Last updated: 2023-12-05

Checks: 6 1

Knit directory: mi_spatialomics/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20230612) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 5dee03d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.DS_Store
    Ignored:    analysis/.Rhistory
    Ignored:    analysis/deprecated/.DS_Store
    Ignored:    analysis/figure/
    Ignored:    analysis/molecular_cartography_python/.DS_Store
    Ignored:    analysis/molecular_cartography_python/figures/
    Ignored:    analysis/seqIF_python/.DS_Store
    Ignored:    data/.DS_Store
    Ignored:    data/140623.calcagno_et_al.seurat_object.rds
    Ignored:    data/Calcagno2022_int_logNorm_annot.h5Seurat
    Ignored:    data/mol_cart.heart_regions/
    Ignored:    data/pixie.cell_table_size_normalized_cell_labels.csv
    Ignored:    data/results_cts_100.sqm
    Ignored:    data/seqIF_regions_annotations/
    Ignored:    data/seurat/
    Ignored:    figures/.DS_Store
    Ignored:    figures/Figure_5.pathway_plot.pdf
    Ignored:    figures/Figure_5.pca_plot.pdf
    Ignored:    figures/Figure_5.pca_plot.png
    Ignored:    figures/Figure_5.volcano_plot.pdf
    Ignored:    figures/Figure_5.vwf_expression_plot.pdf
    Ignored:    figures/Figure_5.vwf_specificity_plot.pdf
    Ignored:    figures/Supplementary_figure_3.segmentation_metrics.eps
    Ignored:    figures/Supplementary_figure_3.segmentation_metrics.png
    Ignored:    figures/figures.supplementary_figure4.png
    Ignored:    figures/mol_cart.Figure_2.gains.pdf
    Ignored:    figures/mol_cart.Figure_2.misty_gains.pdf
    Ignored:    figures/mol_cart.Myeloid_distribution.png
    Ignored:    figures/mol_cart.Nppa_distribution.eps
    Ignored:    figures/mol_cart.Nppa_distribution.pdf
    Ignored:    figures/mol_cart.Nppa_distribution.png
    Ignored:    figures/supplementary_figure4.cell_type_distributions.eps
    Ignored:    figures/supplementary_figure4.cell_type_distributions.png
    Ignored:    output/.DS_Store
    Ignored:    output/mol_cart.harmony_object.h5Seurat
    Ignored:    output/mol_cart/
    Ignored:    output/molkart_cell_types/
    Ignored:    output/proteomics/
    Ignored:    output/seqIF/
    Ignored:    plots/.DS_Store
    Ignored:    plots/Figure1.umap_plot.pdf
    Ignored:    plots/Figure3.ccr2_monomacro_regions.pdf
    Ignored:    plots/Figure3.cell_types_overtimes.pdf
    Ignored:    plots/Figure3.pixel_clusters_overtimes.pdf
    Ignored:    plots/mol_cart.Figure_2.ct_percentage.pdf
    Ignored:    plots/molkart.squidpy.co_occurrence_plot.CMs_Nppa.sample_2d_r1_s1.png
    Ignored:    plots/molkart.squidpy.co_occurrence_plot.CMs_Nppa.sample_2d_r2_s1.png
    Ignored:    plots/molkart.squidpy.co_occurrence_plot.CMs_Nppa.sample_control_r1_s1.png
    Ignored:    plots/molkart.squidpy.co_occurrence_plot.CMs_Nppa.sample_control_r2_s1.png
    Ignored:    plots/molkart.squidpy.co_occurrence_plot.Endocardial_cells.sample_2d_r1_s1.png
    Ignored:    plots/molkart.squidpy.co_occurrence_plot.Endocardial_cells.sample_2d_r2_s1.png
    Ignored:    plots/molkart.squidpy.co_occurrence_plot.Endocardial_cells.sample_control_r1_s1.png
    Ignored:    plots/molkart.squidpy.co_occurrence_plot.Endocardial_cells.sample_control_r2_s1.png
    Ignored:    plots/molkart.squidpy.co_occurrence_plot.Myeloid_cells.sample_2d_r1_s1.png
    Ignored:    plots/molkart.squidpy.co_occurrence_plot.Myeloid_cells.sample_2d_r2_s1.png
    Ignored:    plots/molkart.squidpy.co_occurrence_plot.Myeloid_cells.sample_control_r1_s1.png
    Ignored:    plots/molkart.squidpy.co_occurrence_plot.Myeloid_cells.sample_control_r2_s1.png
    Ignored:    plots/molkart.squidpy.nhood_enrichment_plot.sample_2d_r1_s1.png
    Ignored:    plots/molkart.squidpy.nhood_enrichment_plot.sample_2d_r2_s1.png
    Ignored:    plots/molkart.squidpy.nhood_enrichment_plot.sample_control_r1_s1.png
    Ignored:    plots/molkart.squidpy.nhood_enrichment_plot.sample_control_r2_s1.png
    Ignored:    references/.DS_Store
    Ignored:    renv/library/
    Ignored:    renv/staging/

Untracked files:
    Untracked:  analysis/molecular_cartography_python/animation.gif
    Untracked:  analysis/molecular_cartography_python/kuppe_heart19.h5ad
    Untracked:  analysis/molecular_cartography_python/mol_cart.plot_points_on_mask.ipynb
    Untracked:  analysis/molecular_cartography_python/mol_cart.spot_animation.ipynb
    Untracked:  analysis/molecular_cartography_python/molkart.local_analysis_lianaplus.ipynb
    Untracked:  analysis/plots/
    Untracked:  pipeline_configs/

Unstaged changes:
    Modified:   analysis/data_processing.Rmd
    Modified:   analysis/figures.Figure1.Rmd
    Modified:   analysis/figures.Figure2.Rmd
    Modified:   analysis/figures.deep_visual_proteomics.Rmd
    Modified:   analysis/figures.supplementary_figure_X.proteomics_qc.Rmd
    Modified:   analysis/index.Rmd
    Modified:   analysis/mol_cart.molkart.process_quantifications_seurat.Rmd
    Modified:   analysis/seqIF.region_quantification.Rmd
    Modified:   analysis/spatialMI_functions.py
    Modified:   code/functions.R
    Modified:   figures/Figure_5.eps
    Modified:   figures/Figure_5.pdf
    Modified:   figures/Figure_5.png
    Modified:   figures/Figure_5.svg
    Modified:   figures/Supplementary_figure_5.segmentation_metrics.poster.eps
    Modified:   figures/Supplementary_figure_X.proteomics.eps
    Modified:   figures/Supplementary_figure_X.proteomics.png
    Modified:   plots/Figure1.dotplot.pdf
    Modified:   renv.lock
    Modified:   renv/activate.R
    Modified:   renv/settings.json

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/figures.Figure2.Rmd) and HTML (docs/figures.Figure2.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 5dee03d FloWuenne 2023-09-04 Latest code update.

library(Seurat)
Loading required package: SeuratObject
Loading required package: sp
'SeuratObject' was built with package 'Matrix' 1.6.3 but the current
version is 1.6.4; it is recomended that you reinstall 'SeuratObject' as
the ABI for 'Matrix' may have changed

Attaching package: 'SeuratObject'
The following object is masked from 'package:base':

    intersect
#options(Seurat.object.assay.version = 'v5')
library(tidyverse)
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr     1.1.4     ✔ readr     2.1.4
✔ forcats   1.0.0     ✔ stringr   1.5.1
✔ ggplot2   3.4.4     ✔ tibble    3.2.1
✔ lubridate 1.9.3     ✔ tidyr     1.3.0
✔ purrr     1.0.2     
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(scales)

Attaching package: 'scales'

The following object is masked from 'package:purrr':

    discard

The following object is masked from 'package:readr':

    col_factor
library(pals)
library(patchwork)
library(mistyR)
mistyR is able to run computationally intensive functions
  in parallel. Please consider specifying a future::plan(). For example by running
  future::plan(future::multisession) before calling mistyR functions.
library(ClusterR)
library(future)
library(ggbeeswarm)

source("./code/functions.R")

Attaching package: 'cowplot'

The following object is masked from 'package:patchwork':

    align_plots

The following object is masked from 'package:lubridate':

    stamp

here() starts at /Users/florian_wuennemann/1_Projects/MI_project/mi_spatialomics

Load data

## If the object has already been computed
seurat_object <- readRDS(file = "./output/mol_cart/molkart.harmony_seurat_object.rds")

Figure 2A: Plot whole tissue quantification changes across time

metadata <- seurat_object@meta.data

cell_type_proportions_per_sample <- metadata %>%
  group_by(anno_cell_type_lv2,timepoint,sample_ID) %>%
  tally() %>%
  ungroup() %>%
  group_by(timepoint) %>%
  mutate("ct_perc_time" = n / sum(n)) %>%
  ungroup()

## Mean and points version
cell_type_proportions_per_sample$anno_cell_type_lv2 <- gsub("_"," ",cell_type_proportions_per_sample$anno_cell_type_lv2)

## Set order of cell types in plot from most abundant to least abundant
total_cells <- cell_type_proportions_per_sample %>%
  group_by(anno_cell_type_lv2) %>%
  summarise("total_cells" = sum(n)) %>%
  arrange(desc(total_cells))

cell_type_proportions_per_sample$anno_cell_type_lv2 <- factor(cell_type_proportions_per_sample$anno_cell_type_lv2,
       levels = total_cells$anno_cell_type_lv2)

## Set color palette for cell-types in molecular cartography data
arr <- list(x = -10, y = -15, x_len = 5, y_len = 5)
cell_types <- unique(unique(cell_type_proportions_per_sample$anno_cell_type_lv2))
colors <- cols25(n=length(cell_types))
named_colors <- colors
names(named_colors) <- cell_types

ct_time_barplot_v2 <- ggplot(cell_type_proportions_per_sample,aes(x = timepoint,y = ct_perc_time, fill = anno_cell_type_lv2)) +
    stat_summary(
      fun.y = mean,
      geom = "bar",
      width = 1,
      color = "black") +
  geom_beeswarm(size = 2.5, pch = 21, color = "black", fill= "white") +
  facet_grid(. ~ anno_cell_type_lv2) +
  theme_bw() +
  theme(axis.title = element_text(face="bold")) +
  theme(axis.text.x = element_text(size = 14,angle = 45, vjust = 0.5, hjust=1),
        strip.text.x = element_text(size = 14, colour = "black", angle = 90, face = "bold"),
        strip.background = element_blank(),
        legend.position = "none") + 
  labs(x = "",
       y = "% total cells") +
  scale_fill_manual(values = named_colors)
Warning: The `fun.y` argument of `stat_summary()` is deprecated as of ggplot2 3.3.0.
ℹ Please use the `fun` argument instead.
This warning is displayed once every 8 hours.
Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
generated.
ct_time_barplot_v2

save_plot(ct_time_barplot_v2,filename = here("./plots/mol_cart.Figure_2.ct_percentage.pdf"),
          base_height = 6,
          base_asp = 2)

Figure 2C: Nppa distribution across tissue

expression_plot_list <- list()

samples <- c("sample_control_r1_s1","sample_4h_r1_s1",
             "sample_2d_r2_s1","sample_4d_r1_s1")

cluster_of_int <- "Cardiomyocytes_Nppa+"
for(this_sample in samples){
    pt_size <- 0.6
    sample_object <- subset(seurat_object,sample_ID == this_sample)
    meta <- sample_object@meta.data
    time <- unique(sample_object$timepoint)
    
    highlight_plot <- ggplot(meta,aes(Y_centroid,X_centroid)) +
      geom_point(data = subset(meta,!seurat_clusters %in% cluster_of_int),color = "darkgrey", size = pt_size) +
      # geom_point(data = subset(meta,seurat_clusters %in% cluster_of_int),aes(color = seurat_clusters), size = pt_size) +
      geom_point(data = subset(meta,anno_cell_type_lv2 == cluster_of_int),color = "#6A33C2", size = 1) +
      #theme_classic() +
      labs(x = "Spatial 1",
           y = "Spatial 2",
           title = time) +
      theme(axis.ticks = element_blank(),
            axis.text = element_blank(),
            legend.position = "right")
    
    expression_plot_list[[this_sample]] <- highlight_plot
}
  
time_plot <- wrap_plots(expression_plot_list, nrow = 1, ncol = 4)
  print(time_plot)

time_plot

filename <- paste("./figures/mol_cart.Nppa_distribution.png",sep = "")
save_plot(time_plot,
        filename = filename,
        base_height = 3,
        base_asp = 2.5)
expression_plot_list <- list()

samples <- c("sample_control_r1_s1","sample_4h_r1_s1",
             "sample_2d_r2_s1","sample_4d_r1_s1")

cluster_of_int <- "Myeloid_cells"
for(this_sample in samples){
    pt_size <- 0.6
    sample_object <- subset(seurat_object,sample_ID == this_sample)
    meta <- sample_object@meta.data
    time <- unique(sample_object$timepoint)
    
    highlight_plot <- ggplot(meta,aes(Y_centroid,X_centroid)) +
      geom_point(data = subset(meta,!seurat_clusters %in% cluster_of_int),color = "darkgrey", size = pt_size) +
      # geom_point(data = subset(meta,seurat_clusters %in% cluster_of_int),aes(color = seurat_clusters), size = pt_size) +
      geom_point(data = subset(meta,anno_cell_type_lv2 == cluster_of_int),color = "#565656", size = 1) +
      #theme_classic() +
      labs(x = "Spatial 1",
           y = "Spatial 2",
           title = time) +
      theme(axis.ticks = element_blank(),
            axis.text = element_blank(),
            legend.position = "right")
    
    expression_plot_list[[this_sample]] <- highlight_plot
}
  
time_plot <- wrap_plots(expression_plot_list, nrow = 1, ncol = 4)
  print(time_plot)

time_plot

filename <- paste("./figures/mol_cart.Myeloid_distribution.png",sep = "")
save_plot(time_plot,
        filename = filename,
        base_height = 3,
        base_asp = 2.5)

sessionInfo()
R version 4.3.1 (2023-06-16)
Platform: aarch64-apple-darwin20 (64-bit)
Running under: macOS Sonoma 14.1.2

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRlapack.dylib;  LAPACK version 3.11.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: Europe/Berlin
tzcode source: internal

attached base packages:
[1] stats     graphics  grDevices datasets  utils     methods   base     

other attached packages:
 [1] RColorBrewer_1.1-3 here_1.0.1         ggsci_3.0.0        cowplot_1.1.1     
 [5] ggbeeswarm_0.7.2   future_1.33.0      ClusterR_1.3.2     mistyR_1.10.0     
 [9] patchwork_1.1.3    pals_1.8           scales_1.3.0       lubridate_1.9.3   
[13] forcats_1.0.0      stringr_1.5.1      dplyr_1.1.4        purrr_1.0.2       
[17] readr_2.1.4        tidyr_1.3.0        tibble_3.2.1       ggplot2_3.4.4     
[21] tidyverse_2.0.0    Seurat_5.0.1       SeuratObject_5.0.1 sp_2.1-2          
[25] workflowr_1.7.1   

loaded via a namespace (and not attached):
  [1] rstudioapi_0.15.0      jsonlite_1.8.8         magrittr_2.0.3        
  [4] spatstat.utils_3.0-4   farver_2.1.1           rmarkdown_2.25        
  [7] ragg_1.2.6             fs_1.6.3               vctrs_0.6.5           
 [10] ROCR_1.0-11            spatstat.explore_3.2-5 htmltools_0.5.7       
 [13] sass_0.4.7             sctransform_0.4.1      parallelly_1.36.0     
 [16] KernSmooth_2.23-22     bslib_0.6.1            htmlwidgets_1.6.3     
 [19] ica_1.0-3              plyr_1.8.9             plotly_4.10.3         
 [22] zoo_1.8-12             cachem_1.0.8           whisker_0.4.1         
 [25] igraph_1.5.1           mime_0.12              lifecycle_1.0.4       
 [28] pkgconfig_2.0.3        Matrix_1.6-4           R6_2.5.1              
 [31] fastmap_1.1.1          fitdistrplus_1.1-11    shiny_1.8.0           
 [34] digest_0.6.33          colorspace_2.1-0       ps_1.7.5              
 [37] rprojroot_2.0.4        tensor_1.5             RSpectra_0.16-1       
 [40] irlba_2.3.5.1          textshaping_0.3.7      labeling_0.4.3        
 [43] progressr_0.14.0       timechange_0.2.0       fansi_1.0.5           
 [46] spatstat.sparse_3.0-3  httr_1.4.7             polyclip_1.10-6       
 [49] abind_1.4-5            compiler_4.3.1         withr_2.5.2           
 [52] fastDummies_1.7.3      highr_0.10             maps_3.4.1.1          
 [55] MASS_7.3-60            tools_4.3.1            vipor_0.4.5           
 [58] lmtest_0.9-40          beeswarm_0.4.0         httpuv_1.6.12         
 [61] future.apply_1.11.0    goftest_1.2-3          glue_1.6.2            
 [64] callr_3.7.3            nlme_3.1-164           promises_1.2.1        
 [67] grid_4.3.1             Rtsne_0.16             getPass_0.2-2         
 [70] cluster_2.1.6          reshape2_1.4.4         generics_0.1.3        
 [73] gtable_0.3.4           spatstat.data_3.0-3    tzdb_0.4.0            
 [76] hms_1.1.3              data.table_1.14.8      utf8_1.2.4            
 [79] spatstat.geom_3.2-7    RcppAnnoy_0.0.21       ggrepel_0.9.4         
 [82] RANN_2.6.1             pillar_1.9.0           spam_2.10-0           
 [85] RcppHNSW_0.5.0         later_1.3.1            splines_4.3.1         
 [88] lattice_0.22-5         gmp_0.7-3              renv_1.0.3            
 [91] survival_3.5-7         deldir_2.0-2           tidyselect_1.2.0      
 [94] miniUI_0.1.1.1         pbapply_1.7-2          knitr_1.45            
 [97] git2r_0.33.0           gridExtra_2.3          scattermore_1.2       
[100] xfun_0.41              matrixStats_1.1.0      stringi_1.8.2         
[103] lazyeval_0.2.2         yaml_2.3.7             evaluate_0.23         
[106] codetools_0.2-19       BiocManager_1.30.22    cli_3.6.1             
[109] uwot_0.1.16            systemfonts_1.0.5      xtable_1.8-4          
[112] reticulate_1.34.0      munsell_0.5.0          processx_3.8.2        
[115] jquerylib_0.1.4        dichromat_2.0-0.1      Rcpp_1.0.11           
[118] globals_0.16.2         spatstat.random_3.2-2  mapproj_1.2.11        
[121] png_0.1-8              parallel_4.3.1         ellipsis_0.3.2        
[124] dotCall64_1.1-1        listenv_0.9.0          viridisLite_0.4.2     
[127] ggridges_0.5.4         crayon_1.5.2           leiden_0.4.3.1        
[130] rlang_1.1.2