Last updated: 2021-07-05
Checks: 5 2
Knit directory: Embryoid_Body_Pilot_Workflowr/analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you'll want to first commit it to the Git repo. If you're still working on the analysis, you can ignore this warning. When you're finished, you can run wflow_publish
to commit the R Markdown file and build the HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it's best to always run the code in an empty environment.
The command set.seed(20200804)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.
absolute | relative |
---|---|
/project2/gilad/katie/Pilot_HumanEBs/Embryoid_Body_Pilot_Workflowr/output/Pseudobulk_Limma_res0.1_OnevAllTopTables.csv | ../output/Pseudobulk_Limma_res0.1_OnevAllTopTables.csv |
/project2/gilad/katie/Pilot_HumanEBs/Embryoid_Body_Pilot_Workflowr/output/Pseudobulk_Limma_res0.1_OnevAll_top10Upregby_adjP.csv | ../output/Pseudobulk_Limma_res0.1_OnevAll_top10Upregby_adjP.csv |
/project2/gilad/katie/Pilot_HumanEBs/Embryoid_Body_Pilot_Workflowr/output/Pseudobulk_Limma_res0.1_OnevAll_top10Upregby_logFC.csv | ../output/Pseudobulk_Limma_res0.1_OnevAll_top10Upregby_logFC.csv |
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version c8767ac. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/.Rhistory
Ignored: output/.Rhistory
Untracked files:
Untracked: GSE122380_raw_counts.txt.gz
Untracked: UTF1_plots.Rmd
Untracked: analysis/IntegrateReference_SCTregressCaoPlusScHCL_JustEarlyEcto.Rmd
Untracked: analysis/IntegrateReference_SCTregressCaoPlusScHCL_JustEndo.Rmd
Untracked: analysis/IntegrateReference_SCTregressCaoPlusScHCL_JustMeso.Rmd
Untracked: analysis/IntegrateReference_SCTregressCaoPlusScHCL_JustNeuralCrest.Rmd
Untracked: analysis/IntegrateReference_SCTregressCaoPlusScHCL_JustNeuron.Rmd
Untracked: analysis/IntegrateReference_SCTregressCaoPlusScHCL_JustPluri.Rmd
Untracked: analysis/OLD/
Untracked: analysis/Pseudobulk_Limma_Harmony.BatchIndividual_ClusterRes0.8_minPCT0.2.Rmd
Untracked: analysis/Pseudobulk_Limma_Harmony.BatchIndividual_ClusterRes1_minPCT0.2.Rmd
Untracked: analysis/Pseudobulk_VariancePartition_Harmony.Batchindividual_ClusterRes0.1_byCluster.Rmd
Untracked: analysis/RefInt_ComparingFulltoPartialIntegrationAnnotations.Rmd
Untracked: analysis/ReferenceAnn_DE.Rmd
Untracked: analysis/SingleCell_HierarchicalClustering_NoGeneFilter.Rmd
Untracked: analysis/SingleCell_VariancePartitionByCluster_Harmony.Batchindividual_ClusterRes0.1_minPCT0.2.Rmd
Untracked: analysis/VarPartPlots_res0.1_SCT.Rmd
Untracked: analysis/VarPart_SC_res0.1_SCT.Rmd
Untracked: analysis/child/
Untracked: analysis/k10topics_Explore.Rmd
Untracked: analysis/k6topics_Explore.Rmd
Untracked: build_refint_scale.R
Untracked: build_refint_sct.R
Untracked: build_stuff.R
Untracked: build_varpart_sc.R
Untracked: code/.ipynb_checkpoints/
Untracked: code/CellRangerPreprocess.Rmd
Untracked: code/ConvertToDGE.Rmd
Untracked: code/ConvertToDGE_PseudoBulk.Rmd
Untracked: code/ConvertToDGE_SingleCellRes_minPCT0.2.Rmd
Untracked: code/EB.getHumanMetadata.Rmd
Untracked: code/GEO_processed_data.Rmd
Untracked: code/PowerAnalysis_NoiseRatio.ipynb
Untracked: code/Untitled.ipynb
Untracked: code/Untitled1.ipynb
Untracked: code/compile_fits.Rmd
Untracked: code/fit_all_models.sh
Untracked: code/fit_poisson_nmf.R
Untracked: code/fit_poisson_nmf.sbatch
Untracked: code/functions_for_fit_comparison.Rmd
Untracked: code/get_genelist_byPCTthresh.Rmd
Untracked: code/prefit_poisson_nmf.R
Untracked: code/prefit_poisson_nmf.sbatch
Untracked: code/prepare_data_for_fastTopics.Rmd
Untracked: data/HCL_Fig1_adata.h5ad
Untracked: data/HCL_Fig1_adata.h5seurat
Untracked: data/dge/
Untracked: data/dge_raw_data.tar.gz
Untracked: data/ref.expr.rda
Untracked: figure/
Untracked: output/CR_sampleQCrds/
Untracked: output/CaoEtAl.Obj.CellsOfAllClusters.ProteinCodingGenes.rds
Untracked: output/CaoEtAl.Obj.rds
Untracked: output/ClusterInfo_res0.1.csv
Untracked: output/DGELists/
Untracked: output/DownSampleVarPart.rds
Untracked: output/Frequency.MostCommonAnnotation.FiveNearestRefCells.csv
Untracked: output/GEOsubmissionProcessedFiles/
Untracked: output/GeneLists_by_minPCT/
Untracked: output/MostCommonAnnotation.FiveNearestRefCells.csv
Untracked: output/NearestReferenceCell.Cao.hESC.EuclideanDistanceinHarmonySpace.csv
Untracked: output/NearestReferenceCell.Cao.hESC.FrequencyofEachAnnotation.csv
Untracked: output/NearestReferenceCell.SCTregressRNAassay.Cao.hESC.EuclideanDistanceinHarmonySpace.csv
Untracked: output/NearestReferenceCell.SCTregressRNAassay.Cao.hESC.FrequencyofEachAnnotation.csv
Untracked: output/Pseudobulk_Limma_res0.1_OnevAllTopTables.csv
Untracked: output/Pseudobulk_Limma_res0.1_OnevAll_top10Upregby_adjP.csv
Untracked: output/Pseudobulk_Limma_res0.1_OnevAll_top10Upregby_logFC.csv
Untracked: output/Pseudobulk_Limma_res0.5_OnevAllTopTables.csv
Untracked: output/Pseudobulk_Limma_res0.8_OnevAllTopTables.csv
Untracked: output/Pseudobulk_Limma_res1_OnevAllTopTables.csv
Untracked: output/Pseudobulk_VarPart.ByCluster.Res0.1.rds
Untracked: output/ResidualVariances_fromDownSampAnalysis.csv
Untracked: output/SingleCell_VariancePartition_RNA_Res0.1_minPCT0.2.rds
Untracked: output/SingleCell_VariancePartition_Res0.1_minPCT0.2.rds
Untracked: output/SingleCell_VariancePartition_SCT_Res0.1_minPCT0.2.rds
Untracked: output/TopicModelling_k10_top10drivergenes.byBeta.csv
Untracked: output/TopicModelling_k6_top10drivergenes.byBeta.csv
Untracked: output/TopicModelling_k6_top15drivergenes.byZ.csv
Untracked: output/TranferredAnnotations_ReferenceInt_JustEarlyEcto.csv
Untracked: output/TranferredAnnotations_ReferenceInt_JustEndoderm.csv
Untracked: output/TranferredAnnotations_ReferenceInt_JustMeso.csv
Untracked: output/TranferredAnnotations_ReferenceInt_JustNeuralCrest.csv
Untracked: output/TranferredAnnotations_ReferenceInt_JustNeuron.csv
Untracked: output/TranferredAnnotations_ReferenceInt_JustPluripotent.csv
Untracked: output/VarPart.ByCluster.Res0.1.rds
Untracked: output/azimuth/
Untracked: output/downsamp_10800cells_10subreps_medianexplainedbyresiduals_varpart_PsB.rds
Untracked: output/downsamp_16200cells_10subreps_medianexplainedbyresiduals_varpart_PsB.rds
Untracked: output/downsamp_21600cells_10subreps_medianexplainedbyresiduals_varpart_PsB.rds
Untracked: output/downsamp_2700cells_10subreps_medianexplainedbyresiduals_varpart_PsB.rds
Untracked: output/downsamp_2700cells_10subreps_medianexplainedbyresiduals_varpart_scres.rds
Untracked: output/downsamp_5400cells_10subreps_medianexplainedbyresiduals_varpart_PsB.rds
Untracked: output/downsamp_7200cells_10subreps_medianexplainedbyresiduals_varpart_PsB.rds
Untracked: output/fasttopics/
Untracked: output/figs/
Untracked: output/merge.Cao.SCTwRegressOrigIdent.rds
Untracked: output/merge.all.SCTwRegressOrigIdent.Harmony.rds
Untracked: output/merged.SCT.counts.matrix.rds
Untracked: output/merged.raw.counts.matrix.rds
Untracked: output/mergedObjects/
Untracked: output/pdfs/
Untracked: output/sampleQCrds/
Untracked: output/splitgpm_gsea_results/
Untracked: slurm-12005914.out
Untracked: slurm-12005923.out
Unstaged changes:
Deleted: analysis/IntegrateAnalysis.afterFilter.HarmonyBatch.Rmd
Deleted: analysis/IntegrateAnalysis.afterFilter.HarmonyBatchSampleIDindividual.Rmd
Modified: analysis/IntegrateAnalysis.afterFilter.HarmonyBatchindividual.Rmd
Deleted: analysis/IntegrateAnalysis.afterFilter.NOHARMONYjustmerge.Rmd
Deleted: analysis/IntegrateAnalysis.afterFilter.SCTregressBatchIndividual.Rmd
Deleted: analysis/IntegrateAnalysis.afterFilter.SCTregressBatchIndividualHarmonyBatchindividual.Rmd
Modified: analysis/Pseudobulk_HierarchicalClustering_Harmony.Batchindividual_ClusterRes0.1_minPCT0.2.Rmd
Modified: analysis/Pseudobulk_HierarchicalClustering_Harmony.Batchindividual_ClusterRes0.5_minPCT0.2.Rmd
Modified: analysis/Pseudobulk_HierarchicalClustering_Harmony.Batchindividual_ClusterRes0.8_minPCT0.2.Rmd
Modified: analysis/Pseudobulk_HierarchicalClustering_Harmony.Batchindividual_ClusterRes1_minPCT0.2.Rmd
Modified: analysis/Pseudobulk_Limma_Harmony.BatchIndividual_ClusterRes0.1_minPCT0.2.Rmd
Modified: analysis/Pseudobulk_Limma_Harmony.BatchIndividual_ClusterRes0.5_minPCT0.2.Rmd
Modified: analysis/Pseudobulk_VariancePartition_Harmony.Batchindividual_ClusterRes0.1_minPCT0.2.Rmd
Modified: analysis/Pseudobulk_VariancePartition_Harmony.Batchindividual_ClusterRes0.5_minPCT0.2.Rmd
Modified: analysis/Pseudobulk_VariancePartition_Harmony.Batchindividual_ClusterRes0.8_minPCT0.2.Rmd
Modified: analysis/Pseudobulk_VariancePartition_Harmony.Batchindividual_ClusterRes1_minPCT0.2.Rmd
Deleted: analysis/RunscHCL_HarmonyBatchInd.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/Pseudobulk_Limma_Harmony.BatchIndividual_ClusterRes0.1_minPCT0.2.Rmd
) and HTML (docs/Pseudobulk_Limma_Harmony.BatchIndividual_ClusterRes0.1_minPCT0.2.html
) files. If you've configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | 56c37c9 | KLRhodes | 2021-01-11 | Build site. |
Rmd | cbdbc9f | KLRhodes | 2021-01-11 | wflow_publish("analysis/Pseudobulk_Limma_Harmony.BatchIndividual_ClusterRes0.1_minPCT0.2.Rmd") |
html | 0e51844 | KLRhodes | 2021-01-11 | Build site. |
Rmd | 63febc0 | KLRhodes | 2021-01-11 | wflow_publish("analysis/Pseudobulk_Limma_Harmony.BatchIndividual_ClusterRes0.1_minPCT0.2.Rmd") |
html | dd2f60e | KLRhodes | 2020-10-19 | Build site. |
Rmd | ad4d0f6 | KLRhodes | 2020-10-19 | analysis/index.Rmd |
html | 7888de8 | KLRhodes | 2020-08-31 | Build site. |
Rmd | 162da72 | KLRhodes | 2020-08-31 | wflow_publish("analysis/Pseudobulk_Limma_Harmony.BatchIndividual_ClusterRes0.*") |
library(Seurat)
library(Matrix)
library(dplyr)
library(edgeR)
library(limma)
library(reshape2)
library(ggplot2)
library(UpSetR)
choose parameters (integration type, clustering res, min pct threshold)
f<- 'Harmony.Batchindividual'
pct<-0.2
res<- 'SCT_snn_res.0.1'
path<- here::here("output/DGELists/")
dge<- readRDS(paste0(path,"Pseudobulk_dge_",f, "_", res,"_minPCT",pct,".rds"))
cpm<- cpmByGroup(dge, group=dge$samples$cluster)
lcpm<- cpmByGroup(dge, group=dge$samples$cluster, log=TRUE)
hist(lcpm)
Version | Author | Date |
---|---|---|
7888de8 | KLRhodes | 2020-08-31 |
L<- mean(dge$samples$lib.size) *1e-6
M<- median(dge$samples$lib.size) *1e-6
genes.ribo <- grep('^RP',rownames(dge),value=T)
genes.no.ribo <- rownames(dge)[which(!(rownames(dge) %in% genes.ribo))]
dge$counts <- dge$counts[which(rownames(dge$counts) %in% genes.no.ribo),] #remove ribosomal genes
dge<- calcNormFactors(dge, method="TMM")
summary(dge$samples$norm.factors)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.8176 0.9349 1.0050 1.0052 1.0540 1.3300
design<- model.matrix(~0+ dge$samples$cluster + dge$samples$batch + dge$samples$ind)
v<- voom(dge, design, plot=TRUE)
Version | Author | Date |
---|---|---|
7888de8 | KLRhodes | 2020-08-31 |
v
An object of class "EList"
$targets
group lib.size norm.factors cluster batch ind
0.Batch1.SNG-NA18511 1 1409771 1.0299240 0 Batch1 NA18511
0.Batch1.SNG-NA18858 1 88339833 1.0539880 0 Batch1 NA18858
0.Batch1.SNG-NA19160 1 1106878 1.0152859 0 Batch1 NA19160
0.Batch2.SNG-NA18511 1 3189774 0.9982165 0 Batch2 NA18511
0.Batch2.SNG-NA18858 1 99628244 1.0525291 0 Batch2 NA18858
Group
0.Batch1.SNG-NA18511 0.Batch1.SNG-NA18511
0.Batch1.SNG-NA18858 0.Batch1.SNG-NA18858
0.Batch1.SNG-NA19160 0.Batch1.SNG-NA19160
0.Batch2.SNG-NA18511 0.Batch2.SNG-NA18511
0.Batch2.SNG-NA18858 0.Batch2.SNG-NA18858
56 more rows ...
$E
0.Batch1.SNG-NA18511 0.Batch1.SNG-NA18858 0.Batch1.SNG-NA19160
NOC2L 6.638964 6.548069 6.237207
HES4 5.218783 4.940947 5.262894
ISG15 5.324717 5.452566 5.930318
AGRN 4.947481 4.330642 4.138905
SDF4 5.780662 5.935487 5.864730
0.Batch2.SNG-NA18511 0.Batch2.SNG-NA18858 0.Batch2.SNG-NA19160
NOC2L 6.199990 6.052279 6.101584
HES4 5.376394 4.906240 4.724087
ISG15 5.440288 5.323509 5.484575
AGRN 4.359968 4.274032 4.109171
SDF4 5.491452 5.494177 5.266712
0.Batch3.SNG-NA18511 0.Batch3.SNG-NA18858 0.Batch3.SNG-NA19160
NOC2L 6.330479 6.014823 6.197081
HES4 5.562119 4.879764 4.415591
ISG15 5.833719 5.420777 5.767354
AGRN 4.428086 4.335191 4.221235
SDF4 5.466343 5.484522 5.529410
1.Batch1.SNG-NA18511 1.Batch1.SNG-NA18858 1.Batch1.SNG-NA19160
NOC2L 6.256989 6.071072 6.095699
HES4 9.216089 7.600635 8.691377
ISG15 5.457375 5.401419 5.792769
AGRN 5.096716 4.928903 4.839761
SDF4 6.013398 5.952802 6.177094
1.Batch2.SNG-NA18511 1.Batch2.SNG-NA18858 1.Batch2.SNG-NA19160
NOC2L 6.020203 5.746048 5.921435
HES4 8.961112 6.914192 8.185544
ISG15 5.584400 5.846988 5.481842
AGRN 4.887505 4.771953 4.808975
SDF4 5.634987 5.441094 5.847058
1.Batch3.SNG-NA18511 1.Batch3.SNG-NA18858 1.Batch3.SNG-NA19160
NOC2L 5.914525 5.947617 6.019365
HES4 8.108209 6.999682 7.433628
ISG15 5.726622 6.046938 5.898200
AGRN 4.772352 4.652745 4.453329
SDF4 5.779522 5.592372 5.824881
2.Batch1.SNG-NA18511 2.Batch1.SNG-NA18858 2.Batch1.SNG-NA19160
NOC2L 6.149054 6.542508 6.178097
HES4 5.422492 5.948829 5.865813
ISG15 6.365217 6.825681 6.556433
AGRN 4.342569 4.811325 4.183400
SDF4 6.558424 6.317216 6.230266
2.Batch2.SNG-NA18511 2.Batch2.SNG-NA18858 2.Batch2.SNG-NA19160
NOC2L 5.641101 5.599918 5.903909
HES4 4.928728 3.725449 5.163926
ISG15 6.415605 6.227950 6.253017
AGRN 4.249301 3.725449 4.083683
SDF4 6.121796 5.840927 6.134677
2.Batch3.SNG-NA18511 2.Batch3.SNG-NA18858 2.Batch3.SNG-NA19160
NOC2L 5.963510 5.792228 6.070385
HES4 3.754793 5.140152 4.853651
ISG15 6.171530 6.856359 6.341741
AGRN 3.641582 2.332797 3.678776
SDF4 6.076721 6.033237 5.917017
3.Batch1.SNG-NA18511 3.Batch1.SNG-NA18858 3.Batch1.SNG-NA19160
NOC2L 6.383545 6.537884 6.196177
HES4 6.978209 6.813518 6.519236
ISG15 5.982072 4.792456 5.050893
AGRN 5.329995 4.792456 5.120687
SDF4 6.209964 5.749388 5.823875
3.Batch2.SNG-NA18511 3.Batch2.SNG-NA18858 3.Batch2.SNG-NA19160
NOC2L 6.196577 5.693029 6.128192
HES4 6.250516 5.330458 6.447564
ISG15 5.822182 4.845032 4.889632
AGRN 5.672156 4.108066 5.295435
SDF4 5.925275 5.330458 5.721170
3.Batch3.SNG-NA18511 3.Batch3.SNG-NA18858 3.Batch3.SNG-NA19160
NOC2L 5.994855 6.599351 5.966133
HES4 4.473739 5.751354 5.540253
ISG15 4.581992 5.014388 4.174892
AGRN 4.948419 5.014388 5.113659
SDF4 5.519835 4.651818 5.866677
4.Batch1.SNG-NA18511 4.Batch1.SNG-NA18858 4.Batch1.SNG-NA19160
NOC2L 5.918890 5.328737 5.762589
HES4 7.235340 6.879672 6.893938
ISG15 6.687102 7.898486 6.987736
AGRN 5.703063 5.636471 6.149612
SDF4 6.595062 6.477205 6.186046
4.Batch2.SNG-NA18511 4.Batch2.SNG-NA18858 4.Batch2.SNG-NA19160
NOC2L 5.854994 5.556499 5.720397
HES4 7.052565 6.942778 6.623749
ISG15 6.710415 7.537390 6.824020
AGRN 5.162011 5.149874 5.353835
SDF4 6.310723 5.952428 6.315556
4.Batch3.SNG-NA18511 4.Batch3.SNG-NA18858 4.Batch3.SNG-NA19160
NOC2L 5.930439 5.816523 5.906183
HES4 5.598550 7.025558 6.325320
ISG15 6.128039 7.888389 6.978991
AGRN 5.083501 5.427112 5.260126
SDF4 6.150940 6.018832 6.292194
5.Batch1.SNG-NA18511 5.Batch1.SNG-NA18858 5.Batch1.SNG-NA19160
NOC2L 6.528132 6.624561 6.524047
HES4 7.887655 5.609915 6.989321
ISG15 4.556548 6.103729 4.032053
AGRN 5.669662 5.124488 5.417393
SDF4 6.155089 5.723125 5.803557
5.Batch2.SNG-NA18511 5.Batch2.SNG-NA18858 5.Batch2.SNG-NA19160
NOC2L 6.063413 5.989100 6.104674
HES4 7.772730 6.188409 6.472066
ISG15 4.773593 5.141103 3.318892
AGRN 5.462839 5.757775 5.057730
SDF4 5.383646 5.626530 5.431484
5.Batch3.SNG-NA18511 5.Batch3.SNG-NA18858 5.Batch3.SNG-NA19160
NOC2L 5.988417 5.583832 6.089701
HES4 7.132890 4.760710 6.115973
ISG15 4.611302 4.760710 3.113801
AGRN 4.935043 4.760710 4.590511
SDF4 5.292772 5.815157 5.713177
6.Batch1.SNG-NA18511 6.Batch1.SNG-NA18858 6.Batch1.SNG-NA19160
NOC2L 5.973298 5.483099 5.672436
HES4 7.170099 5.968526 6.889853
ISG15 9.596589 5.483099 8.101527
AGRN 6.550843 4.746133 6.535801
SDF4 6.490089 6.331096 6.167761
6.Batch2.SNG-NA18511 6.Batch2.SNG-NA19160 6.Batch3.SNG-NA18511
NOC2L 6.106462 5.711079 5.503024
HES4 5.888282 6.776502 6.943597
ISG15 7.994672 7.437596 7.991602
AGRN 5.028460 6.122393 5.245866
SDF4 5.558975 5.825412 6.038061
6.Batch3.SNG-NA19160
NOC2L 5.637787
HES4 6.401613
ISG15 8.324006
AGRN 5.186803
SDF4 6.011076
10180 more rows ...
$weights
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 6.431916 41.51425 5.284795 9.811831 40.40790 11.140958 25.98550 39.87328
[2,] 4.550121 30.19087 3.723621 6.313930 28.19284 6.855538 17.96080 24.99744
[3,] 4.528174 35.58762 3.660784 7.239058 35.82264 7.742423 21.68234 35.05005
[4,] 3.095077 25.45962 2.375542 4.439929 24.85733 4.987377 14.45915 22.57551
[5,] 4.886507 35.50497 4.230978 7.072442 33.62303 8.365265 21.44130 32.96049
[,9] [,10] [,11] [,12] [,13] [,14] [,15] [,16]
[1,] 20.08378 27.67708 14.68138 27.70318 27.94566 18.93523 21.87930 26.97333
[2,] 12.54769 52.22316 25.89675 50.39992 50.50964 30.70401 38.13841 43.67227
[3,] 15.57410 25.06019 13.71973 23.99115 26.17103 18.56348 19.42460 25.03075
[4,] 10.04298 21.07287 9.32857 20.98907 21.36202 12.99572 16.19713 18.80142
[5,] 16.41662 26.84389 14.04097 27.13414 26.36484 17.66351 20.77130 25.26352
[,17] [,18] [,19] [,20] [,21] [,22] [,23]
[1,] 9.134733 22.80686 13.667003 2.5520182 19.241403 9.217620 0.6980291
[2,] 15.484326 35.64761 11.203415 1.2808396 15.670514 6.558968 0.4335242
[3,] 8.719828 20.10535 15.531270 3.4625833 20.420649 11.403381 0.9609097
[4,] 4.556935 15.39915 5.968453 0.7479667 9.926134 3.957180 0.3158993
[5,] 8.073718 21.51586 14.760670 2.9102387 20.730546 9.708264 0.7309726
[,24] [,25] [,26] [,27] [,28] [,29] [,30]
[1,] 14.176676 12.661618 0.6563529 16.932067 6.431747 2.0237300 19.77768
[2,] 10.349558 7.889203 0.3536638 10.941530 7.352719 1.7630311 20.55233
[3,] 15.859331 14.927886 0.8818901 18.529036 3.832212 1.0393622 12.62874
[4,] 6.263387 4.724821 0.2718365 7.032874 4.208964 0.9955042 14.59363
[5,] 14.943063 13.075462 0.6789117 17.597051 5.154360 1.4536564 17.45418
[,31] [,32] [,33] [,34] [,35] [,36] [,37]
[1,] 3.728046 0.6475818 14.517105 6.425352 0.8934026 17.27681 10.132333
[2,] 3.884228 0.5584429 14.378407 5.549849 0.6336634 15.04216 16.762215
[3,] 1.972346 0.4461850 8.819443 3.962643 0.5858969 11.00485 15.790206
[4,] 2.190698 0.4137049 10.059942 3.773516 0.4831896 11.08245 9.451264
[5,] 2.845599 0.5090940 12.013245 4.856936 0.6777276 14.44734 12.619581
[,38] [,39] [,40] [,41] [,42] [,43] [,44]
[1,] 5.551504 7.791019 10.68701 2.447371 10.025377 9.944092 3.254204
[2,] 8.783537 13.245523 16.58118 3.694754 15.119523 13.671604 3.801898
[3,] 10.728431 12.235040 17.09536 4.900442 15.462474 16.056730 6.047476
[4,] 4.811975 7.139187 10.04651 1.964783 9.321564 8.057447 2.232151
[5,] 7.265883 10.269233 12.71600 3.190897 12.204877 11.832167 3.873585
[,45] [,46] [,47] [,48] [,49] [,50] [,51]
[1,] 18.01059 10.222377 3.138945 15.444373 10.530066 1.1815080 10.304070
[2,] 21.96642 13.928699 3.679351 19.016687 13.489610 1.3268478 12.610055
[3,] 24.76003 4.571048 1.147407 7.124721 4.964830 0.6028348 4.532964
[4,] 15.56020 7.030687 1.655454 11.581170 7.325607 0.7382867 7.076254
[5,] 20.62655 8.434597 2.402367 13.524820 8.295530 0.8877284 8.239576
[,52] [,53] [,54] [,55] [,56] [,57] [,58]
[1,] 9.745966 1.3454345 11.867007 2.648834 0.4577756 3.572129 1.742307
[2,] 10.820897 1.1826829 12.357834 4.453690 0.6094011 5.362935 3.333483
[3,] 4.543722 0.6518845 5.190990 6.684286 1.2943609 8.171292 5.347110
[4,] 5.758106 0.7087039 7.233630 2.678536 0.4337226 3.572191 1.779529
[5,] 7.494726 0.9758391 9.590081 3.275818 0.5301035 4.177155 2.125773
[,59] [,60] [,61]
[1,] 3.436238 2.369097 4.525188
[2,] 4.793791 3.356727 5.524276
[3,] 8.319574 6.458774 11.269555
[4,] 3.453803 1.933325 4.058538
[5,] 3.890978 2.791188 5.100664
10180 more rows ...
$design
dge$samples$cluster0 dge$samples$cluster1 dge$samples$cluster2
1 1 0 0
2 1 0 0
3 1 0 0
4 1 0 0
5 1 0 0
dge$samples$cluster3 dge$samples$cluster4 dge$samples$cluster5
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
dge$samples$cluster6 dge$samples$batchBatch2 dge$samples$batchBatch3
1 0 0 0
2 0 0 0
3 0 0 0
4 0 1 0
5 0 1 0
dge$samples$indNA18858 dge$samples$indNA19160
1 0 0
2 1 0
3 0 1
4 0 0
5 1 0
56 more rows ...
1 v all contrasts
fit<- lmFit(v,design)
nclust<- length(unique(dge$samples$cluster))
contrasts<- NULL
for (i in 1:nclust){
c<- c(rep(-1,nclust),0,0,0,0)
c[i]<- nclust-1
contrasts<- cbind(contrasts, c)
}
contrasts
c c c c c c c
[1,] 6 -1 -1 -1 -1 -1 -1
[2,] -1 6 -1 -1 -1 -1 -1
[3,] -1 -1 6 -1 -1 -1 -1
[4,] -1 -1 -1 6 -1 -1 -1
[5,] -1 -1 -1 -1 6 -1 -1
[6,] -1 -1 -1 -1 -1 6 -1
[7,] -1 -1 -1 -1 -1 -1 6
[8,] 0 0 0 0 0 0 0
[9,] 0 0 0 0 0 0 0
[10,] 0 0 0 0 0 0 0
[11,] 0 0 0 0 0 0 0
fit<- contrasts.fit(fit, contrasts= contrasts)
efit<- eBayes(fit)
plotSA(efit)
c0vall<- topTable(efit, coef=1, n=nrow(fit))
head(c0vall, n=40)
logFC AveExpr t P.Value adj.P.Val B
TTC3 -27.577990 7.213926 -33.03441 7.502936e-38 7.641740e-34 71.58323
ASXL1 -12.600599 5.423634 -26.39076 8.011183e-33 4.079695e-29 60.73509
BCL7C -12.415042 6.107591 -25.55948 4.062625e-32 1.194063e-28 60.46400
CST3 -18.385421 7.795340 -24.51773 3.314379e-31 6.751390e-28 59.67992
MAGED2 -11.892399 8.065005 -23.17049 5.604485e-30 7.135209e-27 57.42178
PHC2 -27.285655 5.434183 -25.48709 4.689497e-32 1.194063e-28 57.26356
TERF1 16.081036 7.578498 22.73501 1.439039e-29 1.221384e-26 56.63456
N4BP2L2 -6.602763 7.030785 -22.96675 8.696564e-30 9.841612e-27 56.58471
FAM89B -17.973680 5.685971 -23.74819 1.640065e-30 2.386295e-27 56.27116
TCF25 -7.605582 7.069119 -22.76051 1.361195e-29 1.221384e-26 56.19843
ZNF428 -16.865533 7.151197 -22.40509 2.968995e-29 2.159944e-26 55.21821
VIM -21.799711 10.234124 -21.90020 9.146643e-29 5.419027e-26 55.13542
DDX17 -6.006953 8.026253 -21.91529 8.841506e-29 5.419027e-26 54.88433
VPS28 -9.054529 7.137609 -21.87976 9.577072e-29 5.419027e-26 54.41352
MXD4 -14.985027 6.260003 -21.99581 7.379584e-29 5.010737e-26 53.73964
ADD1 -6.483498 5.894285 -21.53194 2.105681e-28 9.188987e-26 52.98095
NAA38 -8.727147 6.877280 -21.16266 4.914516e-28 1.787655e-25 52.74264
EFNB2 -21.619587 6.072235 -21.70457 1.422415e-28 7.239391e-26 52.74131
YAF2 -22.680261 4.129871 -23.87002 1.269640e-30 2.155214e-27 52.73104
FRMD4A -14.442369 4.560023 -22.56036 2.109197e-29 1.652474e-26 52.58378
C5orf24 -11.871752 5.610553 -21.59132 1.839332e-28 8.515270e-26 52.52431
CIRBP -9.638583 8.336993 -20.68679 1.490531e-27 4.337445e-25 52.21730
TMEM132A -14.904199 5.549007 -21.51969 2.165299e-28 9.188987e-26 52.13800
ARL2BP -10.948403 5.960584 -21.19098 4.603338e-28 1.736481e-25 52.09586
RDX -10.029886 7.663631 -20.68748 1.488133e-27 4.337445e-25 52.00903
NRIP1 -18.338440 5.045814 -21.82277 1.088920e-28 5.837185e-26 51.91901
PLAGL1 -22.403436 4.292829 -22.86631 1.081256e-29 1.101259e-26 51.53936
CCDC50 -11.731418 5.837919 -20.88818 9.297636e-28 3.156547e-25 51.32637
H2AFY -17.341738 7.668655 -20.43437 2.706832e-27 7.068995e-25 51.30182
COMMD3 -15.152130 4.627146 -21.68330 1.492658e-28 7.239391e-26 51.00580
PRTG -34.091343 5.971539 -21.44859 2.547047e-28 1.037667e-25 50.99613
SEPHS1 12.266419 7.332304 20.10262 5.981200e-27 1.428958e-24 50.82337
MSRB2 -8.951263 6.636048 -20.28261 3.885335e-27 9.651740e-25 50.68947
IDH2 -16.395862 6.637623 -20.36733 3.174616e-27 8.083365e-25 50.64952
PGLS -6.059248 7.601152 -19.97400 8.155653e-27 1.767347e-24 50.44106
TCAF1 -17.503481 5.041447 -21.03158 6.658343e-28 2.338456e-25 50.36320
UGP2 13.580714 7.393647 19.89353 9.909455e-27 2.018556e-24 50.32348
HP1BP3 -10.514628 6.668708 -20.09904 6.032912e-27 1.428958e-24 50.26390
MARCKS -18.093872 9.016948 -19.80646 1.224255e-26 2.444909e-24 50.22220
NSD3 -9.257932 6.823146 -19.92764 9.123392e-27 1.896362e-24 49.97306
summary(decideTests(efit))
c c c c c c c
Down 3752 3137 2544 2616 3172 3683 1902
NotSig 2211 3557 5124 4972 3989 3248 6232
Up 4222 3491 2517 2597 3024 3254 2051
up.0<- which(c0vall$adj.P.Val < 0.05 & c0vall$logFC >0)
length(up.0)
[1] 4222
head(c0vall[up.0,], n=40)
logFC AveExpr t P.Value adj.P.Val B
TERF1 16.081036 7.578498 22.73501 1.439039e-29 1.221384e-26 56.63456
SEPHS1 12.266419 7.332304 20.10262 5.981200e-27 1.428958e-24 50.82337
UGP2 13.580714 7.393647 19.89353 9.909455e-27 2.018556e-24 50.32348
DPPA4 13.747355 7.137063 19.76765 1.345549e-26 2.585738e-24 49.94979
JARID2 10.294303 6.547235 19.44684 2.953992e-26 5.014401e-24 48.99389
PHC1 14.313711 3.639425 20.85504 1.004599e-27 3.300594e-25 48.97870
USO1 8.278334 6.282203 19.33787 3.866947e-26 6.251565e-24 48.63691
TBC1D23 10.881343 4.673767 19.70660 1.561576e-26 2.891756e-24 48.26631
LRRC47 6.419652 5.387962 18.76872 1.608413e-25 2.073631e-23 46.79981
ZNF398 13.298276 3.653416 19.25535 4.745369e-26 7.551811e-24 45.99546
FKBP4 7.614425 7.592202 17.99633 1.171990e-24 1.193672e-22 45.75787
TKT 6.151095 9.112727 17.66536 2.796986e-24 2.498886e-22 45.03825
HAGHL 14.787900 4.273916 18.26502 5.832943e-25 6.457448e-23 44.66419
VSIG10 16.180772 4.340578 18.23523 6.299826e-25 6.899326e-23 44.61177
RBPJ 5.613182 7.153192 17.31340 7.144051e-24 5.774774e-22 43.89780
SKA3 13.676630 4.590506 17.55426 3.755105e-24 3.241165e-22 43.33384
MIB2 8.593087 4.851255 17.41485 5.444658e-24 4.582962e-22 43.19837
DNMT3B 17.309703 6.461688 17.03466 1.515644e-23 1.104834e-21 43.06287
DDX21 7.653578 7.100406 16.89228 2.232917e-23 1.557689e-21 42.80322
PDCD2L 9.330080 4.223995 17.30736 7.260865e-24 5.774919e-22 42.36584
VASH2 17.902965 4.588320 16.79080 2.947246e-23 1.987927e-21 41.39904
ADD2 11.771797 4.166766 16.92599 2.036793e-23 1.440607e-21 41.38411
INTS13 7.949672 4.659950 16.66541 4.159402e-23 2.698313e-21 41.22785
FNDC10 9.203042 3.830290 16.86412 2.411462e-23 1.659510e-21 41.05917
ZNF589 10.620433 3.631530 16.77040 3.116767e-23 2.074251e-21 40.48451
ETV4 19.166876 4.218631 16.40429 8.571677e-23 5.017387e-21 40.27313
FRAT2 13.110930 5.295428 16.13289 1.832472e-22 9.620476e-21 40.25681
CYCS 6.758110 8.499625 15.87657 3.784758e-22 1.826343e-20 40.17016
MAD2L2 8.414309 7.078103 15.76691 5.173945e-22 2.395301e-20 39.75864
TOMM7 7.527693 8.939071 15.69145 6.421164e-22 2.893785e-20 39.65924
PSMG4 6.819823 4.947974 15.91168 3.425297e-22 1.692692e-20 39.43145
TLCD1 14.774674 3.433076 16.46275 7.285782e-23 4.314284e-21 39.38515
POLR3G 22.864011 4.119681 15.97227 2.884359e-22 1.440432e-20 39.08744
MAL2 19.822159 3.837282 16.27068 1.244669e-22 7.003844e-21 38.99007
ATP5PD 5.781917 8.188874 15.45405 1.272274e-21 5.376808e-20 38.96505
TDGF1 22.213829 6.271011 15.50264 1.105521e-21 4.771074e-20 38.85369
ZSCAN2 11.053262 3.785062 15.97217 2.885107e-22 1.440432e-20 38.69981
ZNF90 9.415134 4.781361 15.65464 7.136395e-22 3.173982e-20 38.63426
FGF2 15.592319 4.347030 15.71340 6.029853e-22 2.741248e-20 38.44487
ZNF770 7.097085 6.062098 15.37988 1.577470e-21 6.325407e-20 38.44180
vol<- topTable(efit, coef=1, n=nrow(fit))
labsig<- vol[(vol$adj.P.Val < 5e-28) | (vol$logFC> 0 & vol$adj.P.Val < 5e-25) |vol$logFC> 32 |vol$logFC < -35,]
labsiggenes<- rownames(labsig)
thresh<- vol$adj.P.Val < 0.05
vol<-cbind(vol, thresh)
ggplot(vol, aes(x=logFC, y= -log10(adj.P.Val))) +
geom_point(aes(colour=thresh), show.legend = FALSE) +
scale_colour_manual(values = c("TRUE" = "red", "FALSE" = "black")) +
geom_text(data=labsig, aes(label=labsiggenes))
c1vall<- topTable(efit, coef=2, n=nrow(fit))
head(c1vall, n=40)
logFC AveExpr t P.Value adj.P.Val B
TPBG 22.101800 5.718580 25.65465 3.365897e-32 3.428166e-28 61.45532
FGFBP3 19.934064 4.738138 24.43626 3.917992e-31 1.995237e-27 58.27076
FZD3 12.751362 6.088419 23.44222 3.134444e-30 7.981077e-27 57.38200
RUNX1T1 -21.936842 4.583494 -24.16659 6.839176e-31 2.321900e-27 55.93510
LIX1 22.457451 4.120840 19.95297 8.581129e-27 1.456647e-23 48.35581
PLAGL1 12.010326 4.292829 19.45351 2.905798e-26 3.288395e-23 48.32236
DEK 6.350184 8.394821 18.90102 1.151543e-25 1.172847e-22 48.17003
DACH1 17.253507 3.809426 19.71155 1.542837e-26 1.964224e-23 48.11494
SDK2 15.087592 3.438961 20.02142 7.273184e-27 1.456647e-23 47.31320
S100A10 -20.446352 9.208456 -18.46999 3.442476e-25 2.697048e-22 47.08324
ZNF219 8.841571 5.224911 18.79642 1.499533e-25 1.388432e-22 47.02358
WLS 13.119184 5.516756 18.58097 2.592072e-25 2.200021e-22 46.90958
SOX2 15.380397 7.079785 18.21840 6.580037e-25 4.188605e-22 46.19610
PHLDA1 -20.043491 5.389407 -18.39465 4.176733e-25 3.038573e-22 45.59212
BTBD17 22.234310 2.561903 19.83256 1.148984e-26 1.671772e-23 45.12275
KALRN -11.624326 3.744429 -18.23114 6.366739e-25 4.188605e-22 44.15741
CRB2 16.785551 3.443880 18.03772 1.052028e-24 6.302887e-22 43.51480
METRN 11.192753 7.096879 16.85927 2.443614e-23 1.244411e-20 42.77735
NUCKS1 4.380327 10.053209 16.75721 3.231568e-23 1.496069e-20 42.61695
MMP15 -10.687066 4.142716 -17.19833 9.735335e-24 5.218652e-21 42.30404
GLI3 14.209729 4.907882 16.60387 4.928779e-23 2.091651e-20 41.44667
MMRN1 17.981186 2.099102 17.80638 1.928033e-24 1.090946e-21 41.12482
ANP32E 5.032155 8.075231 15.90776 3.463635e-22 1.175904e-19 40.26148
GINS2 7.750517 6.170958 15.96673 2.929923e-22 1.065759e-19 40.24504
RNF175 16.557374 3.530654 16.37330 9.344580e-23 3.806982e-20 39.40595
SOX3 27.530583 2.974193 16.82437 2.688334e-23 1.303842e-20 39.12236
TLE4 13.089684 5.786874 15.37683 1.591517e-21 4.631315e-19 38.45262
DPYSL5 19.134970 2.620642 16.60591 4.901171e-23 2.091651e-20 38.37753
NR2F1 17.845406 5.113486 15.41332 1.431605e-21 4.288500e-19 38.23440
POLD3 6.610797 5.268455 15.31941 1.880603e-21 5.320540e-19 38.19756
POLD2 4.658573 6.727042 15.20406 2.632987e-21 7.057099e-19 38.18097
HES4 12.668030 6.259862 15.13171 3.254429e-21 8.039797e-19 37.96756
CDON 12.508958 3.198887 15.91155 3.426525e-22 1.175904e-19 37.96214
MAPK10 13.372408 4.251468 15.43393 1.348616e-21 4.162321e-19 37.87271
CDH2 13.022568 6.170357 15.10997 3.468836e-21 8.163710e-19 37.81627
BOC 14.524705 3.646838 15.49530 1.129204e-21 3.594045e-19 37.69272
H1FX 5.654379 8.583590 14.96123 5.375262e-21 1.216601e-18 37.54922
ELOVL1 -8.840217 4.741981 -15.13036 3.267363e-21 8.039797e-19 37.35612
DOK4 -13.177945 4.008562 -15.17019 2.907366e-21 7.592698e-19 36.92994
ILDR2 19.790009 1.999447 16.08294 2.109390e-22 7.957089e-20 36.81883
c2vall<- topTable(efit, coef=3, n=nrow(fit))
head(c2vall, n=40)
logFC AveExpr t P.Value adj.P.Val B
TNNI1 40.70212 2.7228493 40.82299 1.081978e-42 1.101995e-38 70.50955
TMEM88 33.69564 4.8364459 28.95391 6.982264e-35 1.185239e-31 66.23925
COL5A1 25.90639 3.3745876 29.76865 1.669845e-35 5.669123e-32 64.26380
ACTA2 32.29965 3.5890806 29.27456 3.959548e-35 8.065599e-32 63.36468
DOK4 22.03021 4.0085622 28.02692 3.714517e-34 5.404622e-31 63.04533
COL6A3 39.84215 2.1126229 33.14146 6.336918e-38 3.227076e-34 62.26711
COL6A2 23.55907 5.6163531 25.66821 3.277045e-32 3.034245e-29 61.59429
COL3A1 43.51845 4.0150207 25.95085 1.881227e-32 1.916029e-29 60.80590
RGS4 34.80188 2.0793145 29.59594 2.254861e-35 5.741440e-32 58.74099
SLC9A3R1 21.91053 5.6035053 23.88670 1.226031e-30 7.345365e-28 57.83929
PCOLCE 26.17836 4.1215745 24.66241 2.465338e-31 1.931498e-28 57.36847
COL6A1 17.30678 6.2672488 22.75576 1.375353e-29 6.090423e-27 56.28398
LIX1 27.20448 4.1208395 24.04619 8.785181e-31 5.592317e-28 56.14164
PKP2 21.37326 4.0327937 24.51147 3.357222e-31 2.442379e-28 56.14085
CYB5D1 24.74627 2.9393467 25.54047 4.218477e-32 3.580432e-29 55.93821
PARVA 10.72248 4.7540148 23.22540 4.981299e-30 2.709944e-27 55.88896
CDH11 22.05367 4.3415742 23.21852 5.055370e-30 2.709944e-27 55.67428
MFAP4 31.80278 3.0790634 24.35705 4.612005e-31 3.131551e-28 54.62730
SIPA1L2 17.77420 5.1211097 22.04047 6.677321e-29 2.518834e-26 54.19347
SLC40A1 33.83430 1.6515464 27.10250 2.065104e-33 2.629135e-30 53.80100
IL6ST 15.79988 4.2065868 22.08566 6.035637e-29 2.364345e-26 53.37473
ADAMTS9 24.43687 3.2941860 22.57692 2.033881e-29 8.631282e-27 53.01510
KCTD12 26.12105 2.9600572 22.84463 1.133397e-29 5.247112e-27 52.58597
MMP2 17.44437 4.5727593 21.42398 2.694549e-28 8.316359e-26 52.50543
NID2 31.69763 2.5954720 23.12880 6.130034e-30 2.973066e-27 52.37082
HAND1 45.21544 3.0694362 22.40851 2.946668e-29 1.200473e-26 52.32234
KRT19 21.25244 7.6277865 20.60746 1.796873e-27 4.357418e-25 52.03265
HAND2 39.85881 0.7517947 26.39914 7.882933e-33 8.920852e-30 49.98338
BAMBI 20.74585 5.5592107 19.65429 1.774581e-26 3.614822e-24 49.39029
WNT5A 22.53489 2.9577383 20.68730 1.488763e-27 3.790763e-25 48.44260
PRRX1 35.94369 2.1476154 21.07962 5.956042e-28 1.685064e-25 48.06460
ST6GALNAC3 15.15410 3.2022024 20.40967 2.870408e-27 6.798861e-25 47.81639
RGS5 24.04455 4.7808114 19.01821 8.577366e-26 1.432139e-23 47.69149
LEF1 14.42013 3.9269779 19.36670 3.600671e-26 7.052468e-24 47.59629
ADAMTS1 15.94466 3.3625283 19.77366 1.325991e-26 2.756167e-24 47.28734
PDGFRB 23.09537 1.9758235 21.11377 5.502992e-28 1.601371e-25 47.08036
WIPF1 15.04493 3.0135050 19.82846 1.160503e-26 2.514835e-24 46.95906
PMP22 17.87131 3.7248274 19.09079 7.151871e-26 1.255893e-23 46.70140
LUM 47.08760 3.3323636 19.27471 4.522643e-26 8.375113e-24 46.52270
MSRB3 20.40214 1.6928324 21.39009 2.912003e-28 8.723162e-26 46.27155
c3vall<- topTable(efit, coef=4, n=nrow(fit))
head(c3vall, n=40)
logFC AveExpr t P.Value adj.P.Val B
NR2F1 27.259897 5.113486 22.84719 1.127126e-29 1.147978e-25 55.09757
CNP 12.436813 5.491823 20.54441 2.085419e-27 8.231646e-24 50.74612
FGFBP3 17.781302 4.738138 20.06111 6.609706e-27 1.346397e-23 49.32649
DNAJC1 13.566884 5.886947 19.05404 7.840743e-26 1.140828e-22 47.76852
ATP1A2 23.594471 3.785417 19.83360 1.146095e-26 1.945497e-23 47.21788
ZEB2 19.087833 4.710630 18.97829 9.481171e-26 1.207072e-22 46.97331
METRN 13.448468 7.096879 18.02418 1.089827e-24 1.109988e-21 45.66109
S100B 34.071411 1.899250 20.48076 2.424638e-27 8.231646e-24 44.88785
EDNRA 28.715723 1.937977 20.25544 4.146051e-27 1.055688e-23 44.62876
LMO4 13.409311 6.906923 17.59454 3.374245e-24 2.863890e-21 44.49439
PLEKHA4 15.892794 3.941248 16.66216 4.196826e-23 2.722695e-20 40.18253
NPR3 31.665173 2.001425 17.20553 9.548103e-24 7.480572e-21 39.43758
PHACTR3 29.133146 1.582047 18.16991 7.460755e-25 8.443088e-22 39.40007
PRELP 28.016345 1.397240 17.82957 1.813990e-24 1.679590e-21 38.58424
HDDC2 7.808879 7.067837 15.30764 1.946182e-21 8.259109e-19 38.39282
LSAMP 15.258975 4.274772 15.33662 1.788758e-21 7.921088e-19 37.51913
NRIP1 10.980717 5.045814 15.13992 3.176965e-21 1.244515e-18 37.36601
ERBB3 26.063915 3.772975 15.53613 1.003641e-21 4.646399e-19 37.35704
RFTN2 15.629228 2.333311 16.09497 2.039044e-22 1.221627e-19 37.11441
SOX10 35.357216 1.445070 16.73496 3.435181e-23 2.499094e-20 36.85874
MOXD1 31.301026 1.630318 16.65528 4.277184e-23 2.722695e-20 36.59608
MPZ 37.989571 2.185961 15.74695 5.477763e-22 2.789551e-19 36.23134
CUEDC2 8.812910 6.739784 14.55156 1.821170e-20 5.796443e-18 36.20308
ADAMTS4 16.080498 2.185148 15.80840 4.596037e-22 2.463718e-19 35.86527
SDK2 12.408714 3.438961 15.08119 3.774783e-21 1.423932e-18 35.77713
SMOC1 23.609160 2.764959 15.25646 2.259319e-21 9.204465e-19 35.55062
RNF165 14.605165 3.395552 14.85101 7.449088e-21 2.528965e-18 35.35444
SCRG1 32.287827 2.756581 14.97339 5.185653e-21 1.821237e-18 35.23881
RHOB 9.618255 6.099518 14.10621 7.025470e-20 2.097178e-17 34.81597
CDH6 21.729757 4.433859 14.09788 7.206797e-20 2.097178e-17 34.27559
CMTM5 19.554999 1.322153 15.83496 4.260839e-22 2.410925e-19 34.20197
ADSS 7.531949 6.431948 13.91046 1.281740e-19 3.626255e-17 34.19718
SOX5 15.152791 3.722675 14.23530 4.738359e-20 1.462430e-17 34.14772
KANK4 26.484723 2.501823 14.58598 1.642395e-20 5.396061e-18 33.78969
ASXL1 6.095035 5.423634 13.67716 2.640877e-19 7.269550e-17 33.29193
ITGA4 26.867650 1.080979 15.58144 8.807960e-22 4.271861e-19 32.84077
UBXN2A 5.564068 5.249474 13.47126 5.027079e-19 1.347389e-16 32.57378
COL2A1 15.960632 5.349475 13.37149 6.880597e-19 1.796894e-16 32.40181
FUNDC2 5.210381 6.720313 12.97442 2.429925e-18 5.499730e-16 31.41366
FZD3 8.129218 6.088419 12.92457 2.851092e-18 6.178377e-16 31.15240
c4vall<- topTable(efit, coef=5, n=nrow(fit))
head(c4vall, n=40)
logFC AveExpr t P.Value adj.P.Val B
S100A16 27.080627 4.866912 27.36428 1.264020e-33 1.287405e-29 63.08509
CST3 14.942772 7.795340 25.47559 4.797783e-32 1.221635e-28 62.22486
KRT19 24.227074 7.627787 23.64002 2.060481e-30 4.197200e-27 58.49467
LGALS3 38.931399 3.708124 26.60588 5.300631e-33 1.799564e-29 58.28405
GATA3 28.257190 2.729964 26.71297 4.320131e-33 1.799564e-29 57.05943
FN1 25.545354 6.483732 21.57219 1.921207e-28 3.261249e-25 54.03110
MGST2 17.991057 4.874313 20.15560 5.266298e-27 4.876113e-24 49.94709
S100A10 18.776220 9.208456 19.56199 2.225056e-26 1.743246e-23 49.84590
DYNLT3 11.823213 4.429137 20.40886 2.875933e-27 3.254597e-24 49.58531
HDHD3 14.391718 3.937994 20.45588 2.572042e-27 3.254597e-24 48.83829
B4GALT1 13.975120 4.286524 19.77059 1.335956e-26 1.133893e-23 48.27729
PKP2 17.912688 4.032794 20.23659 4.337290e-27 4.417530e-24 48.27183
DSP 19.933232 6.193595 18.88281 1.205599e-25 6.821678e-23 47.66443
ACAA1 10.884221 4.937621 18.81365 1.435604e-25 7.695592e-23 46.69846
ANXA3 27.349190 3.958828 19.41961 3.159261e-26 2.013562e-23 46.41686
BCAM 14.764030 4.901107 18.58850 2.542742e-25 1.294891e-22 46.18236
PTGR1 12.793966 6.906708 18.18455 7.182952e-25 3.483732e-22 46.12791
SPINT2 13.341676 7.667458 18.00630 1.141883e-24 5.056556e-22 45.74786
ATP1A1 7.008755 6.677654 17.78639 2.032202e-24 7.665918e-22 44.99305
C12orf75 13.308721 5.519731 17.98375 1.211125e-24 5.139710e-22 44.93519
LYPD6B 22.957248 2.444422 19.51791 2.479643e-26 1.803940e-23 44.61536
KRT8 17.246164 8.333419 17.39495 5.742068e-24 1.840958e-21 44.29065
EPSTI1 36.019508 1.661485 20.99559 7.239140e-28 1.053295e-24 44.24209
STARD10 15.066063 4.457784 17.68847 2.631140e-24 9.570771e-22 43.63256
WFDC2 20.211786 5.987506 17.39223 5.784060e-24 1.840958e-21 43.47320
COL18A1 13.226814 6.099623 17.08565 1.319995e-23 3.841186e-21 43.17723
SMAGP 20.018105 3.310236 17.90978 1.469687e-24 5.987504e-22 42.85857
LAMA1 16.993142 4.218577 17.30335 7.339346e-24 2.265189e-21 42.30523
MPC2 8.990799 7.303518 16.52722 6.092724e-23 1.513522e-20 41.85776
CAMK2D 13.126956 4.828020 16.87222 2.358635e-23 6.492622e-21 41.81023
FREM2 17.644108 3.314543 17.62590 3.104999e-24 1.054147e-21 41.80537
CEBPA 24.897862 1.767795 19.07916 7.362938e-26 4.411266e-23 41.47196
S100A14 46.606615 1.798091 19.41911 3.163181e-26 2.013562e-23 41.28707
AMOT 15.355215 3.625547 16.98462 1.736344e-23 4.912406e-21 41.20077
NFE2L2 7.379952 5.323262 16.50202 6.533384e-23 1.584346e-20 41.17583
SPINT1 21.661490 4.268353 16.80332 2.847831e-23 7.632936e-21 40.89153
AHNAK 20.204225 4.421089 16.41992 8.206873e-23 1.857489e-20 40.78613
ANXA4 16.553834 3.837055 16.65474 4.283459e-23 1.090676e-20 40.43755
PCBD1 14.108516 6.534839 16.01753 2.537481e-22 4.970047e-20 40.35659
MYOF 25.554015 2.071093 17.81479 1.885888e-24 7.387602e-22 40.32981
c5vall<- topTable(efit, coef=6, n=nrow(fit))
head(c5vall, n=40)
logFC AveExpr t P.Value adj.P.Val B
TAGLN3 39.27827 3.789455 36.91588 2.211015e-40 2.251919e-36 70.92052
RTN1 36.01647 3.277588 36.13899 6.774968e-40 3.450153e-36 68.74791
MLLT11 20.89371 7.328851 28.83936 8.562225e-35 8.720627e-32 67.96028
PCBP4 22.31930 5.195819 30.12132 9.086148e-36 1.322035e-32 67.77555
STMN2 46.66226 4.359924 31.34054 1.162611e-36 2.499848e-33 67.23802
ELAVL2 29.44406 3.476656 31.30791 1.227221e-36 2.499848e-33 64.19872
ELAVL4 36.55510 3.163252 29.94288 1.235271e-35 1.572655e-32 63.08840
KLC1 11.06287 5.725723 26.00295 1.699252e-32 1.018052e-29 61.67888
BASP1 16.82605 8.299298 24.78377 1.925540e-31 6.762629e-29 60.99429
MAP1B 19.80586 8.655748 24.61743 2.702512e-31 9.175029e-29 60.82784
HES6 25.84775 6.033686 25.19891 8.331461e-32 3.689388e-29 60.54604
ACAP3 17.63769 3.784109 26.99525 2.528159e-33 1.839236e-30 60.14522
NHLH1 49.39919 1.853023 35.08292 3.218412e-39 1.092651e-35 59.99047
DCX 36.36060 3.182446 29.70821 1.854585e-35 2.098772e-32 59.34817
PPP1R1A 22.18553 4.854119 25.73511 2.872238e-32 1.539670e-29 59.24161
TUBA1A 20.19511 9.700915 23.66903 1.937973e-30 5.194278e-28 59.07819
GDI1 12.10738 5.553161 24.49601 3.465450e-31 1.138568e-28 58.85907
OLFM1 31.47044 3.200861 27.92111 4.509037e-34 3.827045e-31 58.79719
FNDC5 30.00669 2.213297 30.97722 2.129275e-36 3.614444e-33 58.65621
CDKN2D 20.10065 3.777317 25.26904 7.240447e-32 3.351998e-29 57.64370
CRMP1 24.21700 4.946283 23.80231 1.463591e-30 4.028832e-28 56.96594
DLL3 23.50378 4.195074 24.00489 9.575414e-31 2.868400e-28 56.32955
KLHL35 34.76979 1.911985 27.95029 4.274084e-34 3.827045e-31 55.55411
GNG3 32.81053 2.968788 25.53496 4.264855e-32 2.171878e-29 54.79885
BTBD17 28.18865 2.561903 25.11260 9.907062e-32 4.036137e-29 53.58640
RNF165 21.97121 3.395552 23.47306 2.935422e-30 7.665967e-28 53.56862
GADD45G 18.64181 4.708401 22.01092 7.133971e-29 1.513739e-26 53.47786
BCL7A 12.53809 5.004675 21.80622 1.130333e-28 2.257342e-26 53.04609
TERF2IP 13.98878 6.062423 21.25503 3.971313e-28 6.973762e-26 52.90267
GPC2 15.62513 4.981706 21.59537 1.822503e-28 3.437444e-26 52.71414
NHLH2 28.21825 1.920786 26.25848 1.034235e-32 7.022456e-30 52.46803
INA 32.41813 3.051580 23.80835 1.445128e-30 4.028832e-28 52.03332
SCG3 28.80869 3.886964 22.11342 5.672946e-29 1.256064e-26 51.44738
CADM3 24.69370 2.273654 24.01672 9.341917e-31 2.868400e-28 51.29941
MAP1A 21.25699 4.080536 21.49502 2.290668e-28 4.241901e-26 50.86803
PHF21B 18.89498 3.066879 22.68879 1.591899e-29 3.684885e-27 50.76081
BRSK2 22.22791 2.683183 23.29822 4.261881e-30 1.058714e-27 50.55647
L1CAM 23.17027 2.462770 23.17140 5.593453e-30 1.356412e-27 50.30607
ZBTB20 16.53605 3.853132 20.97404 7.611319e-28 1.292021e-25 50.29049
CNTN2 35.07210 1.547870 25.37668 5.840792e-32 2.832784e-29 50.28118
c6vall<- topTable(efit, coef=7, n=nrow(fit))
head(c6vall, n=40)
logFC AveExpr t P.Value adj.P.Val B
EGFL7 27.935828 5.8780322 41.89393 2.735599e-43 2.786208e-39 80.53473
GNG11 36.280582 5.1706361 34.96649 3.831685e-39 1.074681e-35 73.40601
RAMP2 31.610475 5.1932897 35.20625 2.677035e-39 1.074681e-35 72.76896
IGFBP4 27.086680 4.9010287 34.90211 4.220644e-39 1.074681e-35 71.11308
S100A16 32.245851 4.8669123 27.45909 1.059188e-33 8.298328e-31 61.69936
S100A4 24.943083 6.3252678 25.39660 5.613631e-32 2.598856e-29 60.36321
PPM1F 20.623640 3.5752285 30.03755 1.049324e-35 2.137472e-32 58.90080
CCDC85B 13.676949 6.9139066 24.59261 2.843196e-31 1.072517e-28 58.67505
MAP4K2 21.197349 3.3771246 28.76027 9.861217e-35 1.255456e-31 56.48165
KDR 41.415348 3.2418243 26.43943 7.294636e-33 4.370345e-30 55.42011
DOCK6 23.057354 3.1436171 27.72007 6.528440e-34 6.649216e-31 55.11032
PLXND1 29.363815 2.9192194 27.49950 9.824661e-34 8.298328e-31 55.08149
SLC9A3R2 23.540806 4.3409448 23.82427 1.397586e-30 4.313457e-28 54.20405
RALB 16.914324 4.7312516 23.86447 1.284522e-30 4.088391e-28 53.77659
MAST4 22.773947 3.3625695 25.78205 2.618960e-32 1.270195e-29 53.61937
TIMP3 27.052457 4.0709583 22.85844 1.099883e-29 2.732271e-27 52.94415
RGL1 20.835340 3.0819442 24.99454 1.256608e-31 5.332729e-29 51.81292
SPTBN1 16.346511 6.5896602 20.62004 1.744319e-27 2.960981e-25 50.79827
LIMS1 13.068649 6.1960830 20.87661 9.552215e-28 1.737309e-25 50.66937
FLT1 40.731797 2.8799215 22.93230 9.370305e-30 2.385914e-27 49.76982
PMP22 25.706666 3.7248274 21.56229 1.964989e-28 4.002682e-26 49.68797
LDB2 25.277510 4.0010548 21.32516 3.379794e-28 6.749647e-26 49.22420
TMEM255B 28.648616 1.9343944 26.57145 5.661778e-33 3.604075e-30 48.49353
JCAD 31.714567 2.0172058 24.39303 4.282439e-31 1.504022e-28 48.19190
IFI16 30.122255 4.6247185 19.60301 2.012033e-26 2.661371e-24 47.72291
ADAM15 20.451034 3.5760753 21.17113 4.819338e-28 9.261313e-26 47.67574
CPNE2 18.756595 4.2381291 20.16864 5.104074e-27 7.534057e-25 47.47991
RCSD1 45.680446 0.5769777 28.98220 6.639939e-35 9.661111e-32 47.44877
HOPX 51.070142 1.4882899 23.09900 6.536220e-30 1.751879e-27 47.27070
BCL6B 33.786968 1.2859310 26.98907 2.557842e-33 1.736775e-30 47.07730
SHANK3 23.620230 2.0559392 24.86990 1.616761e-31 6.333350e-29 46.98638
LYL1 41.845726 1.0664785 26.35787 8.535659e-33 4.829761e-30 46.71356
MSN 15.214456 6.0684067 18.89753 1.161707e-25 1.300218e-23 46.55920
KLF2 43.460135 2.1565324 21.83917 1.049397e-28 2.226689e-26 46.54210
RGS5 29.352348 4.7808114 18.83845 1.348397e-25 1.461002e-23 46.50183
TM4SF18 48.774491 0.8848746 27.37220 1.245457e-33 9.060700e-31 46.46727
SNX3 9.913782 7.9900052 18.47346 3.412005e-25 3.247782e-23 46.41573
AFAP1L1 37.626171 1.7753216 23.75956 1.601284e-30 4.796789e-28 46.03140
SOX7 40.967625 1.4044632 24.44126 3.877910e-31 1.410590e-28 45.65633
MEF2C 32.094321 2.4308036 20.70614 1.424227e-27 2.500991e-25 45.61710
output.list<- list()
for (i in 1:nclust){
ta<- topTable(efit, coef=i,n=nrow(fit))
output.list[[i]]<- ta
}
listnames<- c(paste0("Cluster", unique(dge$samples$cluster)))
names(output.list)<- as.vector(listnames)
write.csv(output.list, "/project2/gilad/katie/Pilot_HumanEBs/Embryoid_Body_Pilot_Workflowr/output/Pseudobulk_Limma_res0.1_OnevAllTopTables.csv")
#output table with top 5 upreg DE genes in each cluster by adjusted p
OnevAll.top10.adjP<- NULL
for(i in 1:nclust){
c<- output.list[[i]]
top10<- c[c$logFC>0,]
top10<- top10[order(top10$adj.P.Val),]
top10<- rownames(top10)[1:10]
OnevAll.top10.adjP<- cbind(OnevAll.top10.adjP, top10)
}
colnames(OnevAll.top10.adjP)<- as.character(0:(nclust-1))
write.csv(OnevAll.top10.adjP, "/project2/gilad/katie/Pilot_HumanEBs/Embryoid_Body_Pilot_Workflowr/output/Pseudobulk_Limma_res0.1_OnevAll_top10Upregby_adjP.csv")
#output table with top 5 upreg DE genes in each cluster by logFC
OnevAll.top10.logFC<- NULL
for(i in 1:nclust){
c<- output.list[[i]]
top10<- c[order(c$logFC, decreasing = T),]
top10<- rownames(top10)[1:10]
OnevAll.top10.logFC<- cbind(OnevAll.top10.logFC, top10)
}
colnames(OnevAll.top10.logFC)<- as.character(0:(nclust-1))
write.csv(OnevAll.top10.logFC, "/project2/gilad/katie/Pilot_HumanEBs/Embryoid_Body_Pilot_Workflowr/output/Pseudobulk_Limma_res0.1_OnevAll_top10Upregby_logFC.csv")
sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)
Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so
locale:
[1] C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] UpSetR_1.4.0 ggplot2_3.3.3 reshape2_1.4.4 edgeR_3.28.1
[5] limma_3.42.2 dplyr_1.0.2 Matrix_1.2-18 Seurat_3.2.0
[9] workflowr_1.6.2
loaded via a namespace (and not attached):
[1] Rtsne_0.15 colorspace_2.0-0 deldir_0.1-28
[4] ellipsis_0.3.1 ggridges_0.5.2 rprojroot_2.0.2
[7] fs_1.4.2 spatstat.data_1.4-3 farver_2.0.3
[10] leiden_0.3.3 listenv_0.8.0 npsurv_0.4-0
[13] ggrepel_0.9.0 codetools_0.2-16 splines_3.6.1
[16] lsei_1.2-0 knitr_1.29 polyclip_1.10-0
[19] jsonlite_1.7.2 ica_1.0-2 cluster_2.1.0
[22] png_0.1-7 uwot_0.1.10 shiny_1.5.0
[25] sctransform_0.2.1 compiler_3.6.1 httr_1.4.2
[28] fastmap_1.0.1 lazyeval_0.2.2 later_1.1.0.1
[31] htmltools_0.5.0 tools_3.6.1 rsvd_1.0.3
[34] igraph_1.2.6 gtable_0.3.0 glue_1.4.2
[37] RANN_2.6.1 rappdirs_0.3.3 Rcpp_1.0.6
[40] spatstat_1.64-1 vctrs_0.3.6 gdata_2.18.0
[43] ape_5.4-1 nlme_3.1-140 lmtest_0.9-37
[46] xfun_0.16 stringr_1.4.0 globals_0.12.5
[49] mime_0.9 miniUI_0.1.1.1 lifecycle_0.2.0
[52] irlba_2.3.3 gtools_3.8.2 goftest_1.2-2
[55] future_1.18.0 MASS_7.3-51.4 zoo_1.8-8
[58] scales_1.1.1 promises_1.1.1 spatstat.utils_1.17-0
[61] parallel_3.6.1 RColorBrewer_1.1-2 yaml_2.2.1
[64] reticulate_1.20 pbapply_1.4-2 gridExtra_2.3
[67] rpart_4.1-15 stringi_1.5.3 highr_0.8
[70] caTools_1.18.0 rlang_0.4.10 pkgconfig_2.0.3
[73] bitops_1.0-6 evaluate_0.14 lattice_0.20-38
[76] ROCR_1.0-7 purrr_0.3.4 tensor_1.5
[79] labeling_0.4.2 patchwork_1.1.1 htmlwidgets_1.5.1
[82] cowplot_1.1.1 tidyselect_1.1.0 here_0.1-11
[85] RcppAnnoy_0.0.18 plyr_1.8.6 magrittr_2.0.1
[88] R6_2.5.0 gplots_3.0.4 generics_0.1.0
[91] withr_2.4.2 pillar_1.4.7 whisker_0.4
[94] mgcv_1.8-28 fitdistrplus_1.0-14 survival_3.2-3
[97] abind_1.4-5 tibble_3.0.4 future.apply_1.6.0
[100] crayon_1.3.4 KernSmooth_2.23-15 plotly_4.9.2.1
[103] rmarkdown_2.3 locfit_1.5-9.4 grid_3.6.1
[106] data.table_1.13.4 git2r_0.26.1 digest_0.6.27
[109] xtable_1.8-4 tidyr_1.1.0 httpuv_1.5.4
[112] munsell_0.5.0 viridisLite_0.3.0
sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)
Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so
locale:
[1] C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] UpSetR_1.4.0 ggplot2_3.3.3 reshape2_1.4.4 edgeR_3.28.1
[5] limma_3.42.2 dplyr_1.0.2 Matrix_1.2-18 Seurat_3.2.0
[9] workflowr_1.6.2
loaded via a namespace (and not attached):
[1] Rtsne_0.15 colorspace_2.0-0 deldir_0.1-28
[4] ellipsis_0.3.1 ggridges_0.5.2 rprojroot_2.0.2
[7] fs_1.4.2 spatstat.data_1.4-3 farver_2.0.3
[10] leiden_0.3.3 listenv_0.8.0 npsurv_0.4-0
[13] ggrepel_0.9.0 codetools_0.2-16 splines_3.6.1
[16] lsei_1.2-0 knitr_1.29 polyclip_1.10-0
[19] jsonlite_1.7.2 ica_1.0-2 cluster_2.1.0
[22] png_0.1-7 uwot_0.1.10 shiny_1.5.0
[25] sctransform_0.2.1 compiler_3.6.1 httr_1.4.2
[28] fastmap_1.0.1 lazyeval_0.2.2 later_1.1.0.1
[31] htmltools_0.5.0 tools_3.6.1 rsvd_1.0.3
[34] igraph_1.2.6 gtable_0.3.0 glue_1.4.2
[37] RANN_2.6.1 rappdirs_0.3.3 Rcpp_1.0.6
[40] spatstat_1.64-1 vctrs_0.3.6 gdata_2.18.0
[43] ape_5.4-1 nlme_3.1-140 lmtest_0.9-37
[46] xfun_0.16 stringr_1.4.0 globals_0.12.5
[49] mime_0.9 miniUI_0.1.1.1 lifecycle_0.2.0
[52] irlba_2.3.3 gtools_3.8.2 goftest_1.2-2
[55] future_1.18.0 MASS_7.3-51.4 zoo_1.8-8
[58] scales_1.1.1 promises_1.1.1 spatstat.utils_1.17-0
[61] parallel_3.6.1 RColorBrewer_1.1-2 yaml_2.2.1
[64] reticulate_1.20 pbapply_1.4-2 gridExtra_2.3
[67] rpart_4.1-15 stringi_1.5.3 highr_0.8
[70] caTools_1.18.0 rlang_0.4.10 pkgconfig_2.0.3
[73] bitops_1.0-6 evaluate_0.14 lattice_0.20-38
[76] ROCR_1.0-7 purrr_0.3.4 tensor_1.5
[79] labeling_0.4.2 patchwork_1.1.1 htmlwidgets_1.5.1
[82] cowplot_1.1.1 tidyselect_1.1.0 here_0.1-11
[85] RcppAnnoy_0.0.18 plyr_1.8.6 magrittr_2.0.1
[88] R6_2.5.0 gplots_3.0.4 generics_0.1.0
[91] withr_2.4.2 pillar_1.4.7 whisker_0.4
[94] mgcv_1.8-28 fitdistrplus_1.0-14 survival_3.2-3
[97] abind_1.4-5 tibble_3.0.4 future.apply_1.6.0
[100] crayon_1.3.4 KernSmooth_2.23-15 plotly_4.9.2.1
[103] rmarkdown_2.3 locfit_1.5-9.4 grid_3.6.1
[106] data.table_1.13.4 git2r_0.26.1 digest_0.6.27
[109] xtable_1.8-4 tidyr_1.1.0 httpuv_1.5.4
[112] munsell_0.5.0 viridisLite_0.3.0