Last updated: 2025-08-21

Checks: 7 0

Knit directory: genomics_ancest_disease_dispar/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20220216) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version fa9a4da. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/
    Ignored:    analysis/figure/
    Ignored:    data/gwas_catalog/
    Ignored:    output/gwas_study_info_cohort_corrected.csv

Untracked files:
    Untracked:  data/.DS_Store
    Untracked:  gwas_time.pdf
    Untracked:  renv/

Unstaged changes:
    Modified:   .Rprofile
    Modified:   code/collapse_diseases.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/disease_inves_by_ancest.Rmd) and HTML (docs/disease_inves_by_ancest.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd fa9a4da IJbeasley 2025-08-21 Starting test of relationship between proportion european and total sample size
html f5087d2 IJBeasley 2025-07-30 Build site.
Rmd 72172e3 IJBeasley 2025-07-30 Split page into disease by ancest
html 2fd5755 Isobel Beasley 2022-02-16 Build site.
Rmd 7347b5d Isobel Beasley 2022-02-16 Add initial plotting using gwas cat stats

Load data

library(dplyr)
library(data.table)
library(ggplot2)
# 
# gwas_study_info = data.table::fread("data/gwas_catalog/gwas-catalog-v1.0.3-studies-r2022-02-02.tsv", 
#                                     sep = "\t", 
#                                     quote = "")
 
gwas_study_info <- fread(here::here("output/gwas_study_info_cohort_corrected.csv"))

gwas_ancest_info <-  fread(here::here("data/gwas_catalog/gwas-catalog-v1.0.3.1-ancestries-r2025-07-21.tsv"),
                         sep = "\t", quote = "")

gwas_study_info = gwas_study_info |>
  dplyr::rename_all(~gsub(" ", "_", .x))

gwas_ancest_info = gwas_ancest_info |>
  dplyr::rename_all(~gsub(" ", "_", .x))

gwas_ancest_info = gwas_ancest_info |> arrange(DATE)

gwas_study_info = gwas_study_info |> arrange(DATE)

# Set up custom theme for ggplots
custom_theme <-
  list(
    theme_bw() +
      theme(
        panel.border = element_blank(),
        axis.line = element_line(),
        text = element_text(size = 16),
        legend.position = "bottom",
        strip.background = element_blank(),
        axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5)
      )
  )

Get top disease traits

The traits with the most number of pubmed ids:

n_studies_trait = gwas_study_info |>
  dplyr::select(MAPPED_TRAIT, MAPPED_TRAIT_URI, PUBMED_ID) |>
  dplyr::distinct() |>
  dplyr::group_by(MAPPED_TRAIT, MAPPED_TRAIT_URI) |>
  dplyr::summarise(n_studies = dplyr::n()) |>
  dplyr::arrange(desc(n_studies))
`summarise()` has grouped output by 'MAPPED_TRAIT'. You can override using the
`.groups` argument.
head(n_studies_trait)
# A tibble: 6 × 3
# Groups:   MAPPED_TRAIT [6]
  MAPPED_TRAIT                                     MAPPED_TRAIT_URI    n_studies
  <chr>                                            <chr>                   <int>
1 high density lipoprotein cholesterol measurement http://www.ebi.ac.…       134
2 body mass index                                  http://www.ebi.ac.…       133
3 triglyceride measurement                         http://www.ebi.ac.…       129
4 low density lipoprotein cholesterol measurement  http://www.ebi.ac.…       119
5 type 2 diabetes mellitus                         http://purl.obolib…       118
6 total cholesterol measurement                    http://www.ebi.ac.…       103

What are the ancestry groups?

# code adapted from https://github.com/armartin/prs_disparities/blob/master/gwas_disparities_time.R

group_ancestry_fn = function(study_ancest){
  
   case_when(
     
  # European
  study_ancest %in% c('European') ~ 'European',
  
  # African
  study_ancest %in% c('Sub-Saharan African, African American or Afro-Caribbean',
                      'African unspecified, African American or Afro-Caribbean',
                      'African American or Afro-Caribbean, African unspecified',
                      'Sub-Saharan African, African unspecified',
                      'African-American or Afro-Caribbean',
                      'Sub-Saharan African',
                      'African American or Afro-Caribbean',
                      'African unspecified') ~ 'African',
      
  # Asian  
  study_ancest %in% c('East Asian, Asian unspecified', 
                      'South Asian, East Asian ',
                      'South Asian, South East Asian', 
                      'South Asian, South East Asian, East Asian',
                      'South East Asian, East Asian', 
                      'South East Asian, South Asian, East Asian',
                      'South Asian, South East Asian, East Asian, Asian unspecified',
                      'South East Asian, East Asian, South Asian',
                      'East Asian, South Asian, South East Asian',
                      'East Asian, South East Asian, South Asian, Asian unspecified',
                      'South Asian',
                      'South East Asian',
                      'South Asian, East Asian',
                      'South Asian, Asian unspecified',
                      'Central Asian, South Asian',
                      'East Asian, South Asian',
                      'Central Asian',
                      'East Asian',
                      'Asian unspecified') ~'Asian',
  
  # Middle eastern    
  study_ancest == 'Greater Middle Eastern (Middle Eastern, North African or Persian)' ~'Middle Eastern',

  # Oceanic
  study_ancest %in% c('Aboriginal Australian', 
                      'Oceanian') ~'Oceanic',
  
  # Hispanic/Latin American
  study_ancest %in% "Hispanic or Latin American" ~'Hispanic/Latin American',
  
  # Other 
  study_ancest %in% c('Other',
                      'Other, NR', 
                      'NR, Other',
                      'Other admixed ancestry', 
                      'Native American') ~ "Other",
  
  # Not reported
  study_ancest %in% "NR" ~ "Not reported",
  
  # Multiple    
  grepl(", ", study_ancest) ~ 'Multiple',
      
  TRUE~study_ancest
    )
  
    
  
}
ancestry_colors <- c(
  "African" = "#984EA3",
  "European" = "#E41A1C",
  "Asian" = "#377EB8", #east asian
  # "South Asian" = "#4DAF4A",
  "Hispanic/Latin American" = "#FF7F00",
  "Middle Eastern" = "#FFFF33",
  "Oceanic" = "#A65628",
  "Other" = "#F781BF",
  "Multiple" = "#999999",
  "Not reported" = "black"
  
)

# Define the desired stacking order
ancestry_levels <- c(
  "European",
  # "East Asian",
  # "South Asian",
  "Asian",
  "African",
  "Hispanic/Latin American",
  "Middle Eastern",
  "Oceanic",
  "Other",
  "Multiple",
  "Not reported"
)

Apply this ancestry mapping

grouped_ancest = vector()

for(study_ancest in unique(gwas_ancest_info$BROAD_ANCESTRAL_CATEGORY)){
  
grouped_ancest[study_ancest] = group_ancestry_fn(study_ancest)

}

grouped_ancest_map = data.frame(ancestry_group = grouped_ancest,
                                BROAD_ANCESTRAL_CATEGORY = unique(gwas_ancest_info$BROAD_ANCESTRAL_CATEGORY)
                                )


print(head(grouped_ancest_map))
                                   ancestry_group
European                                 European
Asian unspecified                           Asian
Other                                       Other
African American or Afro-Caribbean        African
NR                                   Not reported
South East Asian                            Asian
                                             BROAD_ANCESTRAL_CATEGORY
European                                                     European
Asian unspecified                                   Asian unspecified
Other                                                           Other
African American or Afro-Caribbean African American or Afro-Caribbean
NR                                                                 NR
South East Asian                                     South East Asian
gwas_ancest_info = dplyr::left_join(
            gwas_ancest_info,
            grouped_ancest_map,
            by = "BROAD_ANCESTRAL_CATEGORY")
print("Total numbers (in millions) per ancestry group")
[1] "Total numbers (in millions) per ancestry group"
gwas_ancest_info %>% 
  group_by(ancestry_group) %>% 
  summarise(n = sum(NUMBER_OF_INDIVIDUALS, na.rm = TRUE)/10^5)
# A tibble: 9 × 2
  ancestry_group                 n
  <chr>                      <dbl>
1 African                  4077.  
2 Asian                    3128.  
3 European                91218.  
4 Hispanic/Latin American  1787.  
5 Middle Eastern             44.7 
6 Multiple                 1862.  
7 Not reported             1488.  
8 Oceanic                     1.34
9 Other                      20.1 
gwas_ancest_info %>% 
  filter(!is.na(NUMBER_OF_INDIVIDUALS)) |>
  arrange(DATE) %>%
  mutate(ancestry_group = factor(ancestry_group, levels = ancestry_levels)) %>%
  group_by(ancestry_group) %>% 
  mutate(ancest_cumsum = cumsum(as.numeric(NUMBER_OF_INDIVIDUALS))) %>% 
  select(DATE, ancest_cumsum, ancestry_group, NUMBER_OF_INDIVIDUALS) |>
  ggplot(aes(x=DATE, y=ancest_cumsum/(10^6), fill = ancestry_group)
         ) + 
  geom_area(position = 'stack') + 
  scale_x_date(date_labels = '%Y', date_breaks = "2 years") + 
  theme_classic() + 
  labs(x = "Year", y = "Individuals in GWAS catalog (millons)") + 
  scale_fill_manual(values = ancestry_colors, name='Ancestry group')  

Repeat for traits only

gwas_ancest_info = 
left_join(
gwas_ancest_info,
gwas_study_info |> select(STUDY_ACCESSION, 
                          COHORT, 
                          MAPPED_TRAIT),
by = "STUDY_ACCESSION"
)
gwas_ancest_info_plot = 
gwas_ancest_info %>% 
  filter(!is.na(NUMBER_OF_INDIVIDUALS)) |>
  filter(MAPPED_TRAIT == 'high density lipoprotein cholesterol measurement')


print("Total numbers (in millions) per ancestry group")
[1] "Total numbers (in millions) per ancestry group"
gwas_ancest_info_plot %>% 
  group_by(ancestry_group) %>% 
  summarise(n = sum(NUMBER_OF_INDIVIDUALS, na.rm = TRUE)/10^5)
# A tibble: 9 × 2
  ancestry_group                 n
  <chr>                      <dbl>
1 African                  14.5   
2 Asian                    35.5   
3 European                214.    
4 Hispanic/Latin American   7.71  
5 Middle Eastern            0.172 
6 Multiple                 52.1   
7 Not reported              5.17  
8 Oceanic                   0.0965
9 Other                     0.0751
gwas_ancest_info_plot %>% 
  group_by(ancestry_group) %>% 
  mutate(ancestry_group = factor(ancestry_group, levels = ancestry_levels)) %>%
  mutate(ancest_cumsum = cumsum(as.numeric(NUMBER_OF_INDIVIDUALS))) %>% 
  ggplot(aes(x=DATE, y=ancest_cumsum/(10^6), fill = ancestry_group)) + 
  #geom_area() + 
  geom_area(position = 'stack') + 
  scale_x_date(date_labels = '%Y', date_breaks = "2 years") + 
  theme_classic() + 
  labs(x = "Year", y = "Individuals in GWAS catalog (millons)") + 
  scale_fill_manual(values = ancestry_colors, name='Ancestry group') 

Proportion European per trait

euro_n = gwas_ancest_info |>
         filter(ancestry_group == "European") |>
         pull(NUMBER_OF_INDIVIDUALS) |>
         sum(na.rm = T)

total_n = gwas_ancest_info |>
         pull(NUMBER_OF_INDIVIDUALS) |>
         sum(na.rm = T)

100 * euro_n / total_n
[1] 88.02662
prop_euro = vector()
total_n_vec = vector()


for(trait in n_studies_trait$MAPPED_TRAIT[1:1000]){
  
  euro_n = gwas_ancest_info |>
           filter(ancestry_group == "European") |>
           filter(MAPPED_TRAIT == trait) |>
           pull(NUMBER_OF_INDIVIDUALS) |>
           sum(na.rm = T)
  
  total_n = gwas_ancest_info |>
            filter(MAPPED_TRAIT == trait) |>
            pull(NUMBER_OF_INDIVIDUALS) |>
            sum(na.rm = T)
  
  prop_euro[trait] = 100 * euro_n / total_n
  total_n_vec[trait] = total_n
  
  #print(prop_euro[trait])
  
}

prop_euro_df = data.frame(prop_euro = prop_euro, 
                          trait = names(prop_euro),
                          total_n = total_n_vec)

prop_euro_df = left_join(prop_euro_df,
                         n_studies_trait |> rename(trait = MAPPED_TRAIT),
                         by = "trait")

prop_euro_df$prop_euro |> summary()
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  12.07   81.42   89.92   86.23   93.92  100.00 
prop_euro_df |> slice_min(prop_euro, n = 5)
  prop_euro                               trait total_n
1  12.06720     adolescent idiopathic scoliosis  386693
2  16.09211      response to antipsychotic drug   14678
3  17.40991              dilated cardiomyopathy 7229158
4  26.17495              glucose tolerance test  796781
5  30.40375 chronic hepatitis C virus infection 1182900
                           MAPPED_TRAIT_URI n_studies
1      http://www.ebi.ac.uk/efo/EFO_0005423        10
2 http://purl.obolibrary.org/obo/GO_0097332        12
3      http://www.ebi.ac.uk/efo/EFO_0000407         8
4      http://www.ebi.ac.uk/efo/EFO_0004307         8
5      http://www.ebi.ac.uk/efo/EFO_0004220        14
prop_euro_df |> slice_max(prop_euro, n =5 )
  prop_euro                                trait  total_n
1 100.00000                 testicular carcinoma  1796522
2 100.00000 self reported educational attainment  4908190
3  99.99236      base metabolic rate measurement  3807772
4  99.99201                           hair color  1063503
5  99.98250                      eye measurement 16269499
                      MAPPED_TRAIT_URI n_studies
1 http://www.ebi.ac.uk/efo/EFO_0005088        11
2 http://www.ebi.ac.uk/efo/EFO_0004784         9
3 http://www.ebi.ac.uk/efo/EFO_0007777         9
4 http://www.ebi.ac.uk/efo/EFO_0003924        10
5 http://www.ebi.ac.uk/efo/EFO_0004731        13
prop_euro_df |> slice_max(total_n, n = 5)
  prop_euro                        trait   total_n
1  77.99807     neuroimaging measurement 219548076
2  97.75004             diet measurement  79737834
3  81.97671                     COVID-19  74845527
4  99.96221                 brain volume  64578173
5  99.77048 brain connectivity attribute  60026325
                              MAPPED_TRAIT_URI n_studies
1         http://www.ebi.ac.uk/efo/EFO_0004346        13
2         http://www.ebi.ac.uk/efo/EFO_0008111        17
3 http://purl.obolibrary.org/obo/MONDO_0100096        34
4   http://purl.obolibrary.org/obo/OBA_2050009         8
5   http://purl.obolibrary.org/obo/OBA_2045295         8
cor(prop_euro_df$prop_euro, prop_euro_df$total_n, 
    method = "spearman")
[1] 0.08398827
prop_euro_df |>
  ggplot(aes(x = total_n, y = prop_euro)) + 
  geom_point() + 
  theme_bw() + 
  labs(x = "Total number of individuals (studied for this trait)",
       y = "Proportion of European ancestry idividuals (studied for this trait)")

prop_euro_df |>
  ggplot(aes(x = total_n, y = n_studies)) + 
  geom_point() + 
  theme_bw() + 
  labs(x = "Total number of individuals (studied for this trait)",
       y = "Total number of unique PUBMED IDs for this trait")

prop_euro_df |>
  ggplot(aes(x = n_studies, y = prop_euro)) + 
  geom_point() + 
  theme_bw() + 
  labs(x = "Total number of unique PUBMED IDs for this trait",
       y = "Proportion of European ancestry idividuals (studied for this trait)")

Disease statistics CDC

# following steps from https://static-content.springer.com/esm/art%3A10.1038%2Fs41588-019-0379-x/MediaObjects/41588_2019_379_MOESM1_ESM.pdf

# wonder cdc 
# https://wonder.cdc.gov/wonder/help/QuickStart.html#
# https://wonder.cdc.gov/controller/datarequest/D76;jsessionid=2A56E973A3DF13BC5DFDD9C43725

# https://cran.r-project.org/web/packages/whomds/index.html
# whomds: Calculate Results from WHO Model Disability Survey Data




cdc_stats = data.table::fread("data/cdc/Underlying Cause of Death, 1999-2020.txt",
                              drop = c("Notes", "Race Code", "Cause of death Code")) %>% 
             filter(!if_any(everything(), ~.x == ""))

cdc_stats %>% 
  group_by(Race) %>% 
  slice_max(Deaths,n=10)


# wonder cdc 
# https://wonder.cdc.gov/wonder/help/QuickStart.html#
# https://wonder.cdc.gov/controller/datarequest/D76;jsessionid=2A56E973A3DF13BC5DFDD9C43725

# https://cran.r-project.org/web/packages/whomds/index.html
# whomds: Calculate Results from WHO Model Disability Survey Data

sessionInfo()
R version 4.3.1 (2023-06-16)
Platform: aarch64-apple-darwin20 (64-bit)
Running under: macOS 15.6

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRlapack.dylib;  LAPACK version 3.11.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: America/Los_Angeles
tzcode source: internal

attached base packages:
[1] stats     graphics  grDevices datasets  utils     methods   base     

other attached packages:
[1] ggplot2_3.5.2     data.table_1.17.8 dplyr_1.1.4       workflowr_1.7.1  

loaded via a namespace (and not attached):
 [1] gtable_0.3.6       jsonlite_2.0.0     compiler_4.3.1     renv_1.0.3        
 [5] promises_1.3.3     tidyselect_1.2.1   Rcpp_1.1.0         stringr_1.5.1     
 [9] git2r_0.36.2       callr_3.7.6        later_1.4.2        jquerylib_0.1.4   
[13] scales_1.4.0       yaml_2.3.10        fastmap_1.2.0      here_1.0.1        
[17] R6_2.6.1           labeling_0.4.3     generics_0.1.4     knitr_1.50        
[21] tibble_3.3.0       rprojroot_2.1.0    RColorBrewer_1.1-3 bslib_0.9.0       
[25] pillar_1.11.0      rlang_1.1.6        utf8_1.2.6         cachem_1.1.0      
[29] stringi_1.8.7      httpuv_1.6.16      xfun_0.52          getPass_0.2-4     
[33] fs_1.6.6           sass_0.4.10        cli_3.6.5          withr_3.0.2       
[37] magrittr_2.0.3     ps_1.9.1           grid_4.3.1         digest_0.6.37     
[41] processx_3.8.6     rstudioapi_0.17.1  lifecycle_1.0.4    vctrs_0.6.5       
[45] evaluate_1.0.4     glue_1.8.0         farver_2.1.2       whisker_0.4.1     
[49] rmarkdown_2.29     httr_1.4.7         tools_4.3.1        pkgconfig_2.0.3   
[53] htmltools_0.5.8.1