Last updated: 2023-08-24

Checks: 6 1

Knit directory: mi_spatialomics/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20230612) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version e8204f0. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.DS_Store
    Ignored:    analysis/deprecated/.DS_Store
    Ignored:    data/.DS_Store
    Ignored:    data/140623.calcagno_et_al.seurat_object.rds
    Ignored:    data/molkart_tissue_regions_rois/.DS_Store
    Ignored:    figures/.DS_Store
    Ignored:    omnipathr-log/
    Ignored:    output/.DS_Store
    Ignored:    output/figure3.pixie_cell_cluster_heatmap.png
    Ignored:    output/figure3.pixie_pixel_cluster_heatmap.png
    Ignored:    output/figure3.pixie_pixel_cluster_heatmap.tiff
    Ignored:    output/harmony.molkart.h5Seurat
    Ignored:    output/lunaphore_images/
    Ignored:    output/mol_cart/
    Ignored:    output/molkart_cell_types/
    Ignored:    output/proteomics/
    Ignored:    output/seqIF/
    Ignored:    plots/.DS_Store
    Ignored:    plots/Figure1.umap_plot.pdf
    Ignored:    references/.DS_Store
    Ignored:    renv/.DS_Store
    Ignored:    renv/library/
    Ignored:    renv/staging/

Untracked files:
    Untracked:  analysis/__pycache__/
    Untracked:  analysis/deprecated/molkart.quantify_cells_in_regions.ipynb
    Untracked:  analysis/deprecated/napari_points.ipynb
    Untracked:  analysis/deprecated/roi.csv
    Untracked:  analysis/deprecated/roi2.csv
    Untracked:  analysis/deprecated/test_construct_spatialdata.ipynb
    Untracked:  analysis/figures.deep_visual_proteomics.Rmd
    Untracked:  analysis/mol_cart.QC_spots.Rmd
    Untracked:  analysis/mol_cart.molkart.Figure1.Rmd
    Untracked:  analysis/mol_cart.molkart.process_quantifications_seurat.Rmd
    Untracked:  analysis/molecular_cartography_python/
    Untracked:  analysis/seqIF.heatmaps_pixie.figure3.Rmd
    Untracked:  analysis/seqIF_python/
    Untracked:  analysis/spatialMI_functions.py
    Untracked:  data/Calcagno2022_int_logNorm_annot.h5Seurat
    Untracked:  data/pixie.cell_table_size_normalized_cell_labels.csv
    Untracked:  plots/Figure3.cell_types_overtimes.pdf
    Untracked:  plots/Figure3.pixel_clusters_overtimes.pdf
    Untracked:  references/mol_cart.heart_regions/

Unstaged changes:
    Modified:   .gitignore
    Modified:   analysis/data_analysis.Rmd
    Modified:   analysis/data_processing.Rmd
    Modified:   analysis/figures.Rmd
    Deleted:    analysis/figures.figure_5.Rmd
    Modified:   analysis/figures.supplementary_figure_X.proteomics_qc.Rmd
    Deleted:    analysis/molkart.Figure1.Rmd
    Deleted:    analysis/molkart.QC_spots.Rmd
    Deleted:    analysis/molkart.process_quantifications_seurat.Rmd
    Modified:   analysis/proteomics.bulk_de_analysis.Rmd
    Modified:   analysis/proteomics.filter_proteomic_data.Rmd
    Modified:   analysis/proteomics.pathway_enrichment_analysis.Rmd
    Modified:   analysis/proteomics.scRNAseq_comparison.Rmd
    Deleted:    analysis/python/lunaphore.figure_3.create_pixie_images.ipynb
    Deleted:    analysis/python/lunaphore.figure_3.pixie_heatmaps.ipynb
    Deleted:    analysis/python/molkart.count_spots_on_tissue.ipynb
    Deleted:    analysis/python/molkart.plot_MC_spots.ipynb
    Deleted:    analysis/python/molkart.plot_spots_figure1.ipynb
    Deleted:    analysis/python/molkart.quantify_cells_in_regions.ipynb
    Deleted:    analysis/python/napari_points.ipynb
    Deleted:    analysis/python/roi.csv
    Deleted:    analysis/python/roi2.csv
    Deleted:    analysis/python/spatialMI_functions.py
    Deleted:    analysis/python/test_construct_spatialdata.ipynb
    Deleted:    data/molkart.spots_per_tissue.tsv
    Modified:   figures/Figure_5.eps
    Modified:   figures/Figure_5.pdf
    Modified:   figures/Figure_5.png
    Modified:   figures/Figure_5.svg
    Modified:   output/molcart.misty_celltype_table.tsv
    Deleted:    output/molkart_segmentation_images/sample_control_r1_s1.DAPI_WGA.crop.png
    Deleted:    output/molkart_segmentation_images/sample_control_r1_s1.DAPI_WGA.crop.scale.png
    Deleted:    output/molkart_segmentation_images/sample_control_r1_s1.DAPI_WGA.roi.tif
    Deleted:    output/molkart_segmentation_images/sample_control_r1_s1.DAPI_WGA.tif
    Deleted:    output/molkart_segmentation_images/sample_control_r1_s1.DAPI_WGA_roi.crop.png
    Deleted:    output/molkart_segmentation_images/sample_control_r1_s1.DAPI_WGA_roi.crop.scale.png
    Deleted:    output/molkart_segmentation_images/sample_control_r1_s1.cellpose_full_image.outline.tif
    Deleted:    output/molkart_segmentation_images/sample_control_r1_s1.cellpose_full_image.roi.outline.tif
    Deleted:    output/molkart_segmentation_images/sample_control_r1_s1.cellpose_full_image.roi.tif
    Deleted:    output/molkart_segmentation_images/sample_control_r1_s1.cellpose_full_image.tif
    Deleted:    output/molkart_segmentation_images/sample_control_r1_s1.cellpose_mask.crop.png
    Deleted:    output/molkart_segmentation_images/sample_control_r1_s1.cellpose_mask.crop.scale.png
    Deleted:    output/molkart_segmentation_images/sample_control_r1_s1.cellpose_mask_roi.crop.png
    Deleted:    output/molkart_segmentation_images/sample_control_r1_s1.cellpose_mask_roi.crop.scale.png
    Deleted:    output/proteomics.filt_imputed_proteins.tsv
    Deleted:    output/proteomics.filtered_proteins.tsv
    Deleted:    output/proteomics.pca_res.rds
    Deleted:    output/proteomics.protein_missing_stats.tsv
    Deleted:    output/proteomics.vsn_norm_proteins.tsv
    Modified:   plots/Figure1.dotplot.pdf

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


library(pheatmap)
library(data.table)
library(viridis)
Loading required package: viridisLite
library(RColorBrewer)
library(tidyverse)
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr     1.1.2     ✔ readr     2.1.4
✔ forcats   1.0.0     ✔ stringr   1.5.0
✔ ggplot2   3.4.2     ✔ tibble    3.2.1
✔ lubridate 1.9.2     ✔ tidyr     1.3.0
✔ purrr     1.0.1     
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::between()     masks data.table::between()
✖ dplyr::filter()      masks stats::filter()
✖ dplyr::first()       masks data.table::first()
✖ lubridate::hour()    masks data.table::hour()
✖ lubridate::isoweek() masks data.table::isoweek()
✖ dplyr::lag()         masks stats::lag()
✖ dplyr::last()        masks data.table::last()
✖ lubridate::mday()    masks data.table::mday()
✖ lubridate::minute()  masks data.table::minute()
✖ lubridate::month()   masks data.table::month()
✖ lubridate::quarter() masks data.table::quarter()
✖ lubridate::second()  masks data.table::second()
✖ purrr::transpose()   masks data.table::transpose()
✖ lubridate::wday()    masks data.table::wday()
✖ lubridate::week()    masks data.table::week()
✖ lubridate::yday()    masks data.table::yday()
✖ lubridate::year()    masks data.table::year()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(pals)

Attaching package: 'pals'

The following objects are masked from 'package:viridis':

    cividis, inferno, magma, plasma, turbo, viridis

The following objects are masked from 'package:viridisLite':

    cividis, inferno, magma, plasma, turbo, viridis
library(vroom)

Attaching package: 'vroom'

The following objects are masked from 'package:readr':

    as.col_spec, col_character, col_date, col_datetime, col_double,
    col_factor, col_guess, col_integer, col_logical, col_number,
    col_skip, col_time, cols, cols_condense, cols_only, date_names,
    date_names_lang, date_names_langs, default_locale, fwf_cols,
    fwf_empty, fwf_positions, fwf_widths, locale, output_column,
    problems, spec
pixel_map_color <- c("#0173B2", "#DE8F05", "#029E73", "#D55E00", "#CC78BC",
                "#CA9161", "#FBAFE4", "#949494", "#ECE133", "#56B4E9")
cell_cluster_color <- glasbey()

source("./code/functions.R")

Attaching package: 'cowplot'

The following object is masked from 'package:lubridate':

    stamp

here() starts at /Users/florian_wuennemann/1_Projects/MI_project/mi_spatialomics

Pixel cluster

Pixel cluster maps

avg_pixel_cluster <- fread("/Users/florian_wuennemann/1_Projects/MI_project/Lunaphore/pixie/masked_subset/subset_0.05_wseg/pixel_channel_avg_meta_cluster.csv")
avg_pixel_cluster <- avg_pixel_cluster %>%
  subset(pixel_meta_cluster_rename != "background")
mat_rownames <- avg_pixel_cluster$pixel_meta_cluster_rename
mat_rownames <- gsub("_","+ ",mat_rownames)
mat_rownames <- paste(mat_rownames,"pixels", sep = " ")
mat_dat <- avg_pixel_cluster %>%
  dplyr::select(-c(pixel_meta_cluster,count,pixel_meta_cluster_rename))
cap = 3 #hierarchical clustering cap
hclust_coln = "pixel_meta_cluster_rename"
rwb_cols = colorRampPalette(c("royalblue4","white","red4"))(99)

mat_dat = scale(mat_dat)
mat_dat = pmin(mat_dat, cap)
rownames(mat_dat) <- mat_rownames

# Determine breaks
range = max(abs(mat_dat))
breaks = seq(-range, range, length.out=100)

mat_col = data.frame(pixel_cluster = as.factor(mat_rownames))
rownames(mat_col) <- mat_rownames
mat_colors = pixel_map_color[1:length(mat_rownames)]
names(mat_colors) = mat_rownames
mat_colors = list(pixel_cluster = mat_colors)

# Make heatmap
pheatmap(mat_dat,
         color = rwb_cols,
         border_color = "black",
         breaks = breaks,
         cluster_rows = TRUE,
         cluster_cols = TRUE,
         treeheight_col = 25,
         treeheight_row = 25,
         #treeheight_col = 0,
         show_rownames = TRUE,
         annotation_row = mat_col,
         annotation_colors = mat_colors,
         annotation_names_row = FALSE,
         annotation_legend = FALSE,
         legend = TRUE,
         #legend_breaks = c(-3,-2,-1,0,1,2,3),
         #legend_labels = c("-3","-2","-1","0","1","2","3"),
         main = "",
         filename = "./output/figure3.pixie_pixel_cluster_heatmap.png",
         fontsize = 20,
         width = 8,
         height = 6)
dev.off()
null device 
          1 

Pixel cluster changes over time

## read in pixel cluster counts
pixel_counts = fread("/Users/florian_wuennemann/1_Projects/MI_project/Lunaphore/pixie/masked_subset/subset_0.05_wseg/pixel_counts.all_samples.csv")
pixel_cluster_counts_stats <- pixel_counts %>%
  subset(Pixel_cluster != "background") %>%
  separate("Sample_ID", into = c("time","sample")) %>%
  group_by(time,Pixel_cluster) %>%
  summarise("n_pixel" = sum(Count)) %>%
  mutate("percent" = n_pixel / sum(n_pixel)) %>%
  ungroup()
`summarise()` has grouped output by 'time'. You can override using the
`.groups` argument.
pixel_cluster_counts_stats$time <-factor(pixel_cluster_counts_stats$time,
                              levels = c("Control","4h","24h","48h"))

pixel_cluster_counts_stats$time_cont <- as.numeric(pixel_cluster_counts_stats$time)
#ggplot(cells_over_time, aes(x=time, y=percent, fill=cell_meta_cluster)) +
  #geom_bar(stat = "identity", position = "stack",color = "black")

pixel_number_distribution <- ggplot(pixel_cluster_counts_stats, 
                                    aes(x=time_cont, y=percent)) +
  geom_area(aes(fill = Pixel_cluster), color = "black") +
  theme(legend.position = "none",
        axis.line = element_blank()) +
  scale_fill_manual(values = pixel_map_color) +
  scale_x_discrete(expand = c(0,0.1),
                   name ="Time", 
                   limits=c("Control","4h","24h","48h")) +
  labs(y = "% cells")

pixel_number_distribution

save_plot(pixel_number_distribution,
          file = "./plots/Figure3.pixel_clusters_overtimes.pdf",
          base_height = 3.5,
          base_asp = 1)

Cell cluster map

Cell cluster tissue maps

avg_cell_cluster <- fread("/Users/florian_wuennemann/1_Projects/MI_project/Lunaphore/pixie/masked_subset/cell_masks_0.05/cell_meta_cluster_channel_avg.csv")
avg_cell_cluster <- avg_cell_cluster %>%
  subset(cell_meta_cluster_rename != "background")
mat_rownames <- avg_cell_cluster$cell_meta_cluster_rename
mat_rownames <- gsub("_","+ ",mat_rownames)
mat_dat <- avg_cell_cluster %>%
  dplyr::select(-c(cell_meta_cluster,cell_meta_cluster_rename))
cap = 3 #hierarchical clustering cap
hclust_coln = "pixel_meta_cluster_rename"
rwb_cols = colorRampPalette(c("royalblue4","white","red4"))(99)

mat_dat = scale(mat_dat)
mat_dat = pmin(mat_dat, cap)
rownames(mat_dat) <- mat_rownames

# Determine breaks
range = max(abs(mat_dat))
breaks = seq(-range, range, length.out=100)

mat_col = data.frame(pixel_cluster = as.factor(mat_rownames))
rownames(mat_col) <- mat_rownames
mat_colors = cell_cluster_color[1:length(mat_rownames)]
names(mat_colors) = mat_rownames
mat_colors = list(pixel_cluster = mat_colors)

# Make heatmap
pheatmap(mat_dat,
         color = rwb_cols,
         border_color = "black",
         breaks = breaks,
         cluster_rows = TRUE,
         cluster_cols = TRUE,
         treeheight_col = 25,
         treeheight_row = 25,
         #treeheight_col = 0,
         show_rownames = TRUE,
         annotation_row = mat_col,
         annotation_colors = mat_colors,
         annotation_names_row = FALSE,
         annotation_legend = FALSE,
         legend = TRUE,
         #legend_breaks = c(-3,-2,-1,0,1,2,3),
         #legend_labels = c("-3","-2","-1","0","1","2","3"),
         main = "",
         filename = "./output/figure3.pixie_cell_cluster_heatmap.png",
         fontsize = 20,
         width = 8,
         height = 6)
dev.off()
null device 
          1 

Cell cluster changes over time

cells_over_time <- fread("./data/pixie.cell_table_size_normalized_cell_labels.csv")
cells_over_time <-  cells_over_time %>%
  mutate("cell_type_labels" = if_else(grepl("Myeloid",cell_meta_cluster),"Myeloid cells",cell_meta_cluster))

cells_over_time <- cells_over_time %>%
  subset(cell_type_labels != "background") %>%
  separate("fov", into = c("time","sample")) %>%
  group_by(time,cell_type_labels) %>%
  tally() %>%
  ungroup()
cells_over_time <- cells_over_time %>%
  group_by(time) %>%
  mutate("percent" = n / sum(n)) %>%
  ungroup()
cells_over_time$time <-factor(cells_over_time$time,
                              levels = c("Control","4h","24h","48h"))

cells_over_time$time_cont <- as.numeric(cells_over_time$time)
#ggplot(cells_over_time, aes(x=time, y=percent, fill=cell_meta_cluster)) +
  #geom_bar(stat = "identity", position = "stack",color = "black")
mat_colors = cell_cluster_color[1:length(mat_rownames)]
cell_number_distribution <- ggplot(cells_over_time, aes(x=time_cont, y=percent)) +
  geom_area(aes(fill = cell_type_labels), color = "black") +
  theme(legend.position = "top",
        axis.line = element_blank()) +
  scale_fill_manual(values = mat_colors) +
  scale_x_discrete(expand = c(0,0.1),
                   name ="Time", 
                    limits=c("Control","4h","24h","48h")) +
  labs(y = "% cells")
cell_number_distribution

save_plot(cell_number_distribution,
          file = "./plots/Figure3.cell_types_overtimes.pdf",
          base_height = 3.5,
          base_asp = 1)

sessionInfo()
R version 4.2.3 (2023-03-15)
Platform: aarch64-apple-darwin20 (64-bit)
Running under: macOS Ventura 13.5

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices datasets  utils     methods   base     

other attached packages:
 [1] here_1.0.1         ggsci_3.0.0        cowplot_1.1.1      vroom_1.6.3       
 [5] pals_1.7           lubridate_1.9.2    forcats_1.0.0      stringr_1.5.0     
 [9] dplyr_1.1.2        purrr_1.0.1        readr_2.1.4        tidyr_1.3.0       
[13] tibble_3.2.1       ggplot2_3.4.2      tidyverse_2.0.0    RColorBrewer_1.1-3
[17] viridis_0.6.4      viridisLite_0.4.2  data.table_1.14.8  pheatmap_1.0.12   
[21] workflowr_1.7.0   

loaded via a namespace (and not attached):
 [1] httr_1.4.6            sass_0.4.7            maps_3.4.1           
 [4] bit64_4.0.5           jsonlite_1.8.7        bslib_0.5.0          
 [7] getPass_0.2-2         BiocManager_1.30.21.1 highr_0.10           
[10] renv_1.0.0            yaml_2.3.7            pillar_1.9.0         
[13] glue_1.6.2            digest_0.6.33         promises_1.2.0.1     
[16] colorspace_2.1-0      htmltools_0.5.5       httpuv_1.6.11        
[19] pkgconfig_2.0.3       scales_1.2.1          processx_3.8.2       
[22] whisker_0.4.1         later_1.3.1           tzdb_0.4.0           
[25] timechange_0.2.0      git2r_0.32.0          generics_0.1.3       
[28] farver_2.1.1          cachem_1.0.8          withr_2.5.0          
[31] cli_3.6.1             magrittr_2.0.3        crayon_1.5.2         
[34] evaluate_0.21         ps_1.7.5              fs_1.6.3             
[37] fansi_1.0.4           textshaping_0.3.6     tools_4.2.3          
[40] hms_1.1.3             lifecycle_1.0.3       munsell_0.5.0        
[43] callr_3.7.3           compiler_4.2.3        jquerylib_0.1.4      
[46] systemfonts_1.0.4     rlang_1.1.1           grid_4.2.3           
[49] dichromat_2.0-0.1     rstudioapi_0.15.0     labeling_0.4.2       
[52] rmarkdown_2.23        gtable_0.3.3          R6_2.5.1             
[55] gridExtra_2.3         knitr_1.43            fastmap_1.1.1        
[58] bit_4.0.5             utf8_1.2.3            rprojroot_2.0.3      
[61] ragg_1.2.5            stringi_1.7.12        Rcpp_1.0.11          
[64] vctrs_0.6.3           mapproj_1.2.11        tidyselect_1.2.0     
[67] xfun_0.39