Enpp6 |
0.0e+00 | 0.8850288 | 0.158 | 0.022 | 0.0000000 | 1 | B3galt5 |
0.0e+00 | 0.8805379 | 0.489 | 0.076 | 0.0000000 | 1 | Gatm |
0.0e+00 | 0.8596478 | 0.209 | 0.029 | 0.0000000 | 1 | Dock5 |
0.0e+00 | 1.3209802 | 0.147 | 0.008 | 0.0000000 | 2 | Rasal1 |
0.0e+00 | 1.2036073 | 0.264 | 0.019 | 0.0000000 | 2 | Gm32633 |
0.0e+00 | 1.1419077 | 0.156 | 0.012 | 0.0000000 | 2 | Tmem141 |
0.0e+00 | 1.0566926 | 0.163 | 0.016 | 0.0000000 | 2 | Onecut2 |
0.0e+00 | 1.0200060 | 0.131 | 0.014 | 0.0000000 | 2 | Tssc4 |
0.0e+00 | 1.0164049 | 0.218 | 0.022 | 0.0000000 | 2 | Tnni1 |
0.0e+00 | 0.9838140 | 0.260 | 0.028 | 0.0000000 | 2 | C030029H02Rik |
0.0e+00 | 0.9753300 | 0.189 | 0.023 | 0.0000000 | 2 | Ctps |
0.0e+00 | 0.9631501 | 0.591 | 0.082 | 0.0000000 | 2 | Synpr |
0.0e+00 | 0.9388717 | 0.174 | 0.021 | 0.0000000 | 2 | Hebp1 |
0.0e+00 | 0.9062614 | 0.575 | 0.083 | 0.0000000 | 2 | Opalin |
0.0e+00 | 0.8853478 | 0.679 | 0.116 | 0.0000000 | 2 | Ablim2 |
0.0e+00 | 0.8693303 | 0.103 | 0.014 | 0.0000000 | 2 | Arhgef19 |
0.0e+00 | 0.8579505 | 0.454 | 0.098 | 0.0000000 | 2 | Ptgds |
0.0e+00 | 0.8280960 | 0.180 | 0.028 | 0.0000000 | 2 | Erbb3 |
0.0e+00 | 0.8219893 | 0.600 | 0.108 | 0.0000000 | 2 | Sh3gl3 |
0.0e+00 | 0.8192472 | 0.455 | 0.077 | 0.0000000 | 2 | Tmod1 |
0.0e+00 | 0.8179436 | 0.485 | 0.106 | 0.0000000 | 2 | Fam214a |
0.0e+00 | 0.8046050 | 0.530 | 0.109 | 0.0000000 | 2 | Man1a |
0.0e+00 | 0.7922918 | 0.366 | 0.063 | 0.0000000 | 2 | Mcam |
0.0e+00 | 1.6853299 | 0.970 | 0.106 | 0.0000000 | 3 | Slc1a2 |
0.0e+00 | 1.5067922 | 0.189 | 0.007 | 0.0000000 | 3 | Grin2c |
0.0e+00 | 1.4327451 | 0.194 | 0.010 | 0.0000000 | 3 | Gm12239 |
0.0e+00 | 1.4249665 | 0.101 | 0.004 | 0.0000000 | 3 | Gm26512 |
0.0e+00 | 1.3345483 | 0.302 | 0.019 | 0.0000000 | 3 | Htra1 |
0.0e+00 | 1.3145373 | 0.816 | 0.081 | 0.0000000 | 3 | Gpc5 |
0.0e+00 | 1.3055228 | 0.873 | 0.108 | 0.0000000 | 3 | Slc1a3 |
0.0e+00 | 1.2643648 | 0.181 | 0.010 | 0.0000000 | 3 | Ntsr2 |
0.0e+00 | 1.2615391 | 0.167 | 0.009 | 0.0000000 | 3 | Acsbg1 |
0.0e+00 | 1.2553896 | 0.798 | 0.093 | 0.0000000 | 3 | Cst3 |
0.0e+00 | 1.2414453 | 0.168 | 0.010 | 0.0000000 | 3 | Fgfr3 |
0.0e+00 | 1.2132916 | 0.204 | 0.014 | 0.0000000 | 3 | F3 |
0.0e+00 | 1.1987239 | 0.160 | 0.011 | 0.0000000 | 3 | Gldc |
0.0e+00 | 1.1858164 | 0.145 | 0.010 | 0.0000000 | 3 | Acot11 |
0.0e+00 | 1.1829051 | 0.442 | 0.040 | 0.0000000 | 3 | Mertk |
0.0e+00 | 1.1786231 | 0.127 | 0.008 | 0.0000000 | 3 | Cbs |
0.0e+00 | 1.1767296 | 0.161 | 0.011 | 0.0000000 | 3 | Gm6145 |
0.0e+00 | 1.1761343 | 0.210 | 0.016 | 0.0000000 | 3 | Aldoc |
0.0e+00 | 1.1416954 | 0.635 | 0.068 | 0.0000000 | 3 | Prex2 |
0.0e+00 | 1.1252629 | 0.632 | 0.095 | 0.0000000 | 3 | Tspan7 |
0.0e+00 | 1.8790844 | 0.194 | 0.002 | 0.0000000 | 4 | Igfbpl1 |
0.0e+00 | 1.7387708 | 0.147 | 0.003 | 0.0000000 | 4 | Xist |
0.0e+00 | 1.7033905 | 0.119 | 0.002 | 0.0000000 | 4 | Mki67 |
0.0e+00 | 1.7002947 | 0.555 | 0.019 | 0.0000000 | 4 | Sox11 |
0.0e+00 | 1.6476903 | 0.101 | 0.002 | 0.0000000 | 4 | Dlx1 |
0.0e+00 | 1.6200189 | 0.143 | 0.003 | 0.0000000 | 4 | Top2a |
0.0e+00 | 1.5624399 | 0.245 | 0.012 | 0.0000000 | 4 | Dlx6os1 |
0.0e+00 | 1.3819476 | 0.170 | 0.011 | 0.0000000 | 4 | Gm29260 |
0.0e+00 | 1.3746890 | 0.153 | 0.013 | 0.0000000 | 4 | Satb2 |
0.0e+00 | 1.3690852 | 0.313 | 0.016 | 0.0000000 | 4 | Dcx |
0.0e+00 | 1.3483601 | 0.107 | 0.005 | 0.0000000 | 4 | Mex3a |
0.0e+00 | 1.3077422 | 0.136 | 0.007 | 0.0000000 | 4 | Tubb2b |
0.0e+00 | 1.3006627 | 0.235 | 0.028 | 0.0000000 | 4 | Unc5d |
0.0e+00 | 1.1928454 | 0.208 | 0.017 | 0.0000000 | 4 | Epha3 |
0.0e+00 | 1.1680802 | 0.124 | 0.009 | 0.0000000 | 4 | Mpped1 |
0.0e+00 | 1.1640244 | 0.559 | 0.064 | 0.0000000 | 4 | Sox4 |
0.0e+00 | 1.1452113 | 0.123 | 0.009 | 0.0000000 | 4 | Sox1ot |
0.0e+00 | 1.1243517 | 0.167 | 0.015 | 0.0000000 | 4 | Lmnb1 |
0.0e+00 | 1.1107389 | 0.305 | 0.046 | 0.0000000 | 4 | Gm26871 |
0.0e+00 | 1.1054509 | 0.126 | 0.011 | 0.0000000 | 4 | Hmgb2 |
0.0e+00 | 2.7402688 | 0.188 | 0.000 | 0.0000000 | 5 | Edn1 |
0.0e+00 | 2.6740745 | 0.792 | 0.007 | 0.0000000 | 5 | Flt1 |
0.0e+00 | 2.5981621 | 0.550 | 0.003 | 0.0000000 | 5 | Adgrl4 |
0.0e+00 | 2.5421669 | 0.283 | 0.001 | 0.0000000 | 5 | Zfp366 |
0.0e+00 | 2.5027505 | 0.601 | 0.004 | 0.0000000 | 5 | Cldn5 |
0.0e+00 | 2.3406675 | 0.623 | 0.008 | 0.0000000 | 5 | Slco1a4 |
0.0e+00 | 2.3036211 | 0.303 | 0.002 | 0.0000000 | 5 | Apold1 |
0.0e+00 | 2.2665012 | 0.336 | 0.002 | 0.0000000 | 5 | Tek |
0.0e+00 | 2.1792421 | 0.654 | 0.011 | 0.0000000 | 5 | Mecom |
0.0e+00 | 2.1583102 | 0.541 | 0.007 | 0.0000000 | 5 | Ptprb |
0.0e+00 | 2.1238337 | 0.256 | 0.002 | 0.0000000 | 5 | Fgd5 |
0.0e+00 | 2.1210408 | 0.236 | 0.003 | 0.0000000 | 5 | Rgs5 |
0.0e+00 | 2.1163457 | 0.272 | 0.002 | 0.0000000 | 5 | Egfl7 |
0.0e+00 | 2.1001698 | 0.399 | 0.004 | 0.0000000 | 5 | Abcb1a |
0.0e+00 | 2.0947915 | 0.267 | 0.002 | 0.0000000 | 5 | Vwf |
0.0e+00 | 2.0438165 | 0.252 | 0.003 | 0.0000000 | 5 | Erg |
0.0e+00 | 2.0390486 | 0.393 | 0.005 | 0.0000000 | 5 | Eng |
0.0e+00 | 2.0362193 | 0.433 | 0.006 | 0.0000000 | 5 | Cyyr1 |
0.0e+00 | 1.9999062 | 0.148 | 0.001 | 0.0000000 | 5 | Tbx3os1 |
0.0e+00 | 1.9902948 | 0.229 | 0.002 | 0.0000000 | 5 | Ly6c1 |
0.0e+00 | 1.6919400 | 0.199 | 0.004 | 0.0000000 | 6 | Gpr17 |
0.0e+00 | 1.6258295 | 0.917 | 0.087 | 0.0000000 | 6 | Tnr |
0.0e+00 | 1.5686199 | 0.201 | 0.009 | 0.0000000 | 6 | Gm36988 |
0.0e+00 | 1.5101472 | 0.459 | 0.017 | 0.0000000 | 6 | Tmem132d |
0.0e+00 | 1.5091262 | 0.224 | 0.009 | 0.0000000 | 6 | 4930588A03Rik |
0.0e+00 | 1.4581971 | 0.431 | 0.030 | 0.0000000 | 6 | Lhfpl3 |
0.0e+00 | 1.4491361 | 0.201 | 0.007 | 0.0000000 | 6 | Pdgfra |
0.0e+00 | 1.4216137 | 0.488 | 0.038 | 0.0000000 | 6 | Pcdh15 |
0.0e+00 | 1.4069489 | 0.114 | 0.004 | 0.0000000 | 6 | Shc4 |
0.0e+00 | 1.3766695 | 0.199 | 0.009 | 0.0000000 | 6 | Cspg4 |
0.0e+00 | 1.3720107 | 0.329 | 0.025 | 0.0000000 | 6 | Arhgap24 |
0.0e+00 | 1.3492160 | 0.346 | 0.020 | 0.0000000 | 6 | Vcan |
0.0e+00 | 1.3362456 | 0.278 | 0.017 | 0.0000000 | 6 | 9630013A20Rik |
0.0e+00 | 1.3298121 | 0.242 | 0.014 | 0.0000000 | 6 | Megf11 |
0.0e+00 | 1.3174237 | 0.209 | 0.012 | 0.0000000 | 6 | Sema3d |
0.0e+00 | 1.3079245 | 0.305 | 0.024 | 0.0000000 | 6 | Gm13052 |
0.0e+00 | 1.2794788 | 0.783 | 0.102 | 0.0000000 | 6 | Dscam |
0.0e+00 | 1.2409114 | 0.559 | 0.064 | 0.0000000 | 6 | Xylt1 |
0.0e+00 | 1.2369910 | 0.616 | 0.075 | 0.0000000 | 6 | Itpr2 |
0.0e+00 | 1.2045885 | 0.425 | 0.026 | 0.0000000 | 6 | Nxph1 |
0.0e+00 | 3.1934150 | 0.432 | 0.000 | 0.0000000 | 7 | Ccdc180 |
0.0e+00 | 2.8891799 | 0.498 | 0.001 | 0.0000000 | 7 | Tmem212 |
0.0e+00 | 2.8343931 | 0.408 | 0.001 | 0.0000000 | 7 | Cdhr3 |
0.0e+00 | 2.7500722 | 0.225 | 0.000 | 0.0000000 | 7 | Lrrc43 |
0.0e+00 | 2.7186822 | 0.633 | 0.002 | 0.0000000 | 7 | Dnah12 |
0.0e+00 | 2.7148944 | 0.425 | 0.001 | 0.0000000 | 7 | Lrrc36 |
0.0e+00 | 2.6171556 | 0.710 | 0.004 | 0.0000000 | 7 | Cfap299 |
0.0e+00 | 2.4744696 | 0.546 | 0.003 | 0.0000000 | 7 | Hydin |
0.0e+00 | 2.4519866 | 0.316 | 0.001 | 0.0000000 | 7 | Gm10714 |
0.0e+00 | 2.4262990 | 0.336 | 0.002 | 0.0000000 | 7 | Cfap77 |
0.0e+00 | 2.3891957 | 0.367 | 0.002 | 0.0000000 | 7 | 3300002A11Rik |
0.0e+00 | 2.3870027 | 0.635 | 0.005 | 0.0000000 | 7 | Dnah6 |
0.0e+00 | 2.3751465 | 0.273 | 0.001 | 0.0000000 | 7 | Ttc29 |
0.0e+00 | 2.3538233 | 0.367 | 0.002 | 0.0000000 | 7 | Spag17 |
0.0e+00 | 2.3499107 | 0.186 | 0.001 | 0.0000000 | 7 | Ttll6 |
0.0e+00 | 2.3209470 | 0.541 | 0.004 | 0.0000000 | 7 | Cfap43 |
0.0e+00 | 2.3151486 | 0.162 | 0.001 | 0.0000000 | 7 | Zfp474 |
0.0e+00 | 2.3013603 | 0.348 | 0.002 | 0.0000000 | 7 | Armc4 |
0.0e+00 | 2.3004253 | 0.261 | 0.001 | 0.0000000 | 7 | Gm28729 |
0.0e+00 | 2.2681520 | 0.307 | 0.002 | 0.0000000 | 7 | Wdr49 |
0.0e+00 | 2.9773434 | 0.580 | 0.003 | 0.0000000 | 8 | Nwd2 |
0.0e+00 | 2.8936400 | 0.185 | 0.000 | 0.0000000 | 8 | D130079A08Rik |
0.0e+00 | 2.2290479 | 0.563 | 0.007 | 0.0000000 | 8 | Cpne4 |
0.0e+00 | 2.1698464 | 0.149 | 0.001 | 0.0000000 | 8 | Tac2 |
0.0e+00 | 2.1624853 | 0.254 | 0.002 | 0.0000000 | 8 | Robo3 |
0.0e+00 | 2.1485549 | 0.498 | 0.009 | 0.0000000 | 8 | Scube1 |
0.0e+00 | 2.1335332 | 0.183 | 0.001 | 0.0000000 | 8 | Lrrc55 |
0.0e+00 | 2.0420598 | 0.193 | 0.002 | 0.0000000 | 8 | D130009I18Rik |
0.0e+00 | 1.9393975 | 0.139 | 0.002 | 0.0000000 | 8 | Fibcd1 |
0.0e+00 | 1.7450925 | 0.178 | 0.006 | 0.0000000 | 8 | Il1rapl2 |
0.0e+00 | 1.7294480 | 0.229 | 0.005 | 0.0000000 | 8 | Lrrc3b |
0.0e+00 | 1.6740830 | 0.293 | 0.008 | 0.0000000 | 8 | Necab2 |
0.0e+00 | 1.6500159 | 0.512 | 0.025 | 0.0000000 | 8 | Vav3 |
0.0e+00 | 1.6461928 | 0.102 | 0.003 | 0.0000000 | 8 | Cck |
0.0e+00 | 1.6316341 | 0.146 | 0.004 | 0.0000000 | 8 | Syt13 |
0.0e+00 | 1.6184173 | 0.229 | 0.007 | 0.0000000 | 8 | Necab3 |
0.0e+00 | 1.6003241 | 0.154 | 0.004 | 0.0000000 | 8 | Cpne9 |
0.0e+00 | 1.5736422 | 0.129 | 0.004 | 0.0000000 | 8 | Htr4 |
0.0e+00 | 1.5683338 | 0.878 | 0.192 | 0.0000000 | 8 | Kcnma1 |
0.0e+00 | 1.5667633 | 0.105 | 0.003 | 0.0000000 | 8 | Calb2 |
0.0e+00 | 2.8327592 | 0.828 | 0.002 | 0.0000000 | 9 | Ush2a |
0.0e+00 | 2.6812950 | 0.457 | 0.001 | 0.0000000 | 9 | Gm32884 |
0.0e+00 | 2.6238452 | 0.759 | 0.003 | 0.0000000 | 9 | Gm44196 |
0.0e+00 | 2.4972348 | 0.210 | 0.001 | 0.0000000 | 9 | Gm47480 |
0.0e+00 | 2.4737537 | 0.477 | 0.002 | 0.0000000 | 9 | Rbp3 |
0.0e+00 | 2.4659283 | 0.664 | 0.003 | 0.0000000 | 9 | Tulp1 |
0.0e+00 | 2.4321096 | 0.580 | 0.003 | 0.0000000 | 9 | Gm31615 |
0.0e+00 | 2.3798492 | 0.761 | 0.005 | 0.0000000 | 9 | Cngb3 |
0.0e+00 | 2.3603583 | 0.322 | 0.001 | 0.0000000 | 9 | Pde6c |
0.0e+00 | 2.3453544 | 0.213 | 0.001 | 0.0000000 | 9 | Crx |
0.0e+00 | 2.3395249 | 0.198 | 0.001 | 0.0000000 | 9 | Lhx4 |
0.0e+00 | 2.3345075 | 0.457 | 0.002 | 0.0000000 | 9 | Cplx3 |
0.0e+00 | 2.3163142 | 0.707 | 0.005 | 0.0000000 | 9 | Rpgrip1 |
0.0e+00 | 2.2194671 | 0.661 | 0.007 | 0.0000000 | 9 | Sag |
0.0e+00 | 2.2034174 | 0.385 | 0.003 | 0.0000000 | 9 | Gnb3 |
0.0e+00 | 2.1796524 | 0.362 | 0.003 | 0.0000000 | 9 | Mpp4 |
0.0e+00 | 2.1183660 | 0.261 | 0.002 | 0.0000000 | 9 | Tph1 |
0.0e+00 | 2.0650539 | 0.313 | 0.003 | 0.0000000 | 9 | Samsn1 |
0.0e+00 | 1.9600035 | 0.210 | 0.002 | 0.0000000 | 9 | Fabp12 |
0.0e+00 | 1.8924073 | 0.460 | 0.008 | 0.0000000 | 9 | Col7a1 |
0.0e+00 | 1.6802022 | 0.389 | 0.010 | 0.0000000 | 10 | Agt |
0.0e+00 | 1.2595827 | 0.471 | 0.039 | 0.0000000 | 10 | Slc6a11 |
0.0e+00 | 1.2566637 | 0.124 | 0.007 | 0.0000000 | 10 | Gm33680 |
0.0e+00 | 1.2024848 | 0.235 | 0.017 | 0.0000000 | 10 | Aqp4 |
0.0e+00 | 1.1942527 | 0.199 | 0.015 | 0.0000000 | 10 | Atp13a4 |
0.0e+00 | 1.1585337 | 0.170 | 0.012 | 0.0000000 | 10 | Etnppl |
0.0e+00 | 1.1258256 | 0.180 | 0.022 | 0.0000000 | 10 | Gfap |
0.0e+00 | 1.0237024 | 0.824 | 0.135 | 0.0000000 | 10 | Slc4a4 |
0.0e+00 | 1.0125599 | 0.118 | 0.011 | 0.0000000 | 10 | Itih3 |
0.0e+00 | 0.9736382 | 0.356 | 0.041 | 0.0000000 | 10 | Slc7a11 |
0.0e+00 | 0.9478084 | 0.196 | 0.024 | 0.0000000 | 10 | Adcy8 |
0.0e+00 | 0.9453237 | 0.392 | 0.075 | 0.0000000 | 10 | Slc38a1 |
0.0e+00 | 0.9427607 | 0.330 | 0.042 | 0.0000000 | 10 | Bmpr1b |
0.0e+00 | 0.9219528 | 0.536 | 0.089 | 0.0000000 | 10 | Sfxn5 |
0.0e+00 | 0.9118849 | 0.657 | 0.106 | 0.0000000 | 10 | Sparcl1 |
0.0e+00 | 0.9112603 | 0.418 | 0.080 | 0.0000000 | 10 | Camk2g |
0.0e+00 | 0.9076513 | 0.121 | 0.015 | 0.0000000 | 10 | Cdh22 |
0.0e+00 | 0.8984468 | 0.225 | 0.031 | 0.0000000 | 10 | Pla2g7 |
0.0e+00 | 0.8966559 | 0.157 | 0.023 | 0.0000000 | 10 | Psd2 |
0.0e+00 | 0.8813931 | 0.892 | 0.238 | 0.0000000 | 10 | Npas3 |
0.0e+00 | 2.4672568 | 0.359 | 0.001 | 0.0000000 | 11 | Gm10754 |
0.0e+00 | 2.3669018 | 0.355 | 0.002 | 0.0000000 | 11 | Scn4b |
0.0e+00 | 2.3274787 | 0.283 | 0.002 | 0.0000000 | 11 | Drd2 |
0.0e+00 | 2.2583978 | 0.300 | 0.002 | 0.0000000 | 11 | Tac1 |
0.0e+00 | 2.2475670 | 0.293 | 0.002 | 0.0000000 | 11 | Adora2a |
0.0e+00 | 2.2197916 | 0.548 | 0.004 | 0.0000000 | 11 | Cpne5 |
0.0e+00 | 2.1556245 | 0.276 | 0.002 | 0.0000000 | 11 | Penk |
0.0e+00 | 2.1513875 | 0.276 | 0.002 | 0.0000000 | 11 | Gpr88 |
0.0e+00 | 2.0850209 | 0.348 | 0.003 | 0.0000000 | 11 | Actn2 |
0.0e+00 | 1.9799164 | 0.483 | 0.006 | 0.0000000 | 11 | Pde1b |
0.0e+00 | 1.9679351 | 0.390 | 0.004 | 0.0000000 | 11 | Gprin3 |
0.0e+00 | 1.9518151 | 0.221 | 0.002 | 0.0000000 | 11 | Sh3rf2 |
0.0e+00 | 1.8953844 | 0.217 | 0.003 | 0.0000000 | 11 | Gabrd |
0.0e+00 | 1.8572430 | 0.841 | 0.021 | 0.0000000 | 11 | Rgs9 |
0.0e+00 | 1.8527769 | 0.821 | 0.021 | 0.0000000 | 11 | Camk4 |
0.0e+00 | 1.8264891 | 0.197 | 0.003 | 0.0000000 | 11 | Syndig1l |
0.0e+00 | 1.8136088 | 0.410 | 0.007 | 0.0000000 | 11 | Ppp1r1b |
0.0e+00 | 1.7104495 | 0.855 | 0.031 | 0.0000000 | 11 | Ryr3 |
0.0e+00 | 1.6990898 | 0.148 | 0.003 | 0.0000000 | 11 | Akap5 |
0.0e+00 | 1.6961049 | 0.369 | 0.009 | 0.0000000 | 11 | 6530403H02Rik |
0.0e+00 | 2.6603095 | 0.391 | 0.002 | 0.0000000 | 12 | Bnc2 |
0.0e+00 | 2.4869158 | 0.322 | 0.001 | 0.0000000 | 12 | Aox3 |
0.0e+00 | 2.3702104 | 0.302 | 0.001 | 0.0000000 | 12 | Lum |
0.0e+00 | 2.0484613 | 0.723 | 0.012 | 0.0000000 | 12 | Cped1 |
0.0e+00 | 1.9761963 | 0.351 | 0.005 | 0.0000000 | 12 | Alpl |
0.0e+00 | 1.9678300 | 0.342 | 0.005 | 0.0000000 | 12 | Olfr1033 |
0.0e+00 | 1.8736091 | 0.332 | 0.004 | 0.0000000 | 12 | Col1a1 |
0.0e+00 | 1.8227453 | 0.381 | 0.006 | 0.0000000 | 12 | Eya2 |
0.0e+00 | 1.7833348 | 0.465 | 0.009 | 0.0000000 | 12 | Col1a2 |
0.0e+00 | 1.7696043 | 0.297 | 0.005 | 0.0000000 | 12 | Adamts12 |
0.0e+00 | 1.7389683 | 0.267 | 0.007 | 0.0000000 | 12 | Cemip |
0.0e+00 | 1.7000067 | 0.183 | 0.004 | 0.0000000 | 12 | Efemp1 |
0.0e+00 | 1.6999254 | 0.728 | 0.042 | 0.0000000 | 12 | Adam12 |
0.0e+00 | 1.6638853 | 0.535 | 0.015 | 0.0000000 | 12 | Igfbp4 |
0.0e+00 | 1.6091933 | 0.218 | 0.006 | 0.0000000 | 12 | Tbx15 |
0.0e+00 | 1.5710686 | 0.183 | 0.005 | 0.0000000 | 12 | Col12a1 |
0.0e+00 | 1.4962272 | 0.213 | 0.007 | 0.0000000 | 12 | Col26a1 |
0.0e+00 | 1.4407348 | 0.193 | 0.007 | 0.0000000 | 12 | Cpxm1 |
0.0e+00 | 1.4354060 | 0.292 | 0.011 | 0.0000000 | 12 | Mrc2 |
0.0e+00 | 1.3961527 | 0.173 | 0.007 | 0.0000000 | 12 | Fxyd5 |
0.0e+00 | 3.0585428 | 0.135 | 0.000 | 0.0000000 | 13 | Sostdc1 |
0.0e+00 | 2.5921917 | 1.000 | 0.023 | 0.0000000 | 13 | Htr2c |
0.0e+00 | 2.5050882 | 0.606 | 0.002 | 0.0000000 | 13 | Gmnc |
0.0e+00 | 2.4564828 | 0.106 | 0.000 | 0.0000000 | 13 | Aqp1 |
0.0e+00 | 2.2771864 | 0.683 | 0.004 | 0.0000000 | 13 | Tmem72 |
0.0e+00 | 2.1958815 | 0.654 | 0.005 | 0.0000000 | 13 | Kl |
0.0e+00 | 2.0885060 | 0.394 | 0.004 | 0.0000000 | 13 | Prlr |
0.0e+00 | 2.0843895 | 0.625 | 0.007 | 0.0000000 | 13 | Rbm47 |
0.0e+00 | 2.0652762 | 0.625 | 0.006 | 0.0000000 | 13 | Slc4a5 |
0.0e+00 | 2.0247612 | 1.000 | 0.250 | 0.0000000 | 13 | Ttr |
0.0e+00 | 2.0157908 | 0.625 | 0.008 | 0.0000000 | 13 | Clic6 |
0.0e+00 | 1.9793616 | 0.433 | 0.005 | 0.0000000 | 13 | Car12 |
0.0e+00 | 1.9513328 | 0.471 | 0.006 | 0.0000000 | 13 | Folr1 |
0.0e+00 | 1.9336041 | 0.337 | 0.004 | 0.0000000 | 13 | Baiap2l1 |
0.0e+00 | 1.8399450 | 0.510 | 0.007 | 0.0000000 | 13 | Lmx1a |
0.0e+00 | 1.8272706 | 0.260 | 0.004 | 0.0000000 | 13 | Slc13a4 |
0.0e+00 | 1.7517605 | 0.404 | 0.008 | 0.0000000 | 13 | Steap2 |
0.0e+00 | 1.7263930 | 0.288 | 0.006 | 0.0000000 | 13 | Trpv4 |
0.0e+00 | 1.7242829 | 0.567 | 0.012 | 0.0000000 | 13 | Igf2 |
0.0e+00 | 1.7178401 | 0.413 | 0.008 | 0.0000000 | 13 | Fap |
0.0e+00 | 2.7994524 | 0.156 | 0.000 | 0.0000000 | 14 | Cx3cr1 |
0.0e+00 | 2.5885991 | 0.143 | 0.000 | 0.0000000 | 14 | Fyb |
0.0e+00 | 2.4258718 | 0.130 | 0.000 | 0.0000000 | 14 | Ly86 |
0.0e+00 | 2.3844791 | 0.117 | 0.000 | 0.0000000 | 14 | Nlrp3 |
0.0e+00 | 2.3289618 | 0.130 | 0.001 | 0.0000000 | 14 | Laptm5 |
0.0e+00 | 2.1828337 | 0.117 | 0.001 | 0.0000000 | 14 | Dock2 |
0.0e+00 | 2.0834491 | 0.506 | 0.006 | 0.0000000 | 14 | Cd83 |
0.0e+00 | 1.9139884 | 0.403 | 0.006 | 0.0000000 | 14 | Plek |
0.0e+00 | 1.7016959 | 0.494 | 0.010 | 0.0000000 | 14 | Inpp5d |
0.0e+00 | 1.6185623 | 0.104 | 0.003 | 0.0000128 | 14 | Rcsd1 |
0.0e+00 | 1.6046859 | 0.260 | 0.007 | 0.0000000 | 14 | Apbb1ip |
0.0e+00 | 1.5448902 | 0.208 | 0.006 | 0.0000000 | 14 | Tnfaip3 |
0.0e+00 | 1.4079602 | 0.234 | 0.010 | 0.0000000 | 14 | Dock8 |
0.0e+00 | 1.3844791 | 0.416 | 0.021 | 0.0000000 | 14 | Pde3b |
0.0e+00 | 1.3816313 | 0.377 | 0.019 | 0.0000000 | 14 | Lyn |
0.0e+00 | 1.3412955 | 0.494 | 0.025 | 0.0000000 | 14 | Runx1 |
0.0e+00 | 1.3044370 | 0.247 | 0.013 | 0.0000000 | 14 | Maf |
0.0e+00 | 1.2949720 | 0.481 | 0.043 | 0.0000000 | 14 | Sirpa |
0.0e+00 | 1.2803905 | 0.338 | 0.019 | 0.0000000 | 14 | Adap2 |
0.0e+00 | 1.2705357 | 0.182 | 0.010 | 0.0000000 | 14 | Lair1 |
0.0e+00 | 3.4456464 | 0.288 | 0.000 | 0.0000000 | 15 | Rprm |
0.0e+00 | 2.9161371 | 0.169 | 0.000 | 0.0000000 | 15 | Nxph3 |
0.0e+00 | 2.4042537 | 0.153 | 0.001 | 0.0000000 | 15 | Galnt9 |
0.0e+00 | 2.1820846 | 0.966 | 0.023 | 0.0000000 | 15 | Hs3st4 |
0.0e+00 | 2.1800638 | 0.542 | 0.004 | 0.0000000 | 15 | Ipcef1 |
0.0e+00 | 2.1612157 | 0.102 | 0.001 | 0.0000075 | 15 | Col5a1 |
0.0e+00 | 2.0306731 | 1.000 | 0.079 | 0.0000000 | 15 | Dpp10 |
0.0e+00 | 1.9094037 | 0.441 | 0.007 | 0.0000000 | 15 | Vxn |
0.0e+00 | 1.8621917 | 0.458 | 0.007 | 0.0000000 | 15 | Ttc9b |
0.0e+00 | 1.8521677 | 0.339 | 0.005 | 0.0000000 | 15 | Tbr1 |
0.0e+00 | 1.8230439 | 0.407 | 0.008 | 0.0000000 | 15 | Htr1f |
0.0e+00 | 1.8223971 | 0.288 | 0.005 | 0.0000000 | 15 | Hs3st2 |
0.0e+00 | 1.7874705 | 0.407 | 0.008 | 0.0000000 | 15 | Hpcal4 |
0.0e+00 | 1.7178729 | 0.390 | 0.009 | 0.0000000 | 15 | Npas4 |
0.0e+00 | 1.6370979 | 0.763 | 0.024 | 0.0000000 | 15 | Slc17a7 |
0.0e+00 | 1.6307976 | 0.458 | 0.012 | 0.0000000 | 15 | Nptx1 |
0.0e+00 | 1.6196684 | 0.763 | 0.024 | 0.0000000 | 15 | Tmem178 |
0.0e+00 | 1.5863354 | 0.780 | 0.028 | 0.0000000 | 15 | A830018L16Rik |
0.0e+00 | 1.5781789 | 0.559 | 0.015 | 0.0000000 | 15 | Vsnl1 |
0.0e+00 | 1.5757974 | 0.288 | 0.008 | 0.0000000 | 15 | Trabd2b |
0.0e+00 | 2.4362784 | 0.972 | 0.029 | 0.0000000 | 16 | Reln |
0.0e+00 | 2.0333160 | 0.611 | 0.007 | 0.0000000 | 16 | Trp73 |
0.0e+00 | 1.9122723 | 0.556 | 0.009 | 0.0000000 | 16 | Ndnf |
0.0e+00 | 1.8833775 | 0.472 | 0.007 | 0.0000000 | 16 | Ebf3 |
0.0e+00 | 1.7624574 | 0.972 | 0.056 | 0.0000000 | 16 | Clstn2 |
0.0e+00 | 1.7272174 | 0.861 | 0.040 | 0.0000000 | 16 | Thsd7b |
0.0e+00 | 1.6811718 | 0.972 | 0.060 | 0.0000000 | 16 | Kcnh7 |
0.0e+00 | 1.6201361 | 0.833 | 0.032 | 0.0000000 | 16 | Cdh4 |
0.0e+00 | 1.4951973 | 0.750 | 0.043 | 0.0000000 | 16 | Dync1i1 |
0.0e+00 | 1.4740080 | 0.194 | 0.007 | 0.0006911 | 16 | Tbr1 |
0.0e+00 | 1.4740080 | 0.583 | 0.030 | 0.0000000 | 16 | Epha3 |
0.0e+00 | 1.4344995 | 0.361 | 0.014 | 0.0000000 | 16 | Col11a1 |
0.0e+00 | 1.3958127 | 0.389 | 0.021 | 0.0000000 | 16 | Hs3st5 |
0.0e+00 | 1.3791710 | 0.444 | 0.026 | 0.0000000 | 16 | Cacna2d2 |
0.0e+00 | 1.3780536 | 0.472 | 0.022 | 0.0000000 | 16 | Kcnc2 |
0.0e+00 | 1.3647438 | 1.000 | 0.102 | 0.0000000 | 16 | Cntnap2 |
4.0e-07 | 1.3413825 | 0.194 | 0.010 | 0.0076880 | 16 | Ajap1 |
5.8e-06 | 1.3253550 | 0.139 | 0.009 | 0.0988710 | 16 | Tmem200a |
7.9e-06 | 1.2949724 | 0.167 | 0.010 | 0.1357362 | 16 | Syndig1l |
0.0e+00 | 1.2944836 | 0.278 | 0.017 | 0.0000001 | 16 | Plxnd1 |
top10 <-
markers_MAST %>%
group_by(cluster) %>%
top_n(n = 10, wt = avg_log10FC)
DoHeatmap(combined_srt, features = top10$gene) + NoLegend()
# Run PCA
merged_cortex <- RunPCA(merged_cortex, npcs = 20, verbose = FALSE)
# Set cell type annotations as identities if available
Idents(merged_cortex) <- "New_cellType"
ElbowPlot(merged_cortex, ndims = 20)
invisible(gc())
set.seed(reseed)
# registerDoParallel(cores = availableCores())
selected_pcs <-
seq_len(20)
if (!file.exists(here(data_dir, glue::glue("{project}-init/{project}-init-umap-search-ref.Rds")))) {
umap_example <- scDEED(
input_data = merged_cortex,
K = 20,
n_neighbors = seq(from = 15, to = 55, by = 20),
min.dist = c(0.01, 0.05, 0.1, 0.25, 0.5, 0.8),
reduction.method = "umap",
default_assay = "RNA"
)
dir.create(here(data_dir, sprintf("%s-init", project)))
readr::write_rds(
x = umap_example,
file = here(data_dir, glue::glue("{project}-init/{project}-init-umap-search-ref.Rds"))
)
} else {
umap_example <-
read_rds(here(data_dir, glue::glue("{project}-init/{project}-init-umap-search-ref.Rds")))
}
invisible(gc())
set.seed(seed = reseed)
merged_cortex <-
merged_cortex |>
FindNeighbors(
dims = selected_pcs,
k.param = umap_example$num_dubious |>
dplyr::slice_min(
order_by = c(number_dubious_cells),
n = 1
) |>
dplyr::slice_min(
order_by = c(min.dist),
n = 1
) |>
pull(n_neighbors),
annoy.metric = "euclidean",
n.trees = 100,
verbose = FALSE
)
merged_cortex <-
merged_cortex |>
RunUMAP(
dims = selected_pcs,
reduction.name = "umap",
reduction.key = "UMAP_",
return.model = TRUE,
n.epochs = 1000L,
n.neighbors = umap_example$num_dubious |>
dplyr::slice_min(
order_by = c(number_dubious_cells),
n = 1
) |>
dplyr::slice_min(
order_by = c(min.dist),
n = 1
) |>
pull(n_neighbors),
min.dist = umap_example$num_dubious |>
dplyr::slice_min(
order_by = c(number_dubious_cells),
n = 1
) |>
dplyr::slice_min(
order_by = c(min.dist),
n = 1
) |>
pull(min.dist),
seed.use = reseed,
verbose = FALSE
)
DefaultAssay(combined_srt) <- "RNA"
# Normalize the data
combined_srt <- NormalizeData(combined_srt, verbose = FALSE)
# Identify variable features
combined_srt <- FindVariableFeatures(combined_srt, selection.method = "vst", nfeatures = 5000, verbose = FALSE)
# Scale the data
combined_srt <- ScaleData(combined_srt, features = keep_genes, verbose = FALSE)
# Find transfer anchors
anchors <- FindTransferAnchors(
reference = merged_cortex,
query = combined_srt,
dims = selected_pcs,
reference.reduction = "pca"
)
# Map the query data onto the reference UMAP and transfer cell type annotations
combined_srt <- MapQuery(
anchorset = anchors,
reference = merged_cortex,
query = combined_srt,
refdata = list(New_cellType = "New_cellType"), # Transfer cell type labels
reference.reduction = "pca",
reduction.model = "umap"
)
# The predicted cell types are stored in combined_srt$predicted.New_cellType
# The projected UMAP coordinates are in combined_srt[["ref.umap"]]
# Plot the reference UMAP colored by cell types
p1 <- DimPlot_scCustom(
seurat_object = merged_cortex,
reduction = "umap",
group.by = "New_cellType",
pt.size = 1,
colors_use = merged_cortex@misc$types_Colour_Pal,
shuffle = TRUE,
seed = reseed,
alpha = 0.5,
repel = TRUE,
label = TRUE,
label.size = 5
) + ggtitle("Reference: Cell Type Annotations")
# Plot the query cells projected onto the reference UMAP, colored by the predicted cell types
p2 <- DimPlot_scCustom(
seurat_object = combined_srt,
reduction = "ref.umap",
group.by = "predicted.New_cellType",
pt.size = 1,
colors_use = merged_cortex@misc$types_Colour_Pal,
shuffle = TRUE,
seed = reseed,
alpha = 0.5,
repel = TRUE,
label = TRUE,
label.size = 5
) + NoLegend() + ggtitle("Query: Transferred Cell Type Labels")
# Combine the plots
p1 + p2 + plot_layout(guides = "collect")
# Plot the projected UMAP, coloring by Scgn expression
FeaturePlot_scCustom(
seurat_object = merged_cortex,
features = c("Scgn"),
reduction = "umap",
split.by = "stage",
pt.size = 2,
alpha_exp = 0.5,
repel = TRUE,
label = TRUE,
label.size = 5,
num_columns = 6
)
# Plot the projected UMAP, coloring by tdTomato status
DimPlot(
combined_srt,
reduction = "ref.umap",
group.by = "predicted.New_cellType",
split.by = "Scgn_tdTomato",
pt.size = 1,
cols = merged_cortex@misc$types_Colour_Pal,
shuffle = TRUE,
seed = reseed,
alpha = 0.5,
repel = TRUE,
label = TRUE,
label.size = 5
) + ggtitle("tdTomato Status in Query Cells")
# Plot the projected UMAP, coloring by tdTomato status
DimPlot_scCustom(
seurat_object = combined_srt,
reduction = "ref.umap",
group.by = "k_tree",
split.by = "Scgn_tdTomato",
pt.size = 1,
colors_use = merged_cortex@misc$types_Colour_Pal,
shuffle = TRUE,
seed = reseed,
alpha = 0.5,
repel = TRUE,
label = TRUE,
label.size = 5
) + ggtitle("tdTomato Status in Query Cells")
Idents(subset(combined_srt, subset = Scgn_tdTomato == "Scgn_Cre")) |> table()
1 2 4 5 7 8 9 11 12 13 15
3 1 1 3 10 1 1 4 1 1 1
subset(combined_srt, subset = Scgn_tdTomato == "Scgn_Cre")$k_tree |> table()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3 1 0 1 3 0 10 1 1 0 4 1 1 0 1 0
The most represented cluster’s markers are Mki67, Top2a, Dlx1, and Dlx6
This table describes parameters used and set in this document.
params <- list(
list(
Parameter = "high_cutoff_umis",
Value = high_cutoff_umis,
Description = "Maximum threshold for total counts"
),
list(
Parameter = "low_cutoff_gene",
Value = low_cutoff_gene,
Description = "Minimum threshold for total features"
),
list(
Parameter = "high_cutoff_gene",
Value = high_cutoff_gene,
Description = "Maximum threshold for total features"
),
list(
Parameter = "high_cutoff_pc_mt",
Value = high_cutoff_pc_mt,
Description = "Maximum threshold for percentage counts mitochondrial"
),
list(
Parameter = "high_cutoff_pc_ribo",
Value = high_cutoff_pc_ribo,
Description = "Maximum threshold for percentage counts ribosomal"
),
list(
Parameter = "high_cutoff_pc_hb",
Value = high_cutoff_pc_hb,
Description = "Maximum threshold for percentage counts hemoglobin"
),
list(
Parameter = "high_cutoff_complexity",
Value = high_cutoff_complexity,
Description = "Maximum threshold for cells complexity"
),
list(
Parameter = "n_cells",
Value = ncol(combined_srt),
Description = "Number of cells in the filtered dataset"
),
list(
Parameter = "n_genes",
Value = nrow(combined_srt),
Description = "Number of genes in the filtered dataset"
),
list(
Parameter = "median_genes",
Value = median(Matrix::colSums(GetAssayData(
combined_srt,
slot = "counts", assay = "RNA"
) != 0)),
Description = paste(
"Median number of expressed genes per cell in the",
"filtered dataset"
)
),
list(
Parameter = "median_counts",
Value = median(Matrix::colSums(GetAssayData(
combined_srt,
slot = "counts", assay = "RNA"
))),
Description = paste(
"Median number of counts per cell in the filtered",
"dataset"
)
),
unlist(purrr::map(srr_set, n_cells_per_file))
)
params <- jsonlite::toJSON(params, pretty = TRUE)
knitr::kable(jsonlite::fromJSON(params))
|
|
|
|
|
|
|
|
|
|
|
|
This table describes the output files produced by this document. Right click and Save Link As… to download the results.
saveRDS(
object = combined_srt,
file = here(data_dir, sprintf("%s-whole_dataset-fpr_%s-clusters.Rds", project, cb_fpr))
)
dir.create(here(tables_dir, docname), showWarnings = FALSE)
for (sample in unique(combined_srt@meta.data$Scgn_tdTomato)) {
cells <- combined_srt@meta.data %>%
as.data.frame() %>%
filter(Scgn_tdTomato == sample) %>%
select(cell_name)
readr::write_tsv(cells,
print(here(
tables_dir, docname,
glue::glue("cell_names-{sample}.tsv")
)),
col_names = FALSE
)
}
readr::write_lines(params, here(tables_dir, docname, "parameters.json"))
knitr::kable(data.frame(
File = c(
get_download_link("parameters.json", here(tables_dir, docname)),
purrr::map_chr(
srr_set,
~ get_download_link(
file = sprintf("cell_names-%s.tsv", .x),
folder = here(tables_dir, docname)
)
),
get_download_link(sprintf(
"%s_all_mrk-logreg_sct-combined-whole_dataset-fpr_%s.csv",
project, cb_fpr
), here(tables_dir, docname)),
get_download_link(sprintf(
"%s_all_mrk-MAST_sct-combined-whole_dataset-fpr_%s.csv",
project, cb_fpr
), here(tables_dir, docname)),
get_download_link(sprintf(
"combined-top5_logreg-umap-whole_dataset-fpr_%s.pdf",
cb_fpr
), plots_dir),
get_download_link(sprintf(
"combined-top5_MAST-umap-whole_dataset-fpr_%s.pdf",
cb_fpr
), plots_dir)
),
Description = c(
"Parameters set and used in this analysis",
purrr::map_chr(srr_set, ~ sprintf("cell_names-%s.tsv", .x)),
"DGE with logreg test",
"DGE with MAST test",
"UMAP embeddings of top5 genes per cluster from logreg test",
"UMAP embeddings of top5 genes per cluster from MAST test"
)
))
File | Description |
---|---|
parameters.json | Parameters set and used in this analysis |
cell_names-BSF_1105_Mouse_Cortex_SCGN_P02_1.tsv | cell_names-BSF_1105_Mouse_Cortex_SCGN_P02_1.tsv |
hanics2024-cortex-tdtomato_all_mrk-logreg_sct-combined-whole_dataset-fpr_0.001.csv | DGE with logreg test |
hanics2024-cortex-tdtomato_all_mrk-MAST_sct-combined-whole_dataset-fpr_0.001.csv | DGE with MAST test |
combined-top5_logreg-umap-whole_dataset-fpr_0.001.pdf | UMAP embeddings of top5 genes per cluster from logreg test |
combined-top5_MAST-umap-whole_dataset-fpr_0.001.pdf | UMAP embeddings of top5 genes per cluster from MAST test |
devtools::session_info()
─ Session info ───────────────────────────────────────────────────────────────
setting value
version R version 4.4.1 (2024-06-14)
os Ubuntu 22.04.5 LTS
system x86_64, linux-gnu
ui X11
language en_US:en
collate en_US.UTF-8
ctype en_US.UTF-8
tz Etc/UTC
date 2024-11-28
pandoc 2.9.2.1 @ /usr/bin/ (via rmarkdown)
─ Packages ───────────────────────────────────────────────────────────────────
package * version date (UTC) lib source
abind 1.4-8 2024-09-12 [1] RSPM
ape 5.8 2024-04-11 [1] RSPM (R 4.4.1)
aplot 0.2.3 2024-06-17 [1] RSPM (R 4.4.0)
backports 1.5.0 2024-05-23 [1] RSPM
base64enc 0.1-3 2015-07-28 [1] RSPM (R 4.4.1)
beeswarm 0.4.0 2021-06-01 [1] RSPM (R 4.4.0)
Biobase 2.64.0 2024-04-30 [1] RSPM (R 4.4.1)
BiocGenerics 0.50.0 2024-04-30 [1] RSPM (R 4.4.1)
BiocManager 1.30.25 2024-08-28 [1] RSPM (R 4.4.0)
bit 4.5.0 2024-09-20 [1] RSPM
bit64 4.5.2 2024-09-22 [1] RSPM
bitops 1.0-9 2024-10-03 [1] RSPM
bslib 0.8.0 2024-07-29 [1] RSPM (R 4.4.1)
cachem 1.1.0 2024-05-16 [1] RSPM (R 4.4.1)
Cairo 1.6-2 2023-11-28 [1] RSPM
callr 3.7.6 2024-03-25 [1] RSPM (R 4.4.1)
checkmate 2.3.2 2024-07-29 [1] RSPM (R 4.4.0)
circlize 0.4.16 2024-10-12 [1] Github (jokergoo/circlize@9b21578)
cli 3.6.3 2024-06-21 [1] RSPM (R 4.4.1)
clue 0.3-65 2023-09-23 [1] RSPM (R 4.4.0)
cluster 2.1.6 2023-12-01 [1] CRAN (R 4.4.1)
clusterGeneration 1.3.8 2023-08-16 [1] RSPM (R 4.4.0)
clustree * 0.5.1 2023-11-05 [1] RSPM (R 4.4.0)
coda 0.19-4.1 2024-01-31 [1] RSPM
codetools 0.2-20 2024-03-31 [1] CRAN (R 4.4.1)
colorspace 2.1-1 2024-07-26 [1] RSPM (R 4.4.1)
combinat 0.0-8 2012-10-29 [1] RSPM (R 4.4.0)
ComplexHeatmap 2.18.0 2023-10-24 [1] RSPM (R 4.4.1)
cowplot 1.1.3 2024-01-22 [1] RSPM
crayon 1.5.3 2024-06-20 [1] RSPM (R 4.4.1)
data.table 1.16.2 2024-10-10 [1] RSPM (R 4.4.1)
data.tree 1.1.0 2023-11-12 [1] RSPM (R 4.4.0)
DelayedArray 0.28.0 2023-10-24 [1] RSPM (R 4.4.1)
deldir 2.0-4 2024-02-28 [1] RSPM
dendextend 1.18.0 2024-10-05 [1] RSPM (R 4.4.0)
DEoptim 2.2-8 2022-11-11 [1] RSPM (R 4.4.0)
devtools 2.4.5 2022-10-11 [1] RSPM
digest 0.6.37 2024-08-19 [1] RSPM (R 4.4.1)
doParallel * 1.0.17 2022-02-07 [1] RSPM (R 4.4.1)
dotCall64 1.2 2024-10-04 [1] RSPM
dplyr * 1.1.4 2023-11-17 [1] RSPM (R 4.4.1)
ellipsis 0.3.2 2021-04-29 [1] RSPM
evaluate 1.0.1 2024-10-10 [1] RSPM (R 4.4.1)
expm 1.0-0 2024-08-19 [1] RSPM (R 4.4.0)
fansi 1.0.6 2023-12-08 [1] RSPM (R 4.4.1)
farver 2.1.2 2024-05-13 [1] RSPM (R 4.4.1)
fastDummies 1.7.4 2024-08-16 [1] RSPM
fastmap 1.2.0 2024-05-15 [1] RSPM (R 4.4.1)
fastmatch 1.1-4 2023-08-18 [1] RSPM (R 4.4.0)
fitdistrplus 1.2-1 2024-07-12 [1] RSPM
forcats * 1.0.0 2023-01-29 [1] RSPM
foreach * 1.5.2 2022-02-02 [1] RSPM (R 4.4.1)
fs 1.6.4 2024-04-25 [1] RSPM (R 4.4.1)
future * 1.34.0 2024-07-29 [1] RSPM
future.apply 1.11.2 2024-03-28 [1] RSPM
generics 0.1.3 2022-07-05 [1] RSPM (R 4.4.1)
GenomeInfoDb 1.40.1 2024-05-24 [1] RSPM (R 4.4.1)
GenomeInfoDbData 1.2.11 2024-10-12 [1] RSPM (R 4.4.1)
GenomicRanges 1.56.1 2024-06-12 [1] RSPM (R 4.4.1)
GetoptLong 1.0.5 2020-12-15 [1] RSPM (R 4.4.0)
getPass 0.2-4 2023-12-10 [1] RSPM
ggbeeswarm 0.7.2 2024-10-12 [1] Github (eclarke/ggbeeswarm@ce2da8a)
ggforce 0.5.0 2024-10-12 [1] Github (thomasp85/ggforce@9292822)
ggfun 0.1.6 2024-08-28 [1] RSPM (R 4.4.0)
ggh4x 0.2.8.9000 2024-10-12 [1] Github (teunbrand/ggh4x@e797c7c)
ggimage 0.3.3 2023-06-19 [1] RSPM (R 4.4.0)
ggmin 0.0.0.9000 2024-10-12 [1] Github (sjessa/ggmin@8ada274)
ggplot2 * 3.5.1 2024-04-23 [1] RSPM (R 4.4.1)
ggplotify 0.1.2 2023-08-09 [1] RSPM (R 4.4.0)
ggprism 1.0.5 2024-10-12 [1] Github (csdaw/ggprism@b6e6c0e)
ggraph * 2.2.1.9000 2024-10-12 [1] Github (thomasp85/ggraph@9a0bfb1)
ggrastr 1.0.2 2024-10-12 [1] Github (VPetukhov/ggrastr@50ca3e0)
ggrepel 0.9.6 2024-10-12 [1] Github (slowkow/ggrepel@e94776b)
ggridges 0.5.6 2024-01-23 [1] RSPM
ggsci 3.2.0 2024-10-12 [1] Github (nanxstats/ggsci@b5bf1fd)
ggtree 3.13.1 2024-10-12 [1] Github (YuLab-SMU/ggtree@01b29ef)
git2r 0.33.0 2023-11-26 [1] RSPM
glmGamPoi * 1.16.0 2024-04-30 [1] RSPM (R 4.4.1)
GlobalOptions 0.1.2 2020-06-10 [1] RSPM (R 4.4.0)
globals 0.16.3 2024-03-08 [1] RSPM
glue 1.8.0 2024-09-30 [1] RSPM (R 4.4.1)
goftest 1.2-3 2021-10-07 [1] RSPM
gprofiler2 * 0.2.3 2024-02-23 [1] RSPM (R 4.4.0)
graphlayouts 1.2.0 2024-09-24 [1] RSPM (R 4.4.0)
gridExtra 2.3 2017-09-09 [1] RSPM
gridGraphics 0.5-1 2020-12-13 [1] RSPM (R 4.4.0)
gtable 0.3.5 2024-04-22 [1] RSPM (R 4.4.1)
hdf5r 1.3.11 2024-07-07 [1] RSPM (R 4.4.1)
here * 1.0.1 2020-12-13 [1] RSPM
highr 0.11 2024-05-26 [1] RSPM (R 4.4.1)
hms 1.1.3 2023-03-21 [1] RSPM
htmltools 0.5.8.1 2024-04-04 [1] RSPM (R 4.4.1)
htmlwidgets 1.6.4 2023-12-06 [1] RSPM (R 4.4.1)
httpuv 1.6.15 2024-03-26 [1] RSPM (R 4.4.1)
httr 1.4.7 2023-08-15 [1] RSPM (R 4.4.1)
ica 1.0-3 2022-07-08 [1] RSPM
igraph 2.0.3 2024-03-13 [1] RSPM
IRanges 2.38.1 2024-07-03 [1] RSPM (R 4.4.1)
irlba 2.3.5.1 2022-10-03 [1] RSPM
iterators * 1.0.14 2022-02-05 [1] RSPM (R 4.4.1)
janitor 2.2.0.9000 2024-10-12 [1] Github (sfirke/janitor@709b2ab)
jquerylib 0.1.4 2021-04-26 [1] RSPM (R 4.4.1)
jsonlite 1.8.9 2024-09-20 [1] RSPM (R 4.4.1)
kableExtra * 1.4.0 2024-01-24 [1] RSPM (R 4.4.0)
KernSmooth 2.23-24 2024-05-17 [1] CRAN (R 4.4.1)
knitr * 1.48 2024-07-07 [1] RSPM
ks 1.14.2 2024-01-15 [1] RSPM (R 4.4.0)
labeling 0.4.3 2023-08-29 [1] RSPM (R 4.4.1)
later 1.3.2 2023-12-06 [1] RSPM (R 4.4.1)
lattice 0.22-6 2024-03-20 [1] CRAN (R 4.4.1)
lazyeval 0.2.2 2019-03-15 [1] RSPM (R 4.4.1)
leiden 0.4.3.1 2023-11-17 [1] RSPM
lifecycle 1.0.4 2023-11-07 [1] RSPM (R 4.4.1)
listenv 0.9.1 2024-01-29 [1] RSPM
lmtest 0.9-40 2022-03-21 [1] RSPM (R 4.4.1)
lubridate * 1.9.3 2023-09-27 [1] RSPM
magick 2.8.5 2024-09-20 [1] RSPM
magrittr * 2.0.3 2022-03-30 [1] RSPM (R 4.4.1)
maps 3.4.2 2023-12-15 [1] RSPM (R 4.4.0)
MASS 7.3-60.2 2024-04-26 [1] CRAN (R 4.4.1)
MAST 1.30.0 2024-04-30 [1] RSPM (R 4.4.1)
Matrix 1.7-0 2024-04-26 [1] CRAN (R 4.4.1)
MatrixGenerics 1.14.0 2023-10-24 [1] RSPM (R 4.4.1)
matrixStats 1.4.1 2024-09-08 [1] RSPM
mclust 6.1.1 2024-04-29 [1] RSPM
memoise 2.0.1 2021-11-26 [1] RSPM (R 4.4.1)
mime 0.12 2021-09-28 [1] RSPM (R 4.4.1)
miniUI 0.1.1.1 2018-05-18 [1] RSPM
mnormt 2.1.1 2022-09-26 [1] RSPM (R 4.4.1)
mrtree * 0.0.0.9000 2024-10-12 [1] Github (pengminshi/mrtree@720f469)
munsell 0.5.1 2024-04-01 [1] RSPM (R 4.4.1)
mvtnorm 1.3-1 2024-09-03 [1] RSPM
Nebulosa * 1.14.0 2024-04-30 [1] RSPM (R 4.4.1)
nlme 3.1-166 2024-08-14 [1] RSPM
numDeriv 2016.8-1.1 2019-06-06 [1] RSPM (R 4.4.1)
optimParallel 1.0-2 2021-02-11 [1] RSPM (R 4.4.0)
paletteer 1.6.0 2024-01-21 [1] RSPM
parallelly 1.38.0 2024-07-27 [1] RSPM
patchwork * 1.3.0.9000 2024-10-12 [1] Github (thomasp85/patchwork@2695a9f)
pbapply 1.7-2 2023-06-27 [1] RSPM
phangorn 2.12.1 2024-09-17 [1] RSPM (R 4.4.0)
phytools 2.3-0 2024-06-13 [1] RSPM (R 4.4.0)
pillar 1.9.0 2023-03-22 [1] RSPM (R 4.4.1)
pkgbuild 1.4.4 2024-03-17 [1] RSPM (R 4.4.1)
pkgconfig 2.0.3 2019-09-22 [1] RSPM (R 4.4.1)
pkgload 1.4.0 2024-06-28 [1] RSPM (R 4.4.1)
plotly 4.10.4 2024-01-13 [1] RSPM
plyr 1.8.9 2023-10-02 [1] RSPM
png 0.1-8 2022-11-29 [1] RSPM
polyclip 1.10-7 2024-07-23 [1] RSPM
pracma 2.4.4 2023-11-10 [1] RSPM (R 4.4.0)
prettyunits 1.2.0 2023-09-24 [1] RSPM
prismatic 1.1.2 2024-04-10 [1] RSPM
processx 3.8.4 2024-03-16 [1] RSPM
profvis 0.4.0 2024-09-20 [1] RSPM
progress 1.2.3 2023-12-06 [1] RSPM (R 4.4.0)
progressr 0.14.0 2023-08-10 [1] RSPM
promises 1.3.0 2024-04-05 [1] RSPM (R 4.4.1)
proxy 0.4-27 2022-06-09 [1] RSPM (R 4.4.0)
ps 1.8.0 2024-09-12 [1] RSPM (R 4.4.1)
purrr * 1.0.2 2023-08-10 [1] RSPM (R 4.4.1)
qs * 0.27.2 2024-10-01 [1] RSPM (R 4.4.0)
quadprog 1.5-8 2019-11-20 [1] RSPM
R.methodsS3 1.8.2 2022-06-13 [1] RSPM (R 4.4.0)
R.oo 1.26.0 2024-01-24 [1] RSPM (R 4.4.0)
R.utils 2.12.3 2023-11-18 [1] RSPM (R 4.4.0)
R6 2.5.1 2021-08-19 [1] RSPM (R 4.4.1)
RANN 2.6.2 2024-08-25 [1] RSPM
RApiSerialize 0.1.4 2024-09-28 [1] RSPM (R 4.4.0)
RColorBrewer * 1.1-3 2022-04-03 [1] RSPM
Rcpp 1.0.13 2024-07-17 [1] RSPM (R 4.4.1)
RcppAnnoy 0.0.22 2024-01-23 [1] RSPM
RcppHNSW 0.6.0 2024-02-04 [1] RSPM
RcppParallel 5.1.9 2024-08-19 [1] RSPM (R 4.4.0)
RCurl 1.98-1.16 2024-07-11 [1] RSPM
readr * 2.1.5 2024-01-10 [1] RSPM
rematch2 2.1.2 2020-05-01 [1] RSPM (R 4.4.1)
remotes 2.5.0 2024-03-17 [1] RSPM
repr 1.1.7 2024-03-22 [1] RSPM
reshape2 1.4.4 2020-04-09 [1] RSPM
reticulate * 1.39.0 2024-09-05 [1] RSPM
rjson 0.2.23 2024-09-16 [1] RSPM (R 4.4.0)
rlang 1.1.4 2024-06-04 [1] RSPM (R 4.4.1)
rmarkdown 2.28 2024-08-17 [1] RSPM
ROCR 1.0-11 2020-05-02 [1] RSPM
rprojroot 2.0.4 2023-11-05 [1] RSPM (R 4.4.1)
RSpectra 0.16-2 2024-07-18 [1] RSPM
rstudioapi 0.16.0 2024-03-24 [1] RSPM
rsvd 1.0.5 2021-04-16 [1] RSPM (R 4.4.0)
Rtsne 0.17 2023-12-07 [1] RSPM
S4Arrays 1.2.1 2024-03-04 [1] RSPM (R 4.4.1)
S4Vectors 0.40.2 2023-11-23 [1] RSPM (R 4.4.1)
sass 0.4.9 2024-03-15 [1] RSPM (R 4.4.1)
scales 1.3.0 2023-11-28 [1] RSPM (R 4.4.1)
scattermore 1.2 2023-06-12 [1] RSPM
scatterplot3d 0.3-44 2023-05-05 [1] RSPM (R 4.4.0)
scBubbletree * 1.6.0 2024-04-30 [1] RSPM (R 4.4.1)
scCustomize * 2.1.2 2024-10-12 [1] Github (samuel-marsh/scCustomize@fc7a282)
scDEED * 0.1.0 2024-10-12 [1] Github (JSB-UCLA/scDEED@25282e8)
sctransform * 0.4.1 2023-10-19 [1] RSPM
sessioninfo 1.2.2 2021-12-06 [1] RSPM
Seurat * 5.1.0.9006 2024-10-14 [1] Github (satijalab/seurat@63a7b1a)
SeuratDisk * 0.0.0.9021 2024-10-12 [1] Github (mojaveazure/seurat-disk@877d4e1)
SeuratObject * 5.0.99.9001 2024-10-14 [1] Github (satijalab/seurat-object@1a140c7)
SeuratWrappers * 0.3.5 2024-10-12 [1] Github (satijalab/seurat-wrappers@8d46d6c)
shape 1.4.6.1 2024-02-23 [1] RSPM
shiny 1.9.1 2024-08-01 [1] RSPM (R 4.4.1)
SingleCellExperiment 1.24.0 2023-10-24 [1] RSPM (R 4.4.1)
skimr * 2.1.5 2024-10-12 [1] Github (ropensci/skimr@d5126aa)
snakecase 0.11.1 2023-08-27 [1] RSPM (R 4.4.0)
sp * 2.1-4 2024-04-30 [1] RSPM
spam 2.11-0 2024-10-03 [1] RSPM
SparseArray 1.2.4 2024-02-11 [1] RSPM (R 4.4.1)
spatstat.data 3.1-2 2024-06-21 [1] RSPM
spatstat.explore 3.3-2 2024-08-21 [1] RSPM
spatstat.geom 3.3-3 2024-09-18 [1] RSPM
spatstat.random 3.3-2 2024-09-18 [1] RSPM
spatstat.sparse 3.1-0 2024-06-21 [1] RSPM
spatstat.univar 3.0-1 2024-09-05 [1] RSPM
spatstat.utils 3.1-0 2024-08-17 [1] RSPM
stringfish 0.16.0 2023-11-28 [1] RSPM (R 4.4.0)
stringi 1.8.4 2024-05-06 [1] RSPM (R 4.4.1)
stringr * 1.5.1 2023-11-14 [1] RSPM (R 4.4.1)
SummarizedExperiment 1.32.0 2023-10-24 [1] RSPM (R 4.4.1)
survival 3.7-0 2024-06-05 [1] RSPM
svglite 2.1.3 2023-12-08 [1] RSPM
SymSim 0.0.0.9000 2024-10-12 [1] Github (YosefLab/SymSim@76a674b)
systemfonts 1.1.0 2024-05-15 [1] RSPM
tensor 1.5 2012-05-05 [1] RSPM
tibble * 3.2.1 2023-03-20 [1] RSPM (R 4.4.1)
tidygraph 1.3.1 2024-01-30 [1] RSPM
tidyr * 1.3.1 2024-01-24 [1] RSPM (R 4.4.1)
tidyselect 1.2.1 2024-03-11 [1] RSPM (R 4.4.1)
tidytree 0.4.6 2023-12-12 [1] RSPM (R 4.4.0)
tidyverse * 2.0.0.9000 2024-10-12 [1] Github (tidyverse/tidyverse@62f32d4)
timechange 0.3.0 2024-01-18 [1] RSPM
treeio 1.26.0 2023-10-24 [1] RSPM (R 4.4.1)
tweenr 2.0.3 2024-02-26 [1] RSPM (R 4.4.0)
tzdb 0.4.0 2023-05-12 [1] RSPM
UCSC.utils 1.0.0 2024-04-30 [1] RSPM (R 4.4.1)
urlchecker 1.0.1 2021-11-30 [1] RSPM
usethis 3.0.0 2024-07-29 [1] RSPM
utf8 1.2.4 2023-10-22 [1] RSPM (R 4.4.1)
uwot 0.2.2 2024-04-21 [1] RSPM
vctrs 0.6.5 2023-12-01 [1] RSPM (R 4.4.1)
vipor 0.4.7 2023-12-18 [1] RSPM (R 4.4.0)
viridis * 0.6.5 2024-01-29 [1] RSPM
viridisLite * 0.4.2 2023-05-02 [1] RSPM (R 4.4.1)
vroom 1.6.5 2023-12-05 [1] RSPM
whisker 0.4.1 2022-12-05 [1] RSPM
withr 3.0.1 2024-07-31 [1] RSPM (R 4.4.1)
workflowr * 1.7.1 2023-08-23 [1] RSPM
xfun 0.48 2024-10-03 [1] RSPM (R 4.4.1)
xml2 1.3.6 2023-12-04 [1] RSPM (R 4.4.1)
xtable 1.8-4 2019-04-21 [1] RSPM (R 4.4.1)
XVector 0.42.0 2023-10-24 [1] RSPM (R 4.4.1)
yaml 2.3.10 2024-07-26 [1] RSPM
yulab.utils 0.1.7 2024-08-26 [1] RSPM (R 4.4.0)
zeallot * 0.1.0 2018-01-28 [1] RSPM
zlibbioc 1.48.2 2024-03-13 [1] RSPM (R 4.4.1)
zoo 1.8-12 2023-04-13 [1] RSPM (R 4.4.1)
[1] /opt/R/4.4.1/lib/R/library
─ Python configuration ───────────────────────────────────────────────────────
python: /opt/python/3.12/bin/python
libpython: /opt/python/3.12/lib/libpython3.12.so
pythonhome: /opt/python/3.12:/opt/python/3.12
version: 3.12.7 | packaged by conda-forge | (main, Oct 4 2024, 16:05:46) [GCC 13.3.0]
numpy: /opt/python/3.12/lib/python3.12/site-packages/numpy
numpy_version: 1.26.4
pacmap: /opt/python/3.12/lib/python3.12/site-packages/pacmap
NOTE: Python version was forced by RETICULATE_PYTHON
──────────────────────────────────────────────────────────────────────────────
Di Bella, Daniela J., Ehsan Habibi, Robert R. Stickels, Gabriele Scalia, Juliana Brown, Payman Yadollahpour, Sung Min Yang, et al. 2021. “Molecular Logic of Cellular Diversification in the Mouse Cerebral Cortex.” Nature 595 (7868): 554–59. https://doi.org/10.1038/s41586-021-03670-5.
sessionInfo()
R version 4.4.1 (2024-06-14)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 22.04.5 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
time zone: Etc/UTC
tzcode source: system (glibc)
attached base packages:
[1] parallel stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] scBubbletree_1.6.0 gprofiler2_0.2.3 Nebulosa_1.14.0
[4] scDEED_0.1.0 mrtree_0.0.0.9000 scCustomize_2.1.2
[7] qs_0.27.2 patchwork_1.3.0.9000 clustree_0.5.1
[10] ggraph_2.2.1.9000 glmGamPoi_1.16.0 sctransform_0.4.1
[13] SeuratDisk_0.0.0.9021 SeuratWrappers_0.3.5 Seurat_5.1.0.9006
[16] SeuratObject_5.0.99.9001 sp_2.1-4 doParallel_1.0.17
[19] iterators_1.0.14 foreach_1.5.2 reticulate_1.39.0
[22] kableExtra_1.4.0 zeallot_0.1.0 future_1.34.0
[25] skimr_2.1.5 magrittr_2.0.3 lubridate_1.9.3
[28] forcats_1.0.0 stringr_1.5.1 dplyr_1.1.4
[31] purrr_1.0.2 readr_2.1.5 tidyr_1.3.1
[34] tibble_3.2.1 ggplot2_3.5.1 tidyverse_2.0.0.9000
[37] viridis_0.6.5 viridisLite_0.4.2 RColorBrewer_1.1-3
[40] knitr_1.48 here_1.0.1 workflowr_1.7.1
loaded via a namespace (and not attached):
[1] IRanges_2.38.1 R.methodsS3_1.8.2
[3] vroom_1.6.5 progress_1.2.3
[5] urlchecker_1.0.1 goftest_1.2-3
[7] phytools_2.3-0 vctrs_0.6.5
[9] spatstat.random_3.3-2 RApiSerialize_0.1.4
[11] proxy_0.4-27 digest_0.6.37
[13] png_0.1-8 shape_1.4.6.1
[15] git2r_0.33.0 ggrepel_0.9.6
[17] deldir_2.0-4 parallelly_1.38.0
[19] combinat_0.0-8 magick_2.8.5
[21] MASS_7.3-60.2 MAST_1.30.0
[23] reshape2_1.4.4 httpuv_1.6.15
[25] BiocGenerics_0.50.0 withr_3.0.1
[27] ggrastr_1.0.2 xfun_0.48
[29] ggfun_0.1.6 ellipsis_0.3.2
[31] survival_3.7-0 memoise_2.0.1
[33] ggbeeswarm_0.7.2 janitor_2.2.0.9000
[35] profvis_0.4.0 ggsci_3.2.0
[37] systemfonts_1.1.0 tidytree_0.4.6
[39] zoo_1.8-12 GlobalOptions_0.1.2
[41] DEoptim_2.2-8 pbapply_1.7-2
[43] R.oo_1.26.0 prettyunits_1.2.0
[45] rematch2_2.1.2 promises_1.3.0
[47] scatterplot3d_0.3-44 httr_1.4.7
[49] globals_0.16.3 fitdistrplus_1.2-1
[51] ps_1.8.0 stringfish_0.16.0
[53] rstudioapi_0.16.0 UCSC.utils_1.0.0
[55] miniUI_0.1.1.1 generics_0.1.3
[57] base64enc_0.1-3 processx_3.8.4
[59] S4Vectors_0.40.2 repr_1.1.7
[61] zlibbioc_1.48.2 polyclip_1.10-7
[63] GenomeInfoDbData_1.2.11 quadprog_1.5-8
[65] SparseArray_1.2.4 pracma_2.4.4
[67] xtable_1.8-4 evaluate_1.0.1
[69] S4Arrays_1.2.1 hms_1.1.3
[71] GenomicRanges_1.56.1 irlba_2.3.5.1
[73] colorspace_2.1-1 hdf5r_1.3.11
[75] ROCR_1.0-11 spatstat.data_3.1-2
[77] lmtest_0.9-40 snakecase_0.11.1
[79] later_1.3.2 ggtree_3.13.1
[81] lattice_0.22-6 spatstat.geom_3.3-3
[83] future.apply_1.11.2 getPass_0.2-4
[85] scattermore_1.2 cowplot_1.1.3
[87] matrixStats_1.4.1 RcppAnnoy_0.0.22
[89] pillar_1.9.0 nlme_3.1-166
[91] compiler_4.4.1 RSpectra_0.16-2
[93] stringi_1.8.4 devtools_2.4.5
[95] tensor_1.5 SummarizedExperiment_1.32.0
[97] dendextend_1.18.0 plyr_1.8.9
[99] crayon_1.5.3 abind_1.4-8
[101] gridGraphics_0.5-1 graphlayouts_1.2.0
[103] bit_4.5.0 fastmatch_1.1-4
[105] whisker_0.4.1 codetools_0.2-20
[107] bslib_0.8.0 paletteer_1.6.0
[109] GetoptLong_1.0.5 plotly_4.10.4
[111] mime_0.12 splines_4.4.1
[113] circlize_0.4.16 Rcpp_1.0.13
[115] fastDummies_1.7.4 prismatic_1.1.2
[117] utf8_1.2.4 clue_0.3-65
[119] fs_1.6.4 listenv_0.9.1
[121] checkmate_2.3.2 pkgbuild_1.4.4
[123] expm_1.0-0 ggplotify_0.1.2
[125] Matrix_1.7-0 callr_3.7.6
[127] tzdb_0.4.0 svglite_2.1.3
[129] tweenr_2.0.3 pkgconfig_2.0.3
[131] tools_4.4.1 cachem_1.1.0
[133] numDeriv_2016.8-1.1 fastmap_1.2.0
[135] rmarkdown_2.28 scales_1.3.0
[137] grid_4.4.1 usethis_3.0.0
[139] ica_1.0-3 sass_0.4.9
[141] coda_0.19-4.1 ggprism_1.0.5
[143] BiocManager_1.30.25 dotCall64_1.2
[145] RANN_2.6.2 ggimage_0.3.3
[147] farver_2.1.2 tidygraph_1.3.1
[149] yaml_2.3.10 MatrixGenerics_1.14.0
[151] cli_3.6.3 stats4_4.4.1
[153] leiden_0.4.3.1 lifecycle_1.0.4
[155] uwot_0.2.2 Biobase_2.64.0
[157] mvtnorm_1.3-1 sessioninfo_1.2.2
[159] backports_1.5.0 rjson_0.2.23
[161] timechange_0.3.0 gtable_0.3.5
[163] ggridges_0.5.6 progressr_0.14.0
[165] ape_5.8 jsonlite_1.8.9
[167] RcppHNSW_0.6.0 bitops_1.0-9
[169] bit64_4.5.2 Rtsne_0.17
[171] yulab.utils_0.1.7 spatstat.utils_3.1-0
[173] RcppParallel_5.1.9 highr_0.11
[175] jquerylib_0.1.4 spatstat.univar_3.0-1
[177] R.utils_2.12.3 lazyeval_0.2.2
[179] shiny_1.9.1 htmltools_0.5.8.1
[181] data.tree_1.1.0 glue_1.8.0
[183] spam_2.11-0 SymSim_0.0.0.9000
[185] XVector_0.42.0 RCurl_1.98-1.16
[187] treeio_1.26.0 rprojroot_2.0.4
[189] mclust_6.1.1 ks_1.14.2
[191] mnormt_2.1.1 gridExtra_2.3
[193] igraph_2.0.3 R6_2.5.1
[195] SingleCellExperiment_1.24.0 labeling_0.4.3
[197] ggh4x_0.2.8.9000 cluster_2.1.6
[199] pkgload_1.4.0 aplot_0.2.3
[201] GenomeInfoDb_1.40.1 DelayedArray_0.28.0
[203] tidyselect_1.2.1 vipor_0.4.7
[205] maps_3.4.2 ggforce_0.5.0
[207] xml2_1.3.6 rsvd_1.0.5
[209] munsell_0.5.1 KernSmooth_2.23-24
[211] optimParallel_1.0-2 data.table_1.16.2
[213] ComplexHeatmap_2.18.0 htmlwidgets_1.6.4
[215] ggmin_0.0.0.9000 rlang_1.1.4
[217] clusterGeneration_1.3.8 spatstat.sparse_3.1-0
[219] spatstat.explore_3.3-2 remotes_2.5.0
[221] Cairo_1.6-2 phangorn_2.12.1
[223] fansi_1.0.6 beeswarm_0.4.0