Last updated: 2023-07-23
Checks: 7 0
Knit directory: mi_spatialomics/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20230612)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version d6085a2. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/.DS_Store
Ignored: data/.DS_Store
Ignored: data/.Rapp.history
Ignored: data/140623.calcagno_et_al.seurat_object.rds
Ignored: omnipathr-log/
Ignored: plots/
Ignored: references/.DS_Store
Ignored: renv/.DS_Store
Ignored: renv/library/
Ignored: renv/staging/
Untracked files:
Untracked: data/cells_per_region.tsv
Untracked: figures/Supplementary_figure_5.segmentation_metrics.poster.eps
Unstaged changes:
Modified: analysis/figures.supplementary_Figure_3.Rmd
Modified: code/functions.R
Modified: figures/Figure_5.eps
Modified: figures/Figure_5.pdf
Modified: figures/Figure_5.png
Modified: figures/Figure_5.svg
Modified: figures/Supplementary_figure_5.segmentation_metrics.eps
Modified: figures/Supplementary_figure_5.segmentation_metrics.png
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown
(analysis/proteomics.scRNAseq_comparison.Rmd
) and HTML
(docs/proteomics.scRNAseq_comparison.html
) files. If you’ve
configured a remote Git repository (see ?wflow_git_remote
),
click on the hyperlinks in the table below to view the files as they
were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | ed31d81 | FloWuenne | 2023-07-02 | Finalized proteomics analysis. |
html | ed31d81 | FloWuenne | 2023-07-02 | Finalized proteomics analysis. |
html | c1395e6 | FloWuenne | 2023-06-20 | Build site. |
Rmd | 236130c | FloWuenne | 2023-06-20 | Updating proteomic analysis. |
html | 236130c | FloWuenne | 2023-06-20 | Updating proteomic analysis. |
We reprocessed the data from Calcagno et al, using the original cell-type annotations from the paper and will load this dataset as a seurat object.
## Load reprocessed Calcagno et al seurat object
calcagno_et_al <- readRDS("./data/140623.calcagno_et_al.seurat_object.rds")
## Get only control cells for marker calculation
calcagno_et_al_d0 <- subset(calcagno_et_al,time == "d0")
calcagno_et_al_d1 <- subset(calcagno_et_al,time == "d1")
Let’s check the UMAP embedding from our reprocessed object.
## UMAP plot
DimPlot(calcagno_et_al,label = TRUE) + theme(legend.position = "none")
Version | Author | Date |
---|---|---|
ed31d81 | FloWuenne | 2023-07-02 |
Next, let’s quickly verify, that Endocardial cells are expressing the proper markers before we compare them to our proteomic data.
plot_density(calcagno_et_al_d0, features = "Npr3")
Version | Author | Date |
---|---|---|
ed31d81 | FloWuenne | 2023-07-02 |
VlnPlot(calcagno_et_al_d0, features = "Npr3")
Version | Author | Date |
---|---|---|
ed31d81 | FloWuenne | 2023-07-02 |
Expression of the endocardial specific marker Npr3 in this dataset fits with the original authors annotation, suggesting that we can use these endocardial single-cell signature to identify endocardial specific genes in our proteomics data.
We will use the snRNAseq data to identify proteins likely differentially expressed in endocardial cells. For this, we will first identify genes specifically expressed in endocardial cells.
endocard_d1 <- subset(calcagno_et_al, cell_type == "Endocardial_cells" & time == "d1")
endocard_d1 <- SCTransform(endocard_d1)
Calculating cell attributes from input UMI matrix: log_umi
Variance stabilizing transformation of count matrix of size 9652 by 389
Model formula is y ~ log_umi
Get Negative Binomial regression parameters per gene
Using 2000 genes, 389 cells
|
| | 0%
|
|================== | 25%
|
|=================================== | 50%
|
|==================================================== | 75%
|
|======================================================================| 100%
Found 88 outliers - those will be ignored in fitting/regularization step
Second step: Get residuals using fitted parameters for 9652 genes
|
| | 0%
|
|==== | 5%
|
|======= | 10%
|
|========== | 15%
|
|============== | 20%
|
|================== | 25%
|
|===================== | 30%
|
|======================== | 35%
|
|============================ | 40%
|
|================================ | 45%
|
|=================================== | 50%
|
|====================================== | 55%
|
|========================================== | 60%
|
|============================================== | 65%
|
|================================================= | 70%
|
|==================================================== | 75%
|
|======================================================== | 80%
|
|============================================================ | 85%
|
|=============================================================== | 90%
|
|================================================================== | 95%
|
|======================================================================| 100%
Computing corrected count matrix for 9652 genes
|
| | 0%
|
|==== | 5%
|
|======= | 10%
|
|========== | 15%
|
|============== | 20%
|
|================== | 25%
|
|===================== | 30%
|
|======================== | 35%
|
|============================ | 40%
|
|================================ | 45%
|
|=================================== | 50%
|
|====================================== | 55%
|
|========================================== | 60%
|
|============================================== | 65%
|
|================================================= | 70%
|
|==================================================== | 75%
|
|======================================================== | 80%
|
|============================================================ | 85%
|
|=============================================================== | 90%
|
|================================================================== | 95%
|
|======================================================================| 100%
Calculating gene attributes
Wall clock passed: Time difference of 3.171333 secs
Determine variable features
Place corrected count matrix in counts slot
Centering data matrix
Set default assay to SCT
endocard_d1 <- RunPCA(endocard_d1, verbose = FALSE)
endocard_d1 <- RunUMAP(endocard_d1, dims = 1:10, verbose = FALSE)
Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric
To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
This message will be shown once per session
endocard_d1 <- FindNeighbors(endocard_d1, dims = 1:10, verbose = FALSE)
endocard_d1 <- FindClusters(endocard_d1, verbose = FALSE, resolution = 0.2)
DimPlot(endocard_d1, label = TRUE) + NoLegend()
Version | Author | Date |
---|---|---|
ed31d81 | FloWuenne | 2023-07-02 |
DimPlot(endocard_d1, label = FALSE, group.by = "rep")
Version | Author | Date |
---|---|---|
ed31d81 | FloWuenne | 2023-07-02 |
endo_diff_marker <- FindAllMarkers(endocard_d1, only.pos = TRUE)
Calculating cluster 0
Calculating cluster 1
Calculating cluster 2
Calculating cluster 3
endo_diff_marker_top <- endo_diff_marker %>%
subset(p_val_adj < 0.05)
VlnPlot(endocard_d1, features = c("Selp","Taco1","Serpine1","Prkg1","Nrg1"))
Version | Author | Date |
---|---|---|
ed31d81 | FloWuenne | 2023-07-02 |
Let’s load the proteomic data now:
limma_res <- fread("./output/limma.full_statistics.tsv")
## Extract statistics for different contrasts
miiz_vs_control_signature <- subset(limma_res,analysis == "MI_IZ_vs_control")
miiz_vs_remote_signature <- subset(limma_res,analysis == "MI_IZ_vs_MI_remote")
## Load the normalized protein matrix as well
protein_mat <- fread(file = "./output/proteomics.vsn_norm_proteins.tsv")
protein_mat_avg <- protein_mat %>%
mutate(avg_control=rowMeans(.[ , c("control_r1","control_r2","control_r3")], na.rm=TRUE)) %>%
mutate(avg_MI_IZ=rowMeans(.[ , c("MI_IZ_r1","MI_IZ_r2","MI_IZ_r3","MI_IZ_r4")], na.rm=TRUE)) %>%
mutate(avg_MI_remote=rowMeans(.[ , c("MI_remote_r1","MI_remote_r2","MI_remote_r3","MI_remote_r4")], na.rm=TRUE)) %>%
dplyr::select(gene,avg_control,avg_MI_IZ,avg_MI_remote)
## Calculate pseudobulk expression profiles for endocardial cells
endocard_seurat <- subset(calcagno_et_al, cell_type == "Endocardial_cells")
sn_endo_bulk <- AverageExpression(endocard_seurat, group.by = c("time"))
sn_endo_bulk_df <- as.data.frame(sn_endo_bulk$RNA)
sn_endo_bulk_df$gene <- rownames(sn_endo_bulk_df)
## Merge average protein expression values with average RNA expression
rna_protein_avg <- left_join(protein_mat_avg,sn_endo_bulk_df, by = "gene") %>%
drop_na()
corrplot_rna_protein <- ggplot(rna_protein_avg,aes(avg_control,log10(d0), label = gene)) +
geom_point() +
geom_point(data = subset(rna_protein_avg, gene == "Vwf"),color = "red", size =3)
corrplot_rna_protein
Version | Author | Date |
---|---|---|
ed31d81 | FloWuenne | 2023-07-02 |
endo_marker <- FindMarkers(calcagno_et_al,ident.1 = "Endocardial_cells",
only.pos = TRUE)
endo_marker$gene <- rownames(endo_marker)
endo_marker <- endo_marker %>%
mutate("pct_diff" = pct.1 - pct.2) %>% # Only
subset(pct.2 < 0.1)
DE <- run_de(calcagno_et_al,
replicate_col = "rep",
cell_type_col = "cell_type",
label_col = "time",
de_family = "pseudobulk",
de_method = "limma",
de_type = "trend")
[1] "BZ1"
[1] "BZ2"
[1] "CMs"
[1] "Cardiac_fibroblasts"
[1] "DC"
[1] "Endocardial_cells"
[1] "Endothelial_cells"
[1] "Macrophages"
[1] "Mono"
[1] "Neutrophils"
[1] "Skap1"
[1] "Smooth_muscle"
Warning: 3886 very small variances detected, have been offset away from zero
Warning: 5067 very small variances detected, have been offset away from zero
Warning: 1972 very small variances detected, have been offset away from zero
Warning: 1514 very small variances detected, have been offset away from zero
Warning: 8291 very small variances detected, have been offset away from zero
Warning: 5202 very small variances detected, have been offset away from zero
Warning: 1870 very small variances detected, have been offset away from zero
Warning: 3134 very small variances detected, have been offset away from zero
Warning: 8135 very small variances detected, have been offset away from zero
Warning: 7590 very small variances detected, have been offset away from zero
Warning: 3208 very small variances detected, have been offset away from zero
calcagno_et_al$cell_type_time <- paste(calcagno_et_al$cell_type, calcagno_et_al$time,
sep = "_")
Idents(calcagno_et_al) <- "cell_type_time"
endocard_de <- FindMarkers(calcagno_et_al,
ident.1 = "Endocardial_cells_d1",
ident.2 = "Endocardial_cells_d0",
min.diff.pct = 0.1,
logfc.threshold = 0,
verbose = FALSE)
colnames(endocard_de) <- gsub("\\.","_",colnames(endocard_de))
endocard_de <- endocard_de %>%
mutate("gene" = rownames(endocard_de)) %>%
mutate("pct_ratio" = pct_2 /pct_1,
"pct_diff" = pct_2 -pct_1) %>%
arrange(desc(avg_log2FC))
merged_protein_rna <- left_join(endo_marker,miiz_vs_remote_signature, by = "gene")
merged_protein_rna <- merged_protein_rna %>%
mutate("label_gene" = if_else(gene == "Vwf",gene,""))
endo_proteomic_corr <- ggplot(merged_protein_rna,aes(avg_log2FC,logFC,
label = label_gene)) +
geom_point(data =subset(merged_protein_rna,gene != "Vwf"), size =3, fill = "darkgrey", pch = 21) +
geom_point(data = subset(merged_protein_rna,gene == "Vwf"),size = 4, fill = "red", pch = 21) +
geom_label_repel() +
labs(x = "Average expression in Endocardial cells (snRNA-seq)",
y = "Log-fold change MI_IZ vs control(proteomics)")
endo_proteomic_corr
Warning: Removed 156 rows containing missing values (`geom_point()`).
Warning: Removed 156 rows containing missing values (`geom_label_repel()`).
Version | Author | Date |
---|---|---|
ed31d81 | FloWuenne | 2023-07-02 |
write.table(merged_protein_rna,
file = "./output/proteomics.snRNAseq_comp.tsv",
sep = "\t",
col.names = TRUE,
row.names = FALSE,
quote = FALSE)
sessionInfo()
R version 4.2.3 (2023-03-15)
Platform: aarch64-apple-darwin20 (64-bit)
Running under: macOS Ventura 13.4.1
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices datasets utils methods base
other attached packages:
[1] ggsci_3.0.0 cowplot_1.1.1 plotly_4.10.2 ggrepel_0.9.3
[5] data.table_1.14.8 Nebulosa_1.8.0 patchwork_1.1.2 Libra_1.0.0
[9] here_1.0.1 SeuratObject_4.1.3 Seurat_4.3.0 lubridate_1.9.2
[13] forcats_1.0.0 stringr_1.5.0 dplyr_1.1.2 purrr_1.0.1
[17] readr_2.1.4 tidyr_1.3.0 tibble_3.2.1 ggplot2_3.4.2
[21] tidyverse_2.0.0 workflowr_1.7.0
loaded via a namespace (and not attached):
[1] utf8_1.2.3 ks_1.14.0
[3] spatstat.explore_3.2-1 reticulate_1.30
[5] tidyselect_1.2.0 lme4_1.1-33
[7] RSQLite_2.3.1 AnnotationDbi_1.60.2
[9] htmlwidgets_1.6.2 grid_4.2.3
[11] BiocParallel_1.32.6 Rtsne_0.16
[13] munsell_0.5.0 codetools_0.2-19
[15] ica_1.0-3 statmod_1.5.0
[17] future_1.32.0 miniUI_0.1.1.1
[19] tester_0.1.7 withr_2.5.0
[21] spatstat.random_3.1-5 colorspace_2.1-0
[23] progressr_0.13.0 Biobase_2.58.0
[25] highr_0.10 knitr_1.42
[27] rstudioapi_0.14 SingleCellExperiment_1.20.1
[29] stats4_4.2.3 ROCR_1.0-11
[31] tensor_1.5 pbmcapply_1.5.1
[33] listenv_0.9.0 labeling_0.4.2
[35] emmeans_1.8.6 MatrixGenerics_1.10.0
[37] git2r_0.32.0 GenomeInfoDbData_1.2.9
[39] polyclip_1.10-4 farver_2.1.1
[41] bit64_4.0.5 glmmTMB_1.1.7
[43] rprojroot_2.0.3 parallelly_1.36.0
[45] vctrs_0.6.2 generics_0.1.3
[47] xfun_0.39 timechange_0.2.0
[49] R6_2.5.1 GenomeInfoDb_1.34.9
[51] locfit_1.5-9.8 bitops_1.0-7
[53] spatstat.utils_3.0-3 cachem_1.0.8
[55] DelayedArray_0.24.0 promises_1.2.0.1
[57] scales_1.2.1 gtable_0.3.3
[59] globals_0.16.2 processx_3.8.0
[61] goftest_1.2-3 rlang_1.1.1
[63] splines_4.2.3 TMB_1.9.4
[65] lazyeval_0.2.2 spatstat.geom_3.2-1
[67] BiocManager_1.30.21 yaml_2.3.7
[69] reshape2_1.4.4 abind_1.4-5
[71] httpuv_1.6.11 tools_4.2.3
[73] ellipsis_0.3.2 jquerylib_0.1.4
[75] RColorBrewer_1.1-3 BiocGenerics_0.44.0
[77] ggridges_0.5.4 Rcpp_1.0.10
[79] plyr_1.8.8 zlibbioc_1.44.0
[81] RCurl_1.98-1.12 ps_1.7.4
[83] deldir_1.0-9 pbapply_1.7-0
[85] S4Vectors_0.36.2 zoo_1.8-12
[87] SummarizedExperiment_1.28.0 cluster_2.1.4
[89] fs_1.6.2 magrittr_2.0.3
[91] scattermore_1.2 lmerTest_3.1-3
[93] lmtest_0.9-40 RANN_2.6.1
[95] mvtnorm_1.2-2 whisker_0.4.1
[97] fitdistrplus_1.1-11 matrixStats_1.0.0
[99] hms_1.1.3 mime_0.12
[101] evaluate_0.21 xtable_1.8-4
[103] XML_3.99-0.14 mclust_6.0.0
[105] IRanges_2.32.0 gridExtra_2.3
[107] compiler_4.2.3 KernSmooth_2.23-20
[109] crayon_1.5.2 minqa_1.2.5
[111] htmltools_0.5.5 later_1.3.1
[113] tzdb_0.4.0 geneplotter_1.76.0
[115] DBI_1.1.3 MASS_7.3-58.2
[117] boot_1.3-28.1 Matrix_1.5-3
[119] cli_3.6.1 parallel_4.2.3
[121] igraph_1.4.3 GenomicRanges_1.50.2
[123] pkgconfig_2.0.3 getPass_0.2-2
[125] numDeriv_2016.8-1.1 sp_1.6-1
[127] spatstat.sparse_3.0-1 annotate_1.76.0
[129] bslib_0.4.2 blme_1.0-5
[131] XVector_0.38.0 estimability_1.4.1
[133] callr_3.7.3 digest_0.6.31
[135] pracma_2.4.2 sctransform_0.3.5
[137] RcppAnnoy_0.0.20 spatstat.data_3.0-1
[139] Biostrings_2.66.0 rmarkdown_2.21
[141] leiden_0.4.3 edgeR_3.40.2
[143] uwot_0.1.14 shiny_1.7.4
[145] nloptr_2.0.3 lifecycle_1.0.3
[147] nlme_3.1-162 jsonlite_1.8.4
[149] limma_3.54.2 viridisLite_0.4.2
[151] fansi_1.0.4 pillar_1.9.0
[153] lattice_0.20-45 KEGGREST_1.38.0
[155] fastmap_1.1.1 httr_1.4.6
[157] survival_3.5-3 glue_1.6.2
[159] png_0.1-8 bit_4.0.5
[161] stringi_1.7.12 sass_0.4.6
[163] blob_1.2.4 DESeq2_1.38.3
[165] memoise_2.0.1 renv_0.17.3
[167] irlba_2.3.5.1 future.apply_1.11.0