Last updated: 2022-07-24
Checks: 6 1
Knit directory:
Density_and_sexual_selection_2022/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown is untracked by Git. To know which version of the R
Markdown file created these results, you’ll want to first commit it to
the Git repo. If you’re still working on the analysis, you can ignore
this warning. When you’re finished, you can run
wflow_publish
to commit the R Markdown file and build the
HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20210613)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version a92075d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Untracked files:
Untracked: analysis/index2.Rmd
Untracked: analysis/index3.Rmd
Untracked: analysis/index4.Rmd
Untracked: analysis/index5.Rmd
Untracked: analysis/start.Rmd
Unstaged changes:
Modified: analysis/_site.yml
Modified: analysis/index.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
There are no past versions. Publish this analysis with
wflow_publish()
to start tracking its development.
Supplementary material reporting R code for the manuscript ‘Population density affects sexual selection in the red flour beetle’.
Before we started the analyses, we loaded all necessary packages and data.
#load packages
rm(list = ls())
library(ggeffects)
library(ggplot2)
library(gridExtra)
library(lme4)
library(lmerTest)
library(readr)
library(dplyr)
library(EnvStats)
library(cowplot)
library(gridGraphics)
library(car)
library(RColorBrewer)
library(boot)
library(data.table)
library(base)
library(tidyr)
library(ICC)
#load data
=read_delim("./data/DB_AllData_V04.CSV",";", escape_double = FALSE, trim_ws = TRUE)
DB_data
#Set factors and level factors
$Week=as.factor(DB_data$Week)
DB_data
$Date=as.factor(DB_data$Date)
DB_data
$Sex=as.factor(DB_data$Sex)
DB_data
$Gr_size=as.factor(DB_data$Gr_size)
DB_data$Gr_size <- factor(DB_data$Gr_size, levels=c("SG","LG"))
DB_data
$Area=as.factor(DB_data$Area)
DB_data
#Load Body mass data
<- read_delim("./data/DB_mass_focals_female.CSV",
DB_BM_female ";", escape_double = FALSE, trim_ws = TRUE)
<- read_delim("./data/DB_mass_focals_males.CSV",
DB_BM_male ";", escape_double = FALSE, trim_ws = TRUE)
=merge(DB_data,DB_BM_male,by.x = 'Well_ID',by.y = 'ID_male_focals')
DB_data_m=merge(DB_data,DB_BM_female,by.x = 'F1_ID',by.y = 'ID_female_focals')
DB_data_f=rbind(DB_data_m,DB_data_f)
DB_data
###Exclude incomplete data
=DB_data[DB_data$excluded!=1,]
DB_data
#Exclude zero MS (all data)####
=DB_data[DB_data$MatingPartners_number!=0,]
DB_data
#Calculate total offspring number ####
$Total_N_MTP1=colSums(rbind(DB_data$N_MTP1_1,DB_data$N_MTP1_2,DB_data$N_MTP1_3,DB_data$N_MTP1_4,DB_data$N_MTP1_5,DB_data$N_MTP1_6), na.rm = T)
DB_data$Total_N_Rd=colSums(rbind(DB_data$N_RD_1,DB_data$N_RD_2,DB_data$N_RD_3,DB_data$N_RD_4,DB_data$N_RD_5,DB_data$N_RD_6), na.rm = T)/DB_data$N_comp
DB_data
#Calculate proportional RS ####
#Percentage focal offspring
$m_prop_RS=NA
DB_data$m_prop_RS=(DB_data$Total_N_MTP1/(DB_data$Total_N_MTP1+DB_data$Total_N_Rd))*100
DB_data$m_prop_RS[DB_data$Sex=='F']=NA
DB_data$f_prop_RS=NA
DB_data$f_prop_RS=(DB_data$Total_N_MTP1/(DB_data$Total_N_MTP1+DB_data$Total_N_Rd))*100
DB_data$f_prop_RS[DB_data$Sex=='M']=NA
DB_data
#Calculate proportion of successful matings ####
$Prop_MS=NA
DB_data$Prop_MS=DB_data$Matings_number/(DB_data$Attempts_number+DB_data$Matings_number)
DB_data$Prop_MS[DB_data$Prop_MS==0]=NA
DB_data
#Calculate total encounters ####
$Total_Encounters=NA
DB_data$Total_Encounters=DB_data$Attempts_number+DB_data$Matings_number
DB_data
# Treatment identifier for each density ####
=1
n$Treatment=NA
DB_datafor(n in 1:length(DB_data$Sex)){if(DB_data$Gr_size[n]=='SG' && DB_data$Area[n]=='Large'){DB_data$Treatment[n]='D = 0.26'
else if(DB_data$Gr_size[n]=='LG' && DB_data$Area[n]=='Large'){DB_data$Treatment[n]='D = 0.52'
}else if(DB_data$Gr_size[n]=='SG' && DB_data$Area[n]=='Small'){DB_data$Treatment[n]='D = 0.67'
}else if(DB_data$Gr_size[n]=='LG' && DB_data$Area[n]=='Small'){DB_data$Treatment[n]='D = 1.33'
}else{DB_data$Treatment[n]=NA}}
}
$Treatment=as.factor(DB_data$Treatment)
DB_data
# Exclude Incubator 3 data #### -> poor performance
=DB_data[DB_data$Incu3!=1,]
DB_data_clean
# Calculate genetic MS ####
# Only clean data
$gMS=NA
DB_data_cleanfor(i in 1:length(DB_data_clean$Sex)) {if (DB_data_clean$N_MTP1_1[i]>=1 & !is.na (DB_data_clean$N_MTP1_1[i])){
$gMS[i]=1
DB_data_cleanelse{DB_data_clean$gMS[i]=0}}
}for(i in 1:length(DB_data_clean$Sex)) {if (DB_data_clean$N_MTP1_2[i]>=1 & !is.na (DB_data_clean$N_MTP1_2[i])){
$gMS[i]=DB_data_clean$gMS[i]+1
DB_data_cleanelse{}}
}for(i in 1:length(DB_data_clean$Sex)) {if (DB_data_clean$N_MTP1_3[i]>=1 & !is.na (DB_data_clean$N_MTP1_3[i])){
$gMS[i]=DB_data_clean$gMS[i]+1}else{}}
DB_data_cleanfor(i in 1:length(DB_data_clean$Sex)) {if (DB_data_clean$N_MTP1_4[i]>=1 & !is.na (DB_data_clean$N_MTP1_4[i])){
$gMS[i]=DB_data_clean$gMS[i]+1}else{}}
DB_data_cleanfor(i in 1:length(DB_data_clean$Sex)) {if (DB_data_clean$N_MTP1_5[i]>=1 & !is.na (DB_data_clean$N_MTP1_5[i])){
$gMS[i]=DB_data_clean$gMS[i]+1}else{}}
DB_data_cleanfor(i in 1:length(DB_data_clean$Sex)) {if (DB_data_clean$N_MTP1_6[i]>=1 & !is.na (DB_data_clean$N_MTP1_6[i])){
$gMS[i]=DB_data_clean$gMS[i]+1}else{}}
DB_data_clean
# All data
$gMS=NA
DB_datafor(i in 1:length(DB_data$Sex)) {if (DB_data$N_MTP1_1[i]>=1 & !is.na (DB_data$N_MTP1_1[i])){
$gMS[i]=1
DB_dataelse{DB_data$gMS[i]=0}}
}for(i in 1:length(DB_data$Sex)) {if (DB_data$N_MTP1_2[i]>=1 & !is.na (DB_data$N_MTP1_2[i])){
$gMS[i]=DB_data$gMS[i]+1
DB_dataelse{}}
}for(i in 1:length(DB_data$Sex)) {if (DB_data$N_MTP1_3[i]>=1 & !is.na (DB_data$N_MTP1_3[i])){
$gMS[i]=DB_data$gMS[i]+1}else{}}
DB_datafor(i in 1:length(DB_data$Sex)) {if (DB_data$N_MTP1_4[i]>=1 & !is.na (DB_data$N_MTP1_4[i])){
$gMS[i]=DB_data$gMS[i]+1}else{}}
DB_datafor(i in 1:length(DB_data$Sex)) {if (DB_data$N_MTP1_5[i]>=1 & !is.na (DB_data$N_MTP1_5[i])){
$gMS[i]=DB_data$gMS[i]+1}else{}}
DB_datafor(i in 1:length(DB_data$Sex)) {if (DB_data$N_MTP1_6[i]>=1 & !is.na (DB_data$N_MTP1_6[i])){
$gMS[i]=DB_data$gMS[i]+1}else{}}
DB_data
#Calculate Rd competition RS ####
$m_RS_Rd_comp=NA
DB_data_cleanfor(i in 1:length(DB_data_clean$Sex)) {if (DB_data_clean$N_MTP1_1[i]>=1 & !is.na (DB_data_clean$N_MTP1_1[i])){
$m_RS_Rd_comp[i]=DB_data_clean$N_RD_1[i]
DB_data_cleanelse{DB_data_clean$m_RS_Rd_comp[i]=0}}
}for(i in 1:length(DB_data_clean$Sex)) {if (DB_data_clean$N_MTP1_2[i]>=1 & !is.na (DB_data_clean$N_MTP1_2[i])){
$m_RS_Rd_comp[i]=DB_data_clean$m_RS_Rd_comp[i]+DB_data_clean$N_RD_2[i]
DB_data_cleanelse{}}
}for(i in 1:length(DB_data_clean$Sex)) {if (DB_data_clean$N_MTP1_3[i]>=1 & !is.na (DB_data_clean$N_MTP1_3[i])){
$m_RS_Rd_comp[i]=DB_data_clean$m_RS_Rd_comp[i]+DB_data_clean$N_RD_3[i]
DB_data_cleanelse{}}
}for(i in 1:length(DB_data_clean$Sex)) {if (DB_data_clean$N_MTP1_4[i]>=1 & !is.na (DB_data_clean$N_MTP1_4[i])){
$m_RS_Rd_comp[i]=DB_data_clean$m_RS_Rd_comp[i]+DB_data_clean$N_RD_4[i]
DB_data_cleanelse{}}
}for(i in 1:length(DB_data_clean$Sex)) {if (DB_data_clean$N_MTP1_5[i]>=1 & !is.na (DB_data_clean$N_MTP1_5[i])){
$m_RS_Rd_comp[i]=DB_data_clean$m_RS_Rd_comp[i]+DB_data_clean$N_RD_5[i]
DB_data_cleanelse{}}
}for(i in 1:length(DB_data_clean$Sex)) {if (DB_data_clean$N_MTP1_6[i]>=1 & !is.na (DB_data_clean$N_MTP1_6[i])){
$m_RS_Rd_comp[i]=DB_data_clean$m_RS_Rd_comp[i]+DB_data_clean$N_RD_6[i]
DB_data_cleanelse{}}
}
# Check matings of males #### -> add copulations where offspring found but no copulation registered
for(i in 1:length(DB_data_clean$Sex)) {if (DB_data_clean$N_MTP1_1[i]>=1 && DB_data_clean$Cop_Fe_1[i]==0 & !is.na (DB_data_clean$Cop_Fe_1[i])& !is.na (DB_data_clean$N_MTP1_1[i])){
$Cop_Fe_1[i]=1}else{}}
DB_data_cleanfor(i in 1:length(DB_data_clean$Sex)) {if (DB_data_clean$N_MTP1_2[i]>=1 && DB_data_clean$Cop_Fe_2[i]==0 & !is.na (DB_data_clean$Cop_Fe_2[i])& !is.na (DB_data_clean$N_MTP1_2[i])){
$Cop_Fe_2[i]=1}else{}}
DB_data_cleanfor(i in 1:length(DB_data_clean$Sex)) {if (DB_data_clean$N_MTP1_3[i]>=1 && DB_data_clean$Cop_Fe_3[i]==0 & !is.na (DB_data_clean$Cop_Fe_3[i])& !is.na (DB_data_clean$N_MTP1_3[i])){
$Cop_Fe_3[i]=1}else{}}
DB_data_cleanfor(i in 1:length(DB_data_clean$Sex)) {if (DB_data_clean$N_MTP1_4[i]>=1 && DB_data_clean$Cop_Fe_4[i]==0 & !is.na (DB_data_clean$Cop_Fe_4[i])& !is.na (DB_data_clean$N_MTP1_4[i])){
$Cop_Fe_4[i]=1}else{}}
DB_data_cleanfor(i in 1:length(DB_data_clean$Sex)) {if (DB_data_clean$N_MTP1_5[i]>=1 && DB_data_clean$Cop_Fe_5[i]==0 & !is.na (DB_data_clean$Cop_Fe_5[i])& !is.na (DB_data_clean$N_MTP1_5[i])){
$Cop_Fe_5[i]=1}else{}}
DB_data_cleanfor(i in 1:length(DB_data_clean$Sex)) {if (DB_data_clean$N_MTP1_6[i]>=1 && DB_data_clean$Cop_Fe_6[i]==0 & !is.na (DB_data_clean$Cop_Fe_6[i])& !is.na (DB_data_clean$N_MTP1_6[i])){
$Cop_Fe_6[i]=1}else{}}
DB_data_clean
# Calculate Rd competition RS of all copulations with potential sperm competition with the focal ####
$m_RS_Rd_comp_full=NA
DB_data_cleanfor(i in 1:length(DB_data_clean$Sex)) {if (DB_data_clean$Cop_Fe_1[i]>=1 & !is.na (DB_data_clean$Cop_Fe_1[i])){
$m_RS_Rd_comp_full[i]=DB_data_clean$N_RD_1[i]
DB_data_cleanelse{DB_data_clean$m_RS_Rd_comp_full[i]=0}}
}for(i in 1:length(DB_data_clean$Sex)) {if (DB_data_clean$Cop_Fe_2[i]>=1 & !is.na (DB_data_clean$Cop_Fe_2[i])){
$m_RS_Rd_comp_full[i]=DB_data_clean$m_RS_Rd_comp_full[i]+DB_data_clean$N_RD_2[i]
DB_data_cleanelse{}}
}for(i in 1:length(DB_data_clean$Sex)) {if (DB_data_clean$Cop_Fe_3[i]>=1 & !is.na (DB_data_clean$Cop_Fe_3[i])){
$m_RS_Rd_comp_full[i]=DB_data_clean$m_RS_Rd_comp_full[i]+DB_data_clean$N_RD_3[i]
DB_data_cleanelse{}}
}for(i in 1:length(DB_data_clean$Sex)) {if (DB_data_clean$Cop_Fe_4[i]>=1 & !is.na (DB_data_clean$Cop_Fe_4[i])){
$m_RS_Rd_comp_full[i]=DB_data_clean$m_RS_Rd_comp_full[i]+DB_data_clean$N_RD_4[i]
DB_data_cleanelse{}}
}for(i in 1:length(DB_data_clean$Sex)) {if (DB_data_clean$Cop_Fe_5[i]>=1 & !is.na (DB_data_clean$Cop_Fe_5[i])){
$m_RS_Rd_comp_full[i]=DB_data_clean$m_RS_Rd_comp_full[i]+DB_data_clean$N_RD_5[i]
DB_data_cleanelse{}}
}for(i in 1:length(DB_data_clean$Sex)) {if (DB_data_clean$Cop_Fe_6[i]>=1 & !is.na (DB_data_clean$Cop_Fe_6[i])){
$m_RS_Rd_comp_full[i]=DB_data_clean$m_RS_Rd_comp_full[i]+DB_data_clean$N_RD_6[i]
DB_data_cleanelse{}}
}
# Calculate trait values ####
# Males ####
# Total number of matings (all data)
$m_TotMatings=NA
DB_data$m_TotMatings=DB_data$Matings_number
DB_data$m_TotMatings[DB_data$Sex=='F']=NA
DB_data
# Avarage mating duration (all data)
$MatingDuration_av[DB_data$MatingDuration_av==0]=NA
DB_data$m_MatingDuration_av=NA
DB_data$m_MatingDuration_av=DB_data$MatingDuration_av
DB_data$m_MatingDuration_av[DB_data$Sex=='F']=NA
DB_data$MatingDuration_av[DB_data$MatingDuration_av==0]=NA
DB_data
# Total number of mating attempts (all data)
$m_Attempts_number=NA
DB_data$m_Attempts_number=DB_data$Attempts_number
DB_data$m_Attempts_number[DB_data$Sex=='F']=NA
DB_data
# Proportional mating success (all data)
$m_Prop_MS=NA
DB_data$m_Prop_MS=DB_data$Prop_MS
DB_data$m_Prop_MS[DB_data$Sex=='F']=NA
DB_data
#Total encounters (all data)
$m_Total_Encounters=NA
DB_data$m_Total_Encounters=DB_data$Total_Encounters
DB_data$m_Total_Encounters[DB_data$Sex=='F']=NA
DB_data
# Reproductive success
$m_RS=NA
DB_data_clean$m_RS=DB_data_clean$Total_N_MTP1
DB_data_clean$m_RS[DB_data_clean$Sex=='F']=NA
DB_data_clean
# Mating success (number of different partners)
# Clean data
$m_cMS=NA
DB_data_clean$m_cMS=DB_data_clean$MatingPartners_number
DB_data_clean$m_cMS[DB_data_clean$Sex=='F']=NA
DB_data_cleanfor(i in 1:length(DB_data_clean$m_cMS)) {if (DB_data_clean$gMS[i]>DB_data_clean$m_cMS[i] & !is.na (DB_data_clean$m_cMS[i])){
$m_cMS[i]=DB_data_clean$gMS[i]}else{}}
DB_data_clean
# All data
$m_cMS=NA
DB_data$m_cMS=DB_data$MatingPartners_number
DB_data$m_cMS[DB_data$Sex=='F']=NA
DB_datafor(i in 1:length(DB_data$m_cMS)) {if (DB_data$gMS[i]>DB_data$m_cMS[i] & !is.na (DB_data$m_cMS[i])){
$m_cMS[i]=DB_data$gMS[i]}else{}}
DB_data
# Insemination success
$m_InSuc=NA
DB_data_clean$m_InSuc=DB_data_clean$gMS/DB_data_clean$m_cMS
DB_data_cleanfor(i in 1:length(DB_data_clean$m_InSuc)) {if (DB_data_clean$m_cMS[i]==0 & !is.na (DB_data_clean$m_cMS[i])){
$m_InSuc[i]=NA}else{}}
DB_data_clean
# Fertilization success
$m_feSuc=NA
DB_data_clean$m_feSuc=DB_data_clean$m_RS/(DB_data_clean$m_RS+DB_data_clean$m_RS_Rd_comp)
DB_data_cleanfor(i in 1:length(DB_data_clean$m_feSuc)) {if (DB_data_clean$m_InSuc[i]==0 | is.na (DB_data_clean$m_InSuc[i])){
$m_feSuc[i]=NA}else{}}
DB_data_clean
# Fecundicty of partners
$m_pFec=NA
DB_data_clean$m_pFec=(DB_data_clean$m_RS+DB_data_clean$m_RS_Rd_comp)/DB_data_clean$gMS
DB_data_cleanfor(i in 1:length(DB_data_clean$m_pFec)) {if (DB_data_clean$gMS[i]==0){
$m_pFec[i]=NA}else{}}
DB_data_clean
# Paternity success
$m_PS=NA
DB_data_clean$m_PS=DB_data_clean$m_RS/(DB_data_clean$m_RS+DB_data_clean$m_RS_Rd_comp_full)
DB_data_cleanfor(i in 1:length(DB_data_clean$m_PS)) {if (DB_data_clean$m_RS[i]==0 & !is.na (DB_data_clean$m_RS[i])){
$m_PS[i]=NA}else{}}
DB_data_clean
# Fecundity of partners in all females the focal copulated with
$m_pFec_compl=NA
DB_data_clean$m_pFec_compl=(DB_data_clean$m_RS+DB_data_clean$m_RS_Rd_comp_full)/DB_data_clean$m_cMS
DB_data_cleanfor(i in 1:length(DB_data_clean$m_pFec)) {if (DB_data_clean$m_cMS[i]==0 & !is.na (DB_data_clean$m_cMS[i])){
$m_pFec[i]=NA}else{}}
DB_data_clean
# Females ####
# Total number of matings (all data)
$f_TotMatings=NA
DB_data$f_TotMatings=DB_data$Matings_number
DB_data$f_TotMatings[DB_data$Sex=='M']=NA
DB_data
# Avarage mating duration (all data)
$f_MatingDuration_av=NA
DB_data$f_MatingDuration_av=DB_data$MatingDuration_av
DB_data$f_MatingDuration_av[DB_data$Sex=='M']=NA
DB_data$MatingDuration_av[DB_data$MatingDuration_av==0]=NA
DB_data
# Total number of mating attempts (all data)
$f_Attempts_number=NA
DB_data$f_Attempts_number=DB_data$Attempts_number
DB_data$f_Attempts_number[DB_data$Sex=='M']=NA
DB_data
# Proportional mating success (all data)
$f_Prop_MS=NA
DB_data$f_Prop_MS=DB_data$Prop_MS
DB_data$f_Prop_MS[DB_data_clean$Sex=='M']=NA
DB_data_clean
#Total encounters (all data)
$f_Total_Encounters=NA
DB_data$f_Total_Encounters=DB_data$Total_Encounters
DB_data$f_Total_Encounters[DB_data$Sex=='M']=NA
DB_data
# Reproductive success
$f_RS=NA
DB_data_clean$f_RS=DB_data_clean$Total_N_MTP1
DB_data_clean$f_RS[DB_data_clean$Sex=='M']=NA
DB_data_clean
# Mating success (number of different partners)
# Clean data
$f_cMS=NA
DB_data_clean$f_cMS=DB_data_clean$MatingPartners_number
DB_data_clean$f_cMS[DB_data_clean$Sex=='M']=NA
DB_data_cleanfor(i in 1:length(DB_data_clean$f_cMS)) {if (DB_data_clean$gMS[i]>DB_data_clean$f_cMS[i] & !is.na (DB_data_clean$f_cMS[i])){
$f_cMS[i]=DB_data_clean$gMS[i]}else{}}
DB_data_clean
# All data
$f_cMS=NA
DB_data$f_cMS=DB_data$MatingPartners_number
DB_data$f_cMS[DB_data$Sex=='M']=NA
DB_datafor(i in 1:length(DB_data$f_cMS)) {if (DB_data$gMS[i]>DB_data$f_cMS[i] & !is.na (DB_data$f_cMS[i])){
$f_cMS[i]=DB_data$gMS[i]}else{}}
DB_data
# Fecundity per mating partner
$f_fec_pMate=NA
DB_data_clean$f_fec_pMate=DB_data_clean$f_RS/DB_data_clean$f_cMS
DB_data_cleanfor(i in 1:length(DB_data_clean$f_fec_pMate)) {if (DB_data_clean$f_RS[i]==0 & !is.na (DB_data_clean$f_RS[i])){
$f_fec_pMate[i]=0}else{}}
DB_data_cleanfor(i in 1:length(DB_data_clean$f_fec_pMate)) {if (DB_data_clean$f_cMS[i]==0 & !is.na (DB_data_clean$f_cMS[i])){
$f_fec_pMate[i]=NA}else{}}
DB_data_clean
# Relativize data per treatment and sex ####
# Small group + large Area
.26=DB_data_clean[DB_data_clean$Treatment=='D = 0.26',]
DB_data_clean_0
.26$rel_m_RS=NA
DB_data_clean_0.26$rel_m_prop_RS=NA
DB_data_clean_0.26$rel_m_cMS=NA
DB_data_clean_0.26$rel_m_InSuc=NA
DB_data_clean_0.26$rel_m_feSuc=NA
DB_data_clean_0.26$rel_m_pFec=NA
DB_data_clean_0.26$rel_m_PS=NA
DB_data_clean_0.26$rel_m_pFec_compl=NA
DB_data_clean_0
.26$rel_f_RS=NA
DB_data_clean_0.26$rel_f_prop_RS=NA
DB_data_clean_0.26$rel_f_cMS=NA
DB_data_clean_0.26$rel_f_fec_pMate=NA
DB_data_clean_0
.26$rel_m_RS=DB_data_clean_0.26$m_RS/mean(DB_data_clean_0.26$m_RS,na.rm=T)
DB_data_clean_0.26$rel_m_prop_RS=DB_data_clean_0.26$m_prop_RS/mean(DB_data_clean_0.26$m_prop_RS,na.rm=T)
DB_data_clean_0.26$rel_m_cMS=DB_data_clean_0.26$m_cMS/mean(DB_data_clean_0.26$m_cMS,na.rm=T)
DB_data_clean_0.26$rel_m_InSuc=DB_data_clean_0.26$m_InSuc/mean(DB_data_clean_0.26$m_InSuc,na.rm=T)
DB_data_clean_0.26$rel_m_feSuc=DB_data_clean_0.26$m_feSuc/mean(DB_data_clean_0.26$m_feSuc,na.rm=T)
DB_data_clean_0.26$rel_m_pFec=DB_data_clean_0.26$m_pFec/mean(DB_data_clean_0.26$m_pFec,na.rm=T)
DB_data_clean_0.26$rel_m_PS=DB_data_clean_0.26$m_PS/mean(DB_data_clean_0.26$m_PS,na.rm=T)
DB_data_clean_0.26$rel_m_pFec_compl=DB_data_clean_0.26$m_pFec_compl/mean(DB_data_clean_0.26$m_pFec_compl,na.rm=T)
DB_data_clean_0
.26$rel_f_RS=DB_data_clean_0.26$f_RS/mean(DB_data_clean_0.26$f_RS,na.rm=T)
DB_data_clean_0.26$rel_f_prop_RS=DB_data_clean_0.26$f_prop_RS/mean(DB_data_clean_0.26$f_prop_RS,na.rm=T)
DB_data_clean_0.26$rel_f_cMS=DB_data_clean_0.26$f_cMS/mean(DB_data_clean_0.26$f_cMS,na.rm=T)
DB_data_clean_0.26$rel_f_fec_pMate=DB_data_clean_0.26$f_fec_pMate/mean(DB_data_clean_0.26$f_fec_pMate,na.rm=T)
DB_data_clean_0
# Large group + large Area
.52=DB_data_clean[DB_data_clean$Treatment=='D = 0.52',]
DB_data_clean_0#Relativize data
.52$rel_m_RS=NA
DB_data_clean_0.52$rel_m_prop_RS=NA
DB_data_clean_0.52$rel_m_cMS=NA
DB_data_clean_0.52$rel_m_InSuc=NA
DB_data_clean_0.52$rel_m_feSuc=NA
DB_data_clean_0.52$rel_m_pFec=NA
DB_data_clean_0.52$rel_m_PS=NA
DB_data_clean_0.52$rel_m_pFec_compl=NA
DB_data_clean_0
.52$rel_f_RS=NA
DB_data_clean_0.52$rel_f_prop_RS=NA
DB_data_clean_0.52$rel_f_cMS=NA
DB_data_clean_0.52$rel_f_fec_pMate=NA
DB_data_clean_0
.52$rel_m_RS=DB_data_clean_0.52$m_RS/mean(DB_data_clean_0.52$m_RS,na.rm=T)
DB_data_clean_0.52$rel_m_prop_RS=DB_data_clean_0.52$m_prop_RS/mean(DB_data_clean_0.52$m_prop_RS,na.rm=T)
DB_data_clean_0.52$rel_m_cMS=DB_data_clean_0.52$m_cMS/mean(DB_data_clean_0.52$m_cMS,na.rm=T)
DB_data_clean_0.52$rel_m_InSuc=DB_data_clean_0.52$m_InSuc/mean(DB_data_clean_0.52$m_InSuc,na.rm=T)
DB_data_clean_0.52$rel_m_feSuc=DB_data_clean_0.52$m_feSuc/mean(DB_data_clean_0.52$m_feSuc,na.rm=T)
DB_data_clean_0.52$rel_m_pFec=DB_data_clean_0.52$m_pFec/mean(DB_data_clean_0.52$m_pFec,na.rm=T)
DB_data_clean_0.52$rel_m_PS=DB_data_clean_0.52$m_PS/mean(DB_data_clean_0.52$m_PS,na.rm=T)
DB_data_clean_0.52$rel_m_pFec_compl=DB_data_clean_0.52$m_pFec_compl/mean(DB_data_clean_0.52$m_pFec_compl,na.rm=T)
DB_data_clean_0
.52$rel_f_RS=DB_data_clean_0.52$f_RS/mean(DB_data_clean_0.52$f_RS,na.rm=T)
DB_data_clean_0.52$rel_f_prop_RS=DB_data_clean_0.52$f_prop_RS/mean(DB_data_clean_0.52$f_prop_RS,na.rm=T)
DB_data_clean_0.52$rel_f_cMS=DB_data_clean_0.52$f_cMS/mean(DB_data_clean_0.52$f_cMS,na.rm=T)
DB_data_clean_0.52$rel_f_fec_pMate=DB_data_clean_0.52$f_fec_pMate/mean(DB_data_clean_0.52$f_fec_pMate,na.rm=T)
DB_data_clean_0
# Small group + small Area
.67=DB_data_clean[DB_data_clean$Treatment=='D = 0.67',]
DB_data_clean_0#Relativize data
.67$rel_m_RS=NA
DB_data_clean_0.67$rel_m_prop_RS=NA
DB_data_clean_0.67$rel_m_cMS=NA
DB_data_clean_0.67$rel_m_InSuc=NA
DB_data_clean_0.67$rel_m_feSuc=NA
DB_data_clean_0.67$rel_m_pFec=NA
DB_data_clean_0.67$rel_m_PS=NA
DB_data_clean_0.67$rel_m_pFec_compl=NA
DB_data_clean_0
.67$rel_f_RS=NA
DB_data_clean_0.67$rel_f_prop_RS=NA
DB_data_clean_0.67$rel_f_cMS=NA
DB_data_clean_0.67$rel_f_fec_pMate=NA
DB_data_clean_0
.67$rel_m_RS=DB_data_clean_0.67$m_RS/mean(DB_data_clean_0.67$m_RS,na.rm=T)
DB_data_clean_0.67$rel_m_prop_RS=DB_data_clean_0.67$m_prop_RS/mean(DB_data_clean_0.67$m_prop_RS,na.rm=T)
DB_data_clean_0.67$rel_m_cMS=DB_data_clean_0.67$m_cMS/mean(DB_data_clean_0.67$m_cMS,na.rm=T)
DB_data_clean_0.67$rel_m_InSuc=DB_data_clean_0.67$m_InSuc/mean(DB_data_clean_0.67$m_InSuc,na.rm=T)
DB_data_clean_0.67$rel_m_feSuc=DB_data_clean_0.67$m_feSuc/mean(DB_data_clean_0.67$m_feSuc,na.rm=T)
DB_data_clean_0.67$rel_m_pFec=DB_data_clean_0.67$m_pFec/mean(DB_data_clean_0.67$m_pFec,na.rm=T)
DB_data_clean_0.67$rel_m_PS=DB_data_clean_0.67$m_PS/mean(DB_data_clean_0.67$m_PS,na.rm=T)
DB_data_clean_0.67$rel_m_pFec_compl=DB_data_clean_0.67$m_pFec_compl/mean(DB_data_clean_0.67$m_pFec_compl,na.rm=T)
DB_data_clean_0
.67$rel_f_RS=DB_data_clean_0.67$f_RS/mean(DB_data_clean_0.67$f_RS,na.rm=T)
DB_data_clean_0.67$rel_f_prop_RS=DB_data_clean_0.67$f_prop_RS/mean(DB_data_clean_0.67$f_prop_RS,na.rm=T)
DB_data_clean_0.67$rel_f_cMS=DB_data_clean_0.67$f_cMS/mean(DB_data_clean_0.67$f_cMS,na.rm=T)
DB_data_clean_0.67$rel_f_fec_pMate=DB_data_clean_0.67$f_fec_pMate/mean(DB_data_clean_0.67$f_fec_pMate,na.rm=T)
DB_data_clean_0
# Large group + small Area
.33=DB_data_clean[DB_data_clean$Treatment=='D = 1.33',]
DB_data_clean_1#Relativize data
.33$rel_m_RS=NA
DB_data_clean_1.33$rel_m_prop_RS=NA
DB_data_clean_1.33$rel_m_cMS=NA
DB_data_clean_1.33$rel_m_InSuc=NA
DB_data_clean_1.33$rel_m_feSuc=NA
DB_data_clean_1.33$rel_m_pFec=NA
DB_data_clean_1.33$rel_m_PS=NA
DB_data_clean_1.33$rel_m_pFec_compl=NA
DB_data_clean_1
.33$rel_f_RS=NA
DB_data_clean_1.33$rel_f_prop_RS=NA
DB_data_clean_1.33$rel_f_cMS=NA
DB_data_clean_1.33$rel_f_fec_pMate=NA
DB_data_clean_1
.33$rel_m_RS=DB_data_clean_1.33$m_RS/mean(DB_data_clean_1.33$m_RS,na.rm=T)
DB_data_clean_1.33$rel_m_prop_RS=DB_data_clean_1.33$m_prop_RS/mean(DB_data_clean_1.33$m_prop_RS,na.rm=T)
DB_data_clean_1.33$rel_m_cMS=DB_data_clean_1.33$m_cMS/mean(DB_data_clean_1.33$m_cMS,na.rm=T)
DB_data_clean_1.33$rel_m_InSuc=DB_data_clean_1.33$m_InSuc/mean(DB_data_clean_1.33$m_InSuc,na.rm=T)
DB_data_clean_1.33$rel_m_feSuc=DB_data_clean_1.33$m_feSuc/mean(DB_data_clean_1.33$m_feSuc,na.rm=T)
DB_data_clean_1.33$rel_m_pFec=DB_data_clean_1.33$m_pFec/mean(DB_data_clean_1.33$m_pFec,na.rm=T)
DB_data_clean_1.33$rel_m_PS=DB_data_clean_1.33$m_PS/mean(DB_data_clean_1.33$m_PS,na.rm=T)
DB_data_clean_1.33$rel_m_pFec_compl=DB_data_clean_1.33$m_pFec_compl/mean(DB_data_clean_1.33$m_pFec_compl,na.rm=T)
DB_data_clean_1
.33$rel_f_RS=DB_data_clean_1.33$f_RS/mean(DB_data_clean_1.33$f_RS,na.rm=T)
DB_data_clean_1.33$rel_f_prop_RS=DB_data_clean_1.33$f_prop_RS/mean(DB_data_clean_1.33$f_prop_RS,na.rm=T)
DB_data_clean_1.33$rel_f_cMS=DB_data_clean_1.33$f_cMS/mean(DB_data_clean_1.33$f_cMS,na.rm=T)
DB_data_clean_1.33$rel_f_fec_pMate=DB_data_clean_1.33$f_fec_pMate/mean(DB_data_clean_1.33$f_fec_pMate,na.rm=T)
DB_data_clean_1
# Set colors for figures
=brewer.pal(4, 'Dark2')
colpal=brewer.pal(3, 'Set1')
colpal2=brewer.pal(4, 'Paired')
colpal3=(c('#0057B8','#FFD700'))
slava_ukrajini=c('#01519c','#ffdf33')
colorESEB=c('#1DA1F2','#ffec69')
colorESEB2
# Merge data according to treatment #### -> Reduce treatments to area and population size
#Area
=rbind(DB_data_clean_0.26,DB_data_clean_0.52)
DB_data_clean_Large_area=rbind(DB_data_clean_0.67,DB_data_clean_1.33)
DB_data_clean_Small_area
#Population size
=rbind(DB_data_clean_0.26,DB_data_clean_0.67)
DB_data_clean_Small_pop=rbind(DB_data_clean_0.52,DB_data_clean_1.33)
DB_data_clean_Large_pop
# Merge data according to treatment full data set #### -> Reduce treatments to area and population size
.26=DB_data[DB_data$Treatment=='D = 0.26',]
DB_data_0.52=DB_data[DB_data$Treatment=='D = 0.52',]
DB_data_0.67=DB_data[DB_data$Treatment=='D = 0.67',]
DB_data_0.33=DB_data[DB_data$Treatment=='D = 1.33',]
DB_data_1
#Area
=rbind(DB_data_0.26,DB_data_0.52)
DB_data_Large_area_full=rbind(DB_data_0.67,DB_data_1.33)
DB_data_Small_area_full
#Population size
=rbind(DB_data_0.26,DB_data_0.67)
DB_data_Small_pop_full=rbind(DB_data_0.52,DB_data_1.33) DB_data_Large_pop_full
We first tested the effect that the treatments (group size and area)
had on the mating behaviour of focal beetles.
Behavioural
variables:
- Number of matings
- Number of different mating
partners (mating success)
- Mating duration in seconds
- Mating
encounters (mating number + mating attempts)
- Proportion of
successful matings (mating number/mating number + mating attempts)
### Number of matings Figure: Number of matings
# Figure: Number of matings
# Treatment: Group size
<-ggplot(DB_data, aes(x=Sex, y=as.numeric(Matings_number),fill=Gr_size, col=Gr_size)) +
p1geom_point(position=position_jitterdodge(jitter.width=0.6,jitter.height = 0,dodge.width=0.9),shape=19, alpha=0.75, size = 2)+
stat_summary(fun.min = function(z) { quantile(z,0.25) },
fun.max = function(z) { quantile(z,0.75) },
fun = mean,position=position_dodge(.9), size = 0.9,col='black',show.legend = F)+
scale_color_manual(values=c(colorESEB[1],colorESEB[2]),name = "Treatment", labels = c('Small group','Large group'))+
scale_fill_manual(values=c(colorESEB[1],colorESEB[2]),name = "Treatment", labels = c('Small group','Large group'))+
xlab('Sex')+ylab("Number of matings")+ggtitle('')+ theme(plot.title = element_text(hjust = 0.5))+
scale_x_discrete(labels = c('Female','Male'),drop=FALSE)+ ylim(0,12)+labs(tag = "A")+
annotate("text",label='n =',x=0.55,y=12,size=4)+
annotate("text",label='91',x=0.78,y=12,size=4)+
annotate("text",label='74',x=1.23,y=12,size=4)+
annotate("text",label='85',x=1.78,y=12,size=4)+
annotate("text",label='85',x=2.23,y=12,size=4)+
theme(panel.border = element_blank(),
plot.margin = margin(0.15,2.2,0,0.2,"cm"),
plot.title = element_text(hjust = 0.5),
panel.background = element_blank(),
legend.key=element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
legend.position = c(1.08, 0.8),
plot.tag.position=c(0.01,0.98),
legend.title = element_blank(),
legend.text = element_text(colour="black", size=10),
axis.line.x = element_line(colour = "black", size = 1),
axis.line.y = element_line(colour = "black", size = 1),
axis.text.x = element_text(face="plain", color="black", size=16, angle=0),
axis.text.y = element_text(face="plain", color="black", size=16, angle=0),
axis.title.x = element_text(size=16,face="plain", margin = margin(r=0,10,0,0)),
axis.title.y = element_text(size=16,face="plain", margin = margin(r=10,0,0,0)),
axis.ticks = element_line(size = 1),
axis.ticks.length = unit(.3, "cm"))+
guides(colour = guide_legend(override.aes = list(size=4)))
# Treatment: Area
.2<-ggplot(DB_data, aes(x=Sex, y=as.numeric(Matings_number),fill=Area, col=Area)) +
p1geom_point(position=position_jitterdodge(jitter.width=0.6,jitter.height = 0,dodge.width=0.9),shape=19, alpha=0.75, size = 2)+
stat_summary(fun.min = function(z) { quantile(z,0.25) },
fun.max = function(z) { quantile(z,0.75) },
fun = mean,position=position_dodge(.9), size = 0.9,col='black',show.legend = F)+
scale_color_manual(values=c(colorESEB2[1],colorESEB2[2]),name = "Treatment", labels = c('Large area','Small area'))+
scale_fill_manual(values=c(colorESEB2[1],colorESEB2[2]),name = "Treatment", labels = c('Large area','Small area'))+
xlab('Sex')+ylab("")+ggtitle('')+ theme(plot.title = element_text(hjust = 0.5))+labs(tag = "B")+
scale_x_discrete(labels = c('Female','Male'),drop=FALSE)+ ylim(0,12)+
annotate("text",label='n =',x=0.55,y=12,size=4)+
annotate("text",label='86',x=0.78,y=12,size=4)+
annotate("text",label='79',x=1.23,y=12,size=4)+
annotate("text",label='88',x=1.78,y=12,size=4)+
annotate("text",label='82',x=2.23,y=12,size=4)+
theme(panel.border = element_blank(),
plot.margin = margin(0.15,2.2,0,0,"cm"),
plot.title = element_text(hjust = 0.5),
panel.background = element_blank(),
legend.key=element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
legend.position = c(1.08, 0.8),
plot.tag.position=c(0.01,0.98),
legend.title = element_blank(),
legend.text = element_text(colour="black", size=10),
axis.line.x = element_line(colour = "black", size = 1),
axis.line.y = element_line(colour = "black", size = 1),
axis.text.x = element_text(face="plain", color="black", size=16, angle=0),
axis.text.y = element_text(face="plain", color="black", size=16, angle=0),
axis.title.x = element_text(size=16,face="plain", margin = margin(r=0,10,0,0)),
axis.title.y = element_text(size=16,face="plain", margin = margin(r=10,0,0,0)),
axis.ticks = element_line(size = 1),
axis.ticks.length = unit(.3, "cm"))+
guides(colour = guide_legend(override.aes = list(size=4)))
grid.arrange(grobs = list(p1,p1.2), nrow = 1,ncol=2, widths=c(2.3, 2.3))
Figure 1: Effects of group size (A) and area treatment (B) on the number
of matings of female and male focals. Black bars indicate means and
quartile borders.
Statistical models: Number of matings (quasi-Poisson
GLM)
Effect of group size on number of matings in females.
.1=glm(f_TotMatings~Gr_size,data=DB_data,family = quasipoisson)
mod1summary(mod1.1)
Call:
glm(formula = f_TotMatings ~ Gr_size, family = quasipoisson,
data = DB_data)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.4425 -1.0911 -0.3395 0.3940 3.3970
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.16475 0.07523 15.483 <2e-16 ***
Gr_sizeLG -0.24080 0.12830 -1.877 0.0628 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for quasipoisson family taken to be 1.41487)
Null deviance: 164.51 on 129 degrees of freedom
Residual deviance: 159.41 on 128 degrees of freedom
(148 observations deleted due to missingness)
AIC: NA
Number of Fisher Scoring iterations: 5
Effect of group size on number of matings in males.
# Sex: Male
# Treatment: Group size
.2=glm(m_TotMatings~Gr_size,data=DB_data,family = quasipoisson)
mod1summary(mod1.2)
Call:
glm(formula = m_TotMatings ~ Gr_size, family = quasipoisson,
data = DB_data)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.4492 -0.9859 -0.2238 0.4178 3.0179
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.16913 0.06702 17.445 < 2e-16 ***
Gr_sizeLG -0.32183 0.10258 -3.137 0.00206 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for quasipoisson family taken to be 1.055494)
Null deviance: 150.57 on 147 degrees of freedom
Residual deviance: 140.06 on 146 degrees of freedom
(130 observations deleted due to missingness)
AIC: NA
Number of Fisher Scoring iterations: 5
Effect of area on number of matings in females.
# Sex: Female
# Treatment: Area
.3=glm(f_TotMatings~Area,data=DB_data,family = quasipoisson)
mod1summary(mod1.3)
Call:
glm(formula = f_TotMatings ~ Area, family = quasipoisson, data = DB_data)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.3980 -1.1952 -0.4536 0.4041 3.7722
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.13548 0.08198 13.85 <2e-16 ***
AreaSmall -0.13785 0.12650 -1.09 0.278
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for quasipoisson family taken to be 1.485185)
Null deviance: 164.51 on 129 degrees of freedom
Residual deviance: 162.74 on 128 degrees of freedom
(148 observations deleted due to missingness)
AIC: NA
Number of Fisher Scoring iterations: 5
Effect of area on number of matings in males.
# Sex: Male
# Treatment: Area
.4=glm(m_TotMatings~Area,data=DB_data,family = quasipoisson)
mod1summary(mod1.4)
Call:
glm(formula = m_TotMatings ~ Area, family = quasipoisson, data = DB_data)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.2727 -1.1805 -0.4376 0.1891 3.4165
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.98739 0.07560 13.061 <2e-16 ***
AreaSmall 0.06382 0.10665 0.598 0.55
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for quasipoisson family taken to be 1.165813)
Null deviance: 150.57 on 147 degrees of freedom
Residual deviance: 150.15 on 146 degrees of freedom
(130 observations deleted due to missingness)
AIC: NA
Number of Fisher Scoring iterations: 5
Figure: Number of mating partners (mating success)
# Figure: Number of mating partners (mating success)
# Treatment: Group size
<-ggplot(DB_data, aes(x=Sex, y=as.numeric(MatingPartners_number),fill=Gr_size, col=Gr_size)) +
p2geom_point(position=position_jitterdodge(jitter.width=0.6,jitter.height = 0,dodge.width=0.9),shape=19, alpha=0.75, size = 2)+
stat_summary(fun.min = function(z) { quantile(z,0.25) },
fun.max = function(z) { quantile(z,0.75) },
fun = mean,position=position_dodge(.9), size = 0.9,col='black',show.legend = F)+
scale_color_manual(values=c(colorESEB[1],colorESEB[2]),name = "Treatment", labels = c('Small group','Large group'))+
scale_fill_manual(values=c(colorESEB[1],colorESEB[2]),name = "Treatment", labels = c('Small group','Large group'))+
xlab('Sex')+ylab("Number of partners")+ggtitle('')+ theme(plot.title = element_text(hjust = 0.5))+
scale_x_discrete(labels = c('Female','Male'),drop=FALSE)+ ylim(0,5.4)+labs(tag = "A")+
annotate("text",label='n =',x=0.55,y=5.4,size=4)+
annotate("text",label='91',x=0.78,y=5.4,size=4)+
annotate("text",label='74',x=1.23,y=5.4,size=4)+
annotate("text",label='85',x=1.78,y=5.4,size=4)+
annotate("text",label='85',x=2.23,y=5.4,size=4)+
theme(panel.border = element_blank(),
plot.margin = margin(0,2.2,0,0.2,"cm"),
plot.title = element_text(hjust = 0.5),
panel.background = element_blank(),
legend.key=element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
legend.position = c(1.08, 0.8),
plot.tag.position=c(0.01,0.98),
legend.title = element_blank(),
legend.text = element_text(colour="black", size=10),
axis.line.x = element_line(colour = "black", size = 1),
axis.line.y = element_line(colour = "black", size = 1),
axis.text.x = element_text(face="plain", color="black", size=16, angle=0),
axis.text.y = element_text(face="plain", color="black", size=16, angle=0),
axis.title.x = element_text(size=16,face="plain", margin = margin(r=0,10,0,0)),
axis.title.y = element_text(size=16,face="plain", margin = margin(r=10,0,0,0)),
axis.ticks = element_line(size = 1),
axis.ticks.length = unit(.3, "cm"))+
guides(colour = guide_legend(override.aes = list(size=4)))
# Treatment: Area
.2<-ggplot(DB_data, aes(x=Sex, y=as.numeric(MatingPartners_number),fill=Area, col=Area)) +
p2geom_point(position=position_jitterdodge(jitter.width=0.6,jitter.height = 0,dodge.width=0.9),shape=19, alpha=0.75, size = 2)+
stat_summary(fun.min = function(z) { quantile(z,0.25) },
fun.max = function(z) { quantile(z,0.75) },
fun = mean,position=position_dodge(.9), size = 0.9,col='black',show.legend = F)+
scale_color_manual(values=c(colorESEB2[1],colorESEB2[2]),name = "Treatment", labels = c('Large area','Small area'))+
scale_fill_manual(values=c(colorESEB2[1],colorESEB2[2]),name = "Treatment", labels = c('Large area','Small area'))+
xlab('Sex')+ylab("")+ggtitle('')+ theme(plot.title = element_text(hjust = 0.5))+
scale_x_discrete(labels = c('Female','Male'),drop=FALSE)+ ylim(0,5.4)+labs(tag = "B")+
annotate("text",label='n =',x=0.55,y=5.4,size=4)+
annotate("text",label='86',x=0.78,y=5.4,size=4)+
annotate("text",label='79',x=1.23,y=5.4,size=4)+
annotate("text",label='88',x=1.78,y=5.4,size=4)+
annotate("text",label='82',x=2.23,y=5.4,size=4)+
theme(panel.border = element_blank(),
plot.margin = margin(0,2.2,0,0,"cm"),
plot.title = element_text(hjust = 0.5),
panel.background = element_blank(),
legend.key=element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
legend.position = c(1.08, 0.8),
plot.tag.position=c(0.01,0.98),
legend.title = element_blank(),
legend.text = element_text(colour="black", size=10),
axis.line.x = element_line(colour = "black", size = 1),
axis.line.y = element_line(colour = "black", size = 1),
axis.text.x = element_text(face="plain", color="black", size=16, angle=0),
axis.text.y = element_text(face="plain", color="black", size=16, angle=0),
axis.title.x = element_text(size=16,face="plain", margin = margin(r=0,10,0,0)),
axis.title.y = element_text(size=16,face="plain", margin = margin(r=10,0,0,0)),
axis.ticks = element_line(size = 1),
axis.ticks.length = unit(.3, "cm"))+
guides(colour = guide_legend(override.aes = list(size=4)))
<-grid.arrange(grobs = list(p2,p2.2), nrow = 1,ncol=2, widths=c(2.3, 2.3)) plot2
Figure 2: Effects of group size (A) and area treatment (B) on the number
of mating partners of female and male focals. Black bars indicate means
and quartile borders.
Statistical models: Number of mating partners (quasi-Poisson
GLM)
Effect of group size on number of mating partners in
females.
# Statistical models: Number of mating partners (quasi-Poisson GLM)
# Sex: Female
# Treatment: Group size
.1=glm(f_cMS~Gr_size,data=DB_data,family = quasipoisson)
mod2summary(mod2.1)
Call:
glm(formula = f_cMS ~ Gr_size, family = quasipoisson, data = DB_data)
Deviance Residuals:
Min 1Q Median 3Q Max
-0.80779 -0.67409 0.04713 0.12129 1.74624
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.60614 0.05211 11.631 <2e-16 ***
Gr_sizeLG 0.10606 0.07987 1.328 0.187
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for quasipoisson family taken to be 0.3883379)
Null deviance: 49.041 on 129 degrees of freedom
Residual deviance: 48.360 on 128 degrees of freedom
(148 observations deleted due to missingness)
AIC: NA
Number of Fisher Scoring iterations: 4
Effect of group size on number of mating partners in males.
# Sex: Male
# Treatment: Group size
.2=glm(m_cMS~Gr_size,data=DB_data,family = quasipoisson)
mod2summary(mod2.2)
Call:
glm(formula = m_cMS ~ Gr_size, family = quasipoisson, data = DB_data)
Deviance Residuals:
Min 1Q Median 3Q Max
-0.69644 -0.61944 0.09646 0.18208 1.89372
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.56157 0.05425 10.352 <2e-16 ***
Gr_sizeLG 0.06258 0.07505 0.834 0.406
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for quasipoisson family taken to be 0.3766698)
Null deviance: 52.151 on 147 degrees of freedom
Residual deviance: 51.889 on 146 degrees of freedom
(130 observations deleted due to missingness)
AIC: NA
Number of Fisher Scoring iterations: 4
Effect of area on number of mating partners in females.
# Sex: Female
# Treatment: Area
.3=glm(f_cMS~Area,data=DB_data,family = quasipoisson)
mod2summary(mod2.3)
Call:
glm(formula = f_cMS ~ Area, family = quasipoisson, data = DB_data)
Deviance Residuals:
Min 1Q Median 3Q Max
-0.75624 -0.69493 0.03009 0.09814 1.89572
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.67179 0.05356 12.542 <2e-16 ***
AreaSmall -0.04885 0.08059 -0.606 0.545
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for quasipoisson family taken to be 0.3988074)
Null deviance: 49.041 on 129 degrees of freedom
Residual deviance: 48.894 on 128 degrees of freedom
(148 observations deleted due to missingness)
AIC: NA
Number of Fisher Scoring iterations: 4
Effect of area on number of mating partners in males.
# Sex: Male
# Treatment: Area
.4=glm(m_cMS~Area,data=DB_data,family = quasipoisson)
mod2summary(mod2.4)
Call:
glm(formula = m_cMS ~ Area, family = quasipoisson, data = DB_data)
Deviance Residuals:
Min 1Q Median 3Q Max
-0.6711 -0.6458 0.1246 0.1528 1.9274
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.60374 0.05228 11.549 <2e-16 ***
AreaSmall -0.02059 0.07535 -0.273 0.785
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for quasipoisson family taken to be 0.379889)
Null deviance: 52.151 on 147 degrees of freedom
Residual deviance: 52.123 on 146 degrees of freedom
(130 observations deleted due to missingness)
AIC: NA
Number of Fisher Scoring iterations: 4
Figure: Mating duration in seconds
#Figure: Mating duration in seconds
# Treatment: Group size
<-ggplot(DB_data, aes(x=Sex, y=as.numeric(MatingDuration_av),fill=Gr_size, col=Gr_size)) +
p3geom_point(position=position_jitterdodge(jitter.width=0.6,jitter.height = 0,dodge.width=0.9),shape=19, alpha=0.75, size = 2)+
stat_summary(fun.min = function(z) { quantile(z,0.25) },
fun.max = function(z) { quantile(z,0.75) },
fun = mean,position=position_dodge(.9), size = 0.9,col='black',show.legend = F)+
scale_color_manual(values=c(colorESEB[1],colorESEB[2]),name = "Treatment", labels = c('Small group','Large group'))+
scale_fill_manual(values=c(colorESEB[1],colorESEB[2]),name = "Treatment", labels = c('Small group','Large group'))+
xlab('Sex')+ylab("Mean mating duration")+ggtitle('')+ theme(plot.title = element_text(hjust = 0.5))+
scale_x_discrete(labels = c('Female','Male'),drop=FALSE)+ ylim(0,390)+labs(tag = "A")+
annotate("text",label='n =',x=0.55,y=390,size=4)+
annotate("text",label='91',x=0.78,y=390,size=4)+
annotate("text",label='74',x=1.23,y=390,size=4)+
annotate("text",label='85',x=1.78,y=390,size=4)+
annotate("text",label='85',x=2.23,y=390,size=4)+
theme(panel.border = element_blank(),
plot.margin = margin(0,2.2,0.15,0.2,"cm"),
plot.title = element_text(hjust = 0.5),
panel.background = element_blank(),
legend.key=element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
legend.position = c(1.08, 0.8),
plot.tag.position=c(0.01,0.98),
legend.title = element_blank(),
legend.text = element_text(colour="black", size=10),
axis.line.x = element_line(colour = "black", size = 1),
axis.line.y = element_line(colour = "black", size = 1),
axis.text.x = element_text(face="plain", color="black", size=16, angle=0),
axis.text.y = element_text(face="plain", color="black", size=16, angle=0),
axis.title.x = element_text(size=16,face="plain", margin = margin(r=0,10,0,0)),
axis.title.y = element_text(size=16,face="plain", margin = margin(r=10,0,0,0)),
axis.ticks = element_line(size = 1),
axis.ticks.length = unit(.3, "cm"))+
guides(colour = guide_legend(override.aes = list(size=4)))
# Treatment: Area
.2<-ggplot(DB_data, aes(x=Sex, y=as.numeric(MatingDuration_av),fill=Area, col=Area)) +
p3geom_point(position=position_jitterdodge(jitter.width=0.6,jitter.height = 0,dodge.width=0.9),shape=19, alpha=0.75, size = 2)+
stat_summary(fun.min = function(z) { quantile(z,0.25) },
fun.max = function(z) { quantile(z,0.75) },
fun = mean,position=position_dodge(.9), size = 0.9,col='black',show.legend = F)+
scale_color_manual(values=c(colorESEB2[1],colorESEB2[2]),name = "Treatment", labels = c('Large area','Small area'))+
scale_fill_manual(values=c(colorESEB2[1],colorESEB2[2]),name = "Treatment", labels = c('Large area','Small area'))+
xlab('Sex')+ylab("")+ggtitle('')+ theme(plot.title = element_text(hjust = 0.5))+
scale_x_discrete(labels = c('Female','Male'),drop=FALSE)+ ylim(0,390)+labs(tag = "B")+
annotate("text",label='n =',x=0.55,y=390,size=4)+
annotate("text",label='86',x=0.78,y=390,size=4)+
annotate("text",label='79',x=1.23,y=390,size=4)+
annotate("text",label='88',x=1.78,y=390,size=4)+
annotate("text",label='82',x=2.23,y=390,size=4)+
theme(panel.border = element_blank(),
plot.margin = margin(0,2.2,0.15,0,"cm"),
plot.title = element_text(hjust = 0.5),
panel.background = element_blank(),
legend.key=element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
legend.position = c(1.08, 0.8),
plot.tag.position=c(0.01,0.98),
legend.title = element_blank(),
legend.text = element_text(colour="black", size=10),
axis.line.x = element_line(colour = "black", size = 1),
axis.line.y = element_line(colour = "black", size = 1),
axis.text.x = element_text(face="plain", color="black", size=16, angle=0),
axis.text.y = element_text(face="plain", color="black", size=16, angle=0),
axis.title.x = element_text(size=16,face="plain", margin = margin(r=0,10,0,0)),
axis.title.y = element_text(size=16,face="plain", margin = margin(r=10,0,0,0)),
axis.ticks = element_line(size = 1),
axis.ticks.length = unit(.3, "cm"))+
guides(colour = guide_legend(override.aes = list(size=4)))
<-grid.arrange(grobs = list(p3,p3.2), nrow = 1,ncol=2, widths=c(2.3, 2.3)) plot3
Figure 3: Effects of group size (A) and area treatment (B) on the Mating
duration (in seconds) of female and male focals. Black bars indicate
means and quartile borders.
Statistical models: Mating duration (Gaussian GLM)
Effect
of group size on mating duration in females.
# Statistical models: Mating duration (Gaussian GLM)
# Sex: Female
# Treatment: Group size
.1=glm(f_MatingDuration_av~Gr_size,data=DB_data,family = gaussian)
mod3summary(mod3.1)
Call:
glm(formula = f_MatingDuration_av ~ Gr_size, family = gaussian,
data = DB_data)
Deviance Residuals:
Min 1Q Median 3Q Max
-41.63 -20.35 -6.36 13.62 260.37
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 77.626 3.963 19.589 <2e-16 ***
Gr_sizeLG -8.203 6.266 -1.309 0.193
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 1224.805)
Null deviance: 158874 on 129 degrees of freedom
Residual deviance: 156775 on 128 degrees of freedom
(148 observations deleted due to missingness)
AIC: 1297.3
Number of Fisher Scoring iterations: 2
Effect of group size on mating duration in males.
# Sex: Male
# Treatment: Group size
.2=glm(m_MatingDuration_av~Gr_size,data=DB_data,family = gaussian)
mod3summary(mod3.2)
Call:
glm(formula = m_MatingDuration_av ~ Gr_size, family = gaussian,
data = DB_data)
Deviance Residuals:
Min 1Q Median 3Q Max
-65.622 -21.472 -10.327 9.798 296.048
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 79.202 4.594 17.240 <2e-16 ***
Gr_sizeLG -4.250 6.453 -0.659 0.511
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 1540.677)
Null deviance: 225607 on 147 degrees of freedom
Residual deviance: 224939 on 146 degrees of freedom
(130 observations deleted due to missingness)
AIC: 1510.3
Number of Fisher Scoring iterations: 2
Effect of area on mating duration in females.
# Sex: Female
# Treatment: Area
.3=glm(f_MatingDuration_av~Area,data=DB_data,family = gaussian)
mod3summary(mod3.3)
Call:
glm(formula = f_MatingDuration_av ~ Area, family = gaussian,
data = DB_data)
Deviance Residuals:
Min 1Q Median 3Q Max
-38.502 -19.592 -7.618 14.121 262.498
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 75.502 4.178 18.070 <2e-16 ***
AreaSmall -2.549 6.202 -0.411 0.682
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 1239.57)
Null deviance: 158874 on 129 degrees of freedom
Residual deviance: 158665 on 128 degrees of freedom
(148 observations deleted due to missingness)
AIC: 1298.8
Number of Fisher Scoring iterations: 2
Effect of area on mating duration in males.
# Sex: Male
# Treatment: Area
.4=glm(m_MatingDuration_av~Area,data=DB_data,family = gaussian)
mod3summary(mod3.4)
Call:
glm(formula = m_MatingDuration_av ~ Area, family = gaussian,
data = DB_data)
Deviance Residuals:
Min 1Q Median 3Q Max
-71.872 -21.242 -10.322 8.445 289.798
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 73.112 4.485 16.302 <2e-16 ***
AreaSmall 8.090 6.430 1.258 0.21
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 1528.679)
Null deviance: 225607 on 147 degrees of freedom
Residual deviance: 223187 on 146 degrees of freedom
(130 observations deleted due to missingness)
AIC: 1509.2
Number of Fisher Scoring iterations: 2
Figure: Mating encounters (mating number + mating attempts)
# Figure: Mating encounters (mating number + mating attempts)
# Treatment: Group size
<-ggplot(DB_data, aes(x=Sex, y=as.numeric(Total_Encounters),fill=Gr_size, col=Gr_size)) +
p4geom_point(position=position_jitterdodge(jitter.width=0.6,jitter.height = 0,dodge.width=0.9),shape=19, alpha=0.75, size = 2)+
stat_summary(fun.min = function(z) { quantile(z,0.25) },
fun.max = function(z) { quantile(z,0.75) },
fun = mean,position=position_dodge(.9), size = 0.9,col='black',show.legend = F)+
scale_color_manual(values=c(colorESEB[1],colorESEB[2]),name = "Treatment", labels = c('Small group','Large group'))+
scale_fill_manual(values=c(colorESEB[1],colorESEB[2]),name = "Treatment", labels = c('Small group','Large group'))+
xlab('Sex')+ylab("Mating encounters")+ggtitle('')+ theme(plot.title = element_text(hjust = 0.5))+
scale_x_discrete(labels = c('Female','Male'),drop=FALSE)+ ylim(0,33)+labs(tag = "A")+
annotate("text",label='n =',x=0.55,y=33,size=4)+
annotate("text",label='91',x=0.78,y=33,size=4)+
annotate("text",label='74',x=1.23,y=33,size=4)+
annotate("text",label='85',x=1.78,y=33,size=4)+
annotate("text",label='85',x=2.23,y=33,size=4)+
theme(panel.border = element_blank(),
plot.margin = margin(0,2.2,0.15,0.2,"cm"),
plot.title = element_text(hjust = 0.5),
panel.background = element_blank(),
legend.key=element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
legend.position = c(1.08, 0.8),
plot.tag.position=c(0.01,0.98),
legend.title = element_blank(),
legend.text = element_text(colour="black", size=10),
axis.line.x = element_line(colour = "black", size = 1),
axis.line.y = element_line(colour = "black", size = 1),
axis.text.x = element_text(face="plain", color="black", size=16, angle=0),
axis.text.y = element_text(face="plain", color="black", size=16, angle=0),
axis.title.x = element_text(size=16,face="plain", margin = margin(r=0,10,0,0)),
axis.title.y = element_text(size=16,face="plain", margin = margin(r=10,0,0,0)),
axis.ticks = element_line(size = 1),
axis.ticks.length = unit(.3, "cm"))+
guides(colour = guide_legend(override.aes = list(size=4)))
# Treatment: Area
.2<-ggplot(DB_data, aes(x=Sex, y=as.numeric(Total_Encounters),fill=Area, col=Area)) +
p4geom_point(position=position_jitterdodge(jitter.width=0.6,jitter.height = 0,dodge.width=0.9),shape=19, alpha=0.75, size = 2)+
stat_summary(fun.min = function(z) { quantile(z,0.25) },
fun.max = function(z) { quantile(z,0.75) },
fun = mean,position=position_dodge(.9), size = 0.9,col='black',show.legend = F)+
scale_color_manual(values=c(colorESEB2[1],colorESEB2[2]),name = "Treatment", labels = c('Large area','Small area'))+
scale_fill_manual(values=c(colorESEB2[1],colorESEB2[2]),name = "Treatment", labels = c('Large area','Small area'))+
xlab('Sex')+ylab("")+ggtitle('')+ theme(plot.title = element_text(hjust = 0.5))+
scale_x_discrete(labels = c('Female','Male'),drop=FALSE)+ ylim(0,33)+labs(tag = "B")+
annotate("text",label='n =',x=0.55,y=33,size=4)+
annotate("text",label='86',x=0.78,y=33,size=4)+
annotate("text",label='79',x=1.23,y=33,size=4)+
annotate("text",label='88',x=1.78,y=33,size=4)+
annotate("text",label='82',x=2.23,y=33,size=4)+
theme(panel.border = element_blank(),
plot.margin = margin(0,2.2,0.15,0,"cm"),
plot.title = element_text(hjust = 0.5),
panel.background = element_blank(),
legend.key=element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
legend.position = c(1.08, 0.8),
plot.tag.position=c(0.01,0.98),
legend.title = element_blank(),
legend.text = element_text(colour="black", size=10),
axis.line.x = element_line(colour = "black", size = 1),
axis.line.y = element_line(colour = "black", size = 1),
axis.text.x = element_text(face="plain", color="black", size=16, angle=0),
axis.text.y = element_text(face="plain", color="black", size=16, angle=0),
axis.title.x = element_text(size=16,face="plain", margin = margin(r=0,10,0,0)),
axis.title.y = element_text(size=16,face="plain", margin = margin(r=10,0,0,0)),
axis.ticks = element_line(size = 1),
axis.ticks.length = unit(.3, "cm"))+
guides(colour = guide_legend(override.aes = list(size=4)))
<-grid.arrange(grobs = list(p4,p4.2), nrow = 1,ncol=2, widths=c(2.3, 2.3)) plot4
Figure 4: Effects of group size (A) and area treatment (B) on the number
of mating encounters (mating number + mating attempts) of female and
male focals. Black bars indicate means and quartile borders.
Statistical models: Mating encounters (Gaussian GLM)
Effect of group size on mating encounters in females.
# Statistical models: Mating encounters (Gaussian GLM)
# Sex: Female
# Treatment: Group size
.1=glm(f_Total_Encounters~Gr_size,data=DB_data,family = gaussian)
mod4summary(mod4.1)
Call:
glm(formula = f_Total_Encounters ~ Gr_size, family = gaussian,
data = DB_data)
Deviance Residuals:
Min 1Q Median 3Q Max
-8.3718 -2.9038 -0.9038 2.6282 15.6282
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.3718 0.4727 19.827 < 2e-16 ***
Gr_sizeLG -2.4679 0.7474 -3.302 0.00124 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 17.42763)
Null deviance: 2420.8 on 129 degrees of freedom
Residual deviance: 2230.7 on 128 degrees of freedom
(148 observations deleted due to missingness)
AIC: 744.46
Number of Fisher Scoring iterations: 2
Effect of group size on mating encounters in males.
# Sex: Male
# Treatment: Group size
.2=glm(m_Total_Encounters~Gr_size,data=DB_data,family = gaussian)
mod4summary(mod4.2)
Call:
glm(formula = m_Total_Encounters ~ Gr_size, family = gaussian,
data = DB_data)
Deviance Residuals:
Min 1Q Median 3Q Max
-7.726 -3.453 -0.726 1.728 21.274
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 10.7260 0.5699 18.822 < 2e-16 ***
Gr_sizeLG -3.2727 0.8005 -4.088 7.15e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 23.70621)
Null deviance: 3857.3 on 147 degrees of freedom
Residual deviance: 3461.1 on 146 degrees of freedom
(130 observations deleted due to missingness)
AIC: 892.52
Number of Fisher Scoring iterations: 2
Effect of area on mating encounters in females.
# Sex: Female
# Treatment: Area
.3=glm(f_Total_Encounters~Area,data=DB_data,family = gaussian)
mod4summary(mod4.3)
Call:
glm(formula = f_Total_Encounters ~ Area, family = gaussian, data = DB_data)
Deviance Residuals:
Min 1Q Median 3Q Max
-7.4366 -3.3220 -0.4366 2.5634 16.6780
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.4366 0.5161 16.35 <2e-16 ***
AreaSmall -0.1146 0.7660 -0.15 0.881
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 18.90895)
Null deviance: 2420.8 on 129 degrees of freedom
Residual deviance: 2420.3 on 128 degrees of freedom
(148 observations deleted due to missingness)
AIC: 755.06
Number of Fisher Scoring iterations: 2
Effect of area on mating encounters in males.
# Sex: Male
# Treatment: Area
.4=glm(m_Total_Encounters~Area,data=DB_data,family = gaussian)
mod4summary(mod4.4)
Call:
glm(formula = m_Total_Encounters ~ Area, family = gaussian, data = DB_data)
Deviance Residuals:
Min 1Q Median 3Q Max
-7.556 -3.556 -1.080 2.395 22.444
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.6053 0.5870 14.659 <2e-16 ***
AreaSmall 0.9503 0.8417 1.129 0.261
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 26.19134)
Null deviance: 3857.3 on 147 degrees of freedom
Residual deviance: 3823.9 on 146 degrees of freedom
(130 observations deleted due to missingness)
AIC: 907.28
Number of Fisher Scoring iterations: 2
Figure: Proportion of successful matings (mating number/mating number + mating attempts)
# Figure: Proportion of successful matings (mating number/mating number + mating attempts)
# Treatment: Group size
<-ggplot(DB_data, aes(x=Sex, y=as.numeric(Prop_MS),fill=Gr_size, col=Gr_size)) +
p5geom_point(position=position_jitterdodge(jitter.width=0.6,jitter.height = 0,dodge.width=0.9),shape=19, alpha=0.75, size = 2)+
stat_summary(fun.min = function(z) { quantile(z,0.25) },
fun.max = function(z) { quantile(z,0.75) },
fun = mean,position=position_dodge(.9), size = 0.9,col='black',show.legend = F)+
scale_color_manual(values=c(colorESEB[1],colorESEB[2]),name = "Treatment", labels = c('Small group','Large group'))+
scale_fill_manual(values=c(colorESEB[1],colorESEB[2]),name = "Treatment", labels = c('Small group','Large group'))+
xlab('Sex')+ylab("Proportion successful matings")+ggtitle('')+ theme(plot.title = element_text(hjust = 0.5))+
scale_x_discrete(labels = c('Female','Male'),drop=FALSE)+ ylim(0,1.1)+labs(tag = "A")+
annotate("text",label='n =',x=0.55,y=1.1,size=4)+
annotate("text",label='91',x=0.78,y=1.1,size=4)+
annotate("text",label='74',x=1.23,y=1.1,size=4)+
annotate("text",label='85',x=1.78,y=1.1,size=4)+
annotate("text",label='85',x=2.23,y=1.1,size=4)+
theme(panel.border = element_blank(),
plot.margin = margin(0.15,2.2,0,0.2,"cm"),
plot.title = element_text(hjust = 0.5),
panel.background = element_blank(),
legend.key=element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
legend.position = c(1.08, 0.8),
plot.tag.position=c(0.01,0.98),
legend.title = element_blank(),
legend.text = element_text(colour="black", size=10),
axis.line.x = element_line(colour = "black", size = 1),
axis.line.y = element_line(colour = "black", size = 1),
axis.text.x = element_text(face="plain", color="black", size=16, angle=0),
axis.text.y = element_text(face="plain", color="black", size=16, angle=0),
axis.title.x = element_text(size=16,face="plain", margin = margin(r=0,10,0,0)),
axis.title.y = element_text(size=16,face="plain", margin = margin(r=10,0,0,0)),
axis.ticks = element_line(size = 1),
axis.ticks.length = unit(.3, "cm"))+
guides(colour = guide_legend(override.aes = list(size=4)))
# Treatment: Area
.2<-ggplot(DB_data, aes(x=Sex, y=as.numeric(Prop_MS),fill=Area, col=Area)) +
p5geom_point(position=position_jitterdodge(jitter.width=0.6,jitter.height = 0,dodge.width=0.9),shape=19, alpha=0.75, size = 2)+
stat_summary(fun.min = function(z) { quantile(z,0.25) },
fun.max = function(z) { quantile(z,0.75) },
fun = mean,position=position_dodge(.9), size = 0.9,col='black',show.legend = F)+
scale_color_manual(values=c(colorESEB2[1],colorESEB2[2]),name = "Treatment", labels = c('Large area','Small area'))+
scale_fill_manual(values=c(colorESEB2[1],colorESEB2[2]),name = "Treatment", labels = c('Large area','Small area'))+
xlab('Sex')+ylab("")+ggtitle('')+ theme(plot.title = element_text(hjust = 0.5))+
scale_x_discrete(labels = c('Female','Male'),drop=FALSE)+ ylim(0,1.1)+labs(tag = "B")+
annotate("text",label='n =',x=0.55,y=1.1,size=4)+
annotate("text",label='86',x=0.78,y=1.1,size=4)+
annotate("text",label='79',x=1.23,y=1.1,size=4)+
annotate("text",label='88',x=1.78,y=1.1,size=4)+
annotate("text",label='82',x=2.23,y=1.1,size=4)+
theme(panel.border = element_blank(),
plot.margin = margin(0.15,2.2,0,0,"cm"),
plot.title = element_text(hjust = 0.5),
panel.background = element_blank(),
legend.key=element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
legend.position = c(1.08, 0.8),
plot.tag.position=c(0.01,0.98),
legend.title = element_blank(),
legend.text = element_text(colour="black", size=10),
axis.line.x = element_line(colour = "black", size = 1),
axis.line.y = element_line(colour = "black", size = 1),
axis.text.x = element_text(face="plain", color="black", size=16, angle=0),
axis.text.y = element_text(face="plain", color="black", size=16, angle=0),
axis.title.x = element_text(size=16,face="plain", margin = margin(r=0,10,0,0)),
axis.title.y = element_text(size=16,face="plain", margin = margin(r=10,0,0,0)),
axis.ticks = element_line(size = 1),
axis.ticks.length = unit(.3, "cm"))+
guides(colour = guide_legend(override.aes = list(size=4)))
<-grid.arrange(grobs = list(p5,p5.2), nrow = 1,ncol=2, widths=c(2.3, 2.3)) plot5
Figure 5: Effects of group size (A) and area treatment (B) on the
proportion of successful matings of female and male focals. Black bars
indicate means and quartile borders.
Statistical models: Proportion of successful matings
(quasi-binomial GLM)
Effect of group size on proportion of
successful matings in females.
# Statistical models: Proportion of successful matings (quasi-binomial GLM)
# Sex: Female
# Treatment: Group size
.1=glm(cbind(f_TotMatings,f_Attempts_number)~Gr_size,data=DB_data,family = quasibinomial)
mod5summary(mod5.1)
Call:
glm(formula = cbind(f_TotMatings, f_Attempts_number) ~ Gr_size,
family = quasibinomial, data = DB_data)
Deviance Residuals:
Min 1Q Median 3Q Max
-2.8166 -0.8025 -0.0549 0.7731 3.4012
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.6544 0.0926 -7.067 9.09e-11 ***
Gr_sizeLG 0.1003 0.1598 0.627 0.531
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for quasibinomial family taken to be 1.410505)
Null deviance: 190.01 on 129 degrees of freedom
Residual deviance: 189.45 on 128 degrees of freedom
(148 observations deleted due to missingness)
AIC: NA
Number of Fisher Scoring iterations: 4
Effect of group size on proportion of successful matings in
males.
# Sex: Male
# Treatment: Group size
.2=glm(cbind(m_TotMatings,m_Attempts_number)~Gr_size,data=DB_data,family = quasibinomial)
mod5summary(mod5.2)
Call:
glm(formula = cbind(m_TotMatings, m_Attempts_number) ~ Gr_size,
family = quasibinomial, data = DB_data)
Deviance Residuals:
Min 1Q Median 3Q Max
-2.4940 -0.6358 0.1065 0.7179 4.2524
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.84669 0.08881 -9.533 <2e-16 ***
Gr_sizeLG 0.06083 0.13667 0.445 0.657
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for quasibinomial family taken to be 1.297307)
Null deviance: 194.77 on 147 degrees of freedom
Residual deviance: 194.51 on 146 degrees of freedom
(130 observations deleted due to missingness)
AIC: NA
Number of Fisher Scoring iterations: 4
Effect of area on proportion of successful matings in
females.
# Sex: Female
# Treatment: Area
.3=glm(cbind(f_TotMatings,f_Attempts_number)~Area,data=DB_data,family = quasibinomial)
mod5summary(mod5.3)
Call:
glm(formula = cbind(f_TotMatings, f_Attempts_number) ~ Area,
family = quasibinomial, data = DB_data)
Deviance Residuals:
Min 1Q Median 3Q Max
-2.6934 -0.8646 -0.0321 0.8745 3.1859
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.53673 0.09988 -5.374 3.53e-07 ***
AreaSmall -0.19021 0.15125 -1.258 0.211
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for quasibinomial family taken to be 1.391415)
Null deviance: 190.01 on 129 degrees of freedom
Residual deviance: 187.80 on 128 degrees of freedom
(148 observations deleted due to missingness)
AIC: NA
Number of Fisher Scoring iterations: 4
Effect of area on proportion of successful matings in males.
# Sex: Male
# Treatment: Area
.4=glm(cbind(m_TotMatings,m_Attempts_number)~Area,data=DB_data,family = quasibinomial)
mod5summary(mod5.4)
Call:
glm(formula = cbind(m_TotMatings, m_Attempts_number) ~ Area,
family = quasibinomial, data = DB_data)
Deviance Residuals:
Min 1Q Median 3Q Max
-2.5859 -0.6372 0.1125 0.7222 4.1648
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.79113 0.09600 -8.241 8.97e-14 ***
AreaSmall -0.05894 0.13483 -0.437 0.663
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for quasibinomial family taken to be 1.293625)
Null deviance: 194.77 on 147 degrees of freedom
Residual deviance: 194.52 on 146 degrees of freedom
(130 observations deleted due to missingness)
AIC: NA
Number of Fisher Scoring iterations: 4
Secondly, we tested the effect that the treatments (group size and
area) had on the reproductive success of focal beetles.
Figure:
Reproductive success
# Figure: Reproductive success
# Treatment: Group size
<-ggplot(DB_data_clean, aes(x=Sex, y=as.numeric(Total_N_MTP1),fill=Gr_size, col=Gr_size)) +
p6geom_point(position=position_jitterdodge(jitter.width=0.6,jitter.height = 0,dodge.width=0.9),shape=19, alpha=0.75, size = 2)+
stat_summary(fun.min = function(z) { quantile(z,0.25) },
fun.max = function(z) { quantile(z,0.75) },
fun = mean,position=position_dodge(.9), size = 0.9,col='black',show.legend = F)+
scale_color_manual(values=c(colorESEB[1],colorESEB[2]),name = "Treatment", labels = c('Small group','Large group'))+
scale_fill_manual(values=c(colorESEB[1],colorESEB[2]),name = "Treatment", labels = c('Small group','Large group'))+
xlab('Sex')+ylab("Number of offspring")+ggtitle('')+ theme(plot.title = element_text(hjust = 0.5))+
scale_x_discrete(labels = c('Female','Male'),drop=FALSE)+ ylim(0,320)+labs(tag = "A")+
annotate("text",label='n =',x=0.55,y=320,size=4)+
annotate("text",label='59',x=0.78,y=320,size=4)+
annotate("text",label='48',x=1.23,y=320,size=4)+
annotate("text",label='51',x=1.78,y=320,size=4)+
annotate("text",label='59',x=2.23,y=320,size=4)+
theme(panel.border = element_blank(),
plot.margin = margin(0,2.2,0,0.2,"cm"),
plot.title = element_text(hjust = 0.5),
panel.background = element_blank(),
legend.key=element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
legend.position = c(1.1, 0.8),
plot.tag.position=c(0.01,0.98),
legend.title = element_blank(),
legend.text = element_text(colour="black", size=10),
axis.line.x = element_line(colour = "black", size = 1),
axis.line.y = element_line(colour = "black", size = 1),
axis.text.x = element_text(face="plain", color="black", size=16, angle=0),
axis.text.y = element_text(face="plain", color="black", size=16, angle=0),
axis.title.x = element_text(size=16,face="plain", margin = margin(r=0,10,0,0)),
axis.title.y = element_text(size=16,face="plain", margin = margin(r=10,0,0,0)),
axis.ticks = element_line(size = 1),
axis.ticks.length = unit(.3, "cm"))+
guides(colour = guide_legend(override.aes = list(size=4)))
# Treatment: Area
.2<-ggplot(DB_data_clean, aes(x=Sex, y=as.numeric(Total_N_MTP1),fill=Area, col=Area)) +
p6geom_point(position=position_jitterdodge(jitter.width=0.6,jitter.height = 0,dodge.width=0.9),shape=19, alpha=0.75, size = 2)+
stat_summary(fun.min = function(z) { quantile(z,0.25) },
fun.max = function(z) { quantile(z,0.75) },
fun = mean,position=position_dodge(.9), size = 0.9,col='black',show.legend = F)+
scale_color_manual(values=c(colorESEB2[1],colorESEB2[2]),name = "Treatment", labels = c('Large area','Small area'))+
scale_fill_manual(values=c(colorESEB2[1],colorESEB2[2]),name = "Treatment", labels = c('Large area','Small area'))+
xlab('Sex')+ylab("")+ggtitle('')+ theme(plot.title = element_text(hjust = 0.5))+
scale_x_discrete(labels = c('Female','Male'),drop=FALSE)+ ylim(0,320)+labs(tag = "B")+
annotate("text",label='n =',x=0.55,y=320,size=4)+
annotate("text",label='56',x=0.78,y=320,size=4)+
annotate("text",label='51',x=1.23,y=320,size=4)+
annotate("text",label='57',x=1.78,y=320,size=4)+
annotate("text",label='53',x=2.23,y=320,size=4)+
theme(panel.border = element_blank(),
plot.margin = margin(0,2.2,0,0,"cm"),
plot.title = element_text(hjust = 0.5),
panel.background = element_blank(),
legend.key=element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
legend.position = c(1.1, 0.8),
plot.tag.position=c(0.01,0.98),
legend.title = element_blank(),
legend.text = element_text(colour="black", size=10),
axis.line.x = element_line(colour = "black", size = 1),
axis.line.y = element_line(colour = "black", size = 1),
axis.text.x = element_text(face="plain", color="black", size=16, angle=0),
axis.text.y = element_text(face="plain", color="black", size=16, angle=0),
axis.title.x = element_text(size=16,face="plain", margin = margin(r=0,10,0,0)),
axis.title.y = element_text(size=16,face="plain", margin = margin(r=10,0,0,0)),
axis.ticks = element_line(size = 1),
axis.ticks.length = unit(.3, "cm"))+guides(colour = guide_legend(override.aes = list(size=4)))
grid.arrange(grobs = list(p6,p6.2), nrow = 1,ncol=2, widths=c(2.3, 2.3))
Figure 6: Effects of group size (A) and area treatment (B) on the
reproductive success of female and male focals. Black bars indicate
means and quartile borders.
Statistical models: Reproductive success (quasi-Poisson
GLM)
Effect of group size on reproductive success in females.
# Statistical models: Reproductive success (quasi-Poisson GLM)
# Sex: Female
# Treatment: Group size
.1=glm(f_RS~Gr_size,data=DB_data_clean,family = quasipoisson)
mod6summary(mod6.1)
Call:
glm(formula = f_RS ~ Gr_size, family = quasipoisson, data = DB_data_clean)
Deviance Residuals:
Min 1Q Median 3Q Max
-11.143 -10.664 1.433 4.942 8.982
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.04054 0.12007 33.650 <2e-16 ***
Gr_sizeLG 0.08801 0.18288 0.481 0.632
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for quasipoisson family taken to be 40.16879)
Null deviance: 4614.9 on 82 degrees of freedom
Residual deviance: 4605.7 on 81 degrees of freedom
(94 observations deleted due to missingness)
AIC: NA
Number of Fisher Scoring iterations: 5
Effect of group size on reproductive success in males.
# Sex: Male
# Treatment: Group size
.2=glm(m_RS~Gr_size,data=DB_data_clean,family = quasipoisson)
mod6summary(mod6.2)
Call:
glm(formula = m_RS ~ Gr_size, family = quasipoisson, data = DB_data_clean)
Deviance Residuals:
Min 1Q Median 3Q Max
-11.7196 -7.9610 -0.7465 4.1631 21.0427
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.229 0.127 33.308 <2e-16 ***
Gr_sizeLG -0.203 0.181 -1.121 0.265
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for quasipoisson family taken to be 47.61251)
Null deviance: 5078.4 on 93 degrees of freedom
Residual deviance: 5018.5 on 92 degrees of freedom
(83 observations deleted due to missingness)
AIC: NA
Number of Fisher Scoring iterations: 5
Effect of area on reproductive success in females.
# Sex: Female
# Treatment: Area
.3=glm(f_RS~Area,data=DB_data_clean,family = quasipoisson)
mod6summary(mod6.3)
Call:
glm(formula = f_RS ~ Area, family = quasipoisson, data = DB_data_clean)
Deviance Residuals:
Min 1Q Median 3Q Max
-10.920 -10.817 1.581 4.922 8.727
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.06903 0.12200 33.354 <2e-16 ***
AreaSmall 0.01899 0.18177 0.104 0.917
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for quasipoisson family taken to be 40.05135)
Null deviance: 4614.9 on 82 degrees of freedom
Residual deviance: 4614.5 on 81 degrees of freedom
(94 observations deleted due to missingness)
AIC: NA
Number of Fisher Scoring iterations: 5
Effect of area on reproductive success in males.
# Sex: Male
# Treatment: Area
.4=glm(m_RS~Area,data=DB_data_clean,family = quasipoisson)
mod6summary(mod6.4)
Call:
glm(formula = m_RS ~ Area, family = quasipoisson, data = DB_data_clean)
Deviance Residuals:
Min 1Q Median 3Q Max
-11.536 -7.447 -0.200 3.954 21.400
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.0520 0.1306 31.034 <2e-16 ***
AreaSmall 0.1457 0.1819 0.801 0.425
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for quasipoisson family taken to be 48.03915)
Null deviance: 5078.4 on 93 degrees of freedom
Residual deviance: 5047.5 on 92 degrees of freedom
(83 observations deleted due to missingness)
AIC: NA
Number of Fisher Scoring iterations: 5
In this part of our analysis we estimated standardized metrics of
(sexual) selection.
Metrics:
- Opportunity for selection
- Opportunity for sexual selection
- Bateman gradient
- Jones
index
We used bootstrapping (10.000 bootstrap replicates) to
obtain 95% confidence intervals and permutation tests (10.000
permutations) to statistically compare treatments and sexes.
# Opportunity for selection
#Area
<-as.data.table(DB_data_clean_Large_area$rel_m_RS)
DB_data_clean_Large_area_Male_rel_propRS <- function(d, i){
c <- d[i,]
d2 return(var(d2[,1], na.rm=TRUE))
}<- boot(DB_data_clean_Large_area_Male_rel_propRS, c, R=10000)
I_Large_area_Male_bootvar
<-as.data.table(DB_data_clean_Large_area$rel_f_RS)
DB_data_clean_Large_area_Female_rel_propRS
<- boot(DB_data_clean_Large_area_Female_rel_propRS, c, R=10000)
I_Large_area_Female_bootvar
<-as.data.table(DB_data_clean_Small_area$rel_m_RS)
DB_data_clean_Small_area_Male_rel_propRS
<- boot(DB_data_clean_Small_area_Male_rel_propRS, c, R=10000)
I_Small_area_Male_bootvar
<-as.data.table(DB_data_clean_Small_area$rel_f_RS)
DB_data_clean_Small_area_Female_rel_propRS
<- boot(DB_data_clean_Small_area_Female_rel_propRS, c, R=10000)
I_Small_area_Female_bootvar
#Population size
<-as.data.table(DB_data_clean_Large_pop$rel_m_RS)
DB_data_clean_Large_pop_Male_rel_propRS
<- boot(DB_data_clean_Large_pop_Male_rel_propRS, c, R=10000)
I_Large_pop_Male_bootvar
<-as.data.table(DB_data_clean_Large_pop$rel_f_RS)
DB_data_clean_Large_pop_Female_rel_propRS
<- boot(DB_data_clean_Large_pop_Female_rel_propRS, c, R=10000)
I_Large_pop_Female_bootvar
<-as.data.table(DB_data_clean_Small_pop$rel_m_RS)
DB_data_clean_Small_pop_Male_rel_propRS
<- boot(DB_data_clean_Small_pop_Male_rel_propRS, c, R=10000)
I_Small_pop_Male_bootvar
<-as.data.table(DB_data_clean_Small_pop$rel_f_RS)
DB_data_clean_Small_pop_Female_rel_propRS
<- boot(DB_data_clean_Small_pop_Female_rel_propRS, c, R=10000)
I_Small_pop_Female_bootvar rm("c")
# Opportunity for sexual selection
#Area
<-as.data.table(DB_data_clean_Large_area$rel_m_cMS)
DB_data_clean_Large_area_Male_relMS <- function(d, i){
c <- d[i,]
d2 return(var(d2[,1], na.rm=TRUE))
}<- boot(DB_data_clean_Large_area_Male_relMS, c, R=10000)
Is_Large_area_Male_bootvar
<-as.data.table(DB_data_clean_Large_area$rel_f_cMS)
DB_data_clean_Large_area_Female_relMS
<- boot(DB_data_clean_Large_area_Female_relMS, c, R=10000)
Is_Large_area_Female_bootvar
<-as.data.table(DB_data_clean_Small_area$rel_m_cMS)
DB_data_clean_Small_area_Male_relMS
<- boot(DB_data_clean_Small_area_Male_relMS, c, R=10000)
Is_Small_area_Male_bootvar
<-as.data.table(DB_data_clean_Small_area$rel_f_cMS)
DB_data_clean_Small_area_Female_relMS
<- boot(DB_data_clean_Small_area_Female_relMS, c, R=10000)
Is_Small_area_Female_bootvar
#Population size
<-as.data.table(DB_data_clean_Large_pop$rel_m_cMS)
DB_data_clean_Large_pop_Male_relMS
<- boot(DB_data_clean_Large_pop_Male_relMS, c, R=10000)
Is_Large_pop_Male_bootvar
<-as.data.table(DB_data_clean_Large_pop$rel_f_cMS)
DB_data_clean_Large_pop_Female_relMS
<- boot(DB_data_clean_Large_pop_Female_relMS, c, R=10000)
Is_Large_pop_Female_bootvar
<-as.data.table(DB_data_clean_Small_pop$rel_m_cMS)
DB_data_clean_Small_pop_Male_relMS
<- boot(DB_data_clean_Small_pop_Male_relMS, c, R=10000)
Is_Small_pop_Male_bootvar
<-as.data.table(DB_data_clean_Small_pop$rel_f_cMS)
DB_data_clean_Small_pop_Female_relMS
<- boot(DB_data_clean_Small_pop_Female_relMS, c, R=10000)
Is_Small_pop_Female_bootvar rm("c")
# Bateman Gradient
#Area
<-as.data.table(cbind(DB_data_clean_Large_area$rel_m_RS,DB_data_clean_Large_area$rel_m_cMS))
DB_data_clean_Large_area_Male_B
<- function(d, i){
c <- d[i,]
d2 return(lm(V1 ~V2,data=d2)$coefficients[2])
}<- boot(DB_data_clean_Large_area_Male_B, c, R=10000)
B_Large_area_Male_bootvar
<-as.data.table(cbind(DB_data_clean_Small_area$rel_m_RS,DB_data_clean_Small_area$rel_m_cMS))
DB_data_clean_Small_area_Male_B
<- boot(DB_data_clean_Small_area_Male_B, c, R=10000)
B_Small_area_Male_bootvar
<-as.data.table(cbind(DB_data_clean_Large_area$rel_f_RS,DB_data_clean_Large_area$rel_f_cMS))
DB_data_clean_Large_area_Female_B
<- boot(DB_data_clean_Large_area_Female_B, c, R=10000)
B_Large_area_Female_bootvar
<-as.data.table(cbind(DB_data_clean_Small_area$rel_f_RS,DB_data_clean_Small_area$rel_f_cMS))
DB_data_clean_Small_area_Female_B
<- boot(DB_data_clean_Small_area_Female_B, c, R=10000)
B_Small_area_Female_bootvar
#Population size
<-as.data.table(cbind(DB_data_clean_Large_pop$rel_m_RS,DB_data_clean_Large_pop$rel_m_cMS))
DB_data_clean_Large_pop_Male_B
<- boot(DB_data_clean_Large_pop_Male_B, c, R=10000)
B_Large_pop_Male_bootvar
<-as.data.table(cbind(DB_data_clean_Small_pop$rel_m_RS,DB_data_clean_Small_pop$rel_m_cMS))
DB_data_clean_Small_pop_Male_B
<- boot(DB_data_clean_Small_pop_Male_B, c, R=10000)
B_Small_pop_Male_bootvar
<-as.data.table(cbind(DB_data_clean_Large_pop$rel_f_RS,DB_data_clean_Large_pop$rel_f_cMS))
DB_data_clean_Large_pop_Female_B
<- boot(DB_data_clean_Large_pop_Female_B, c, R=10000)
B_Large_pop_Female_bootvar
<-as.data.table(cbind(DB_data_clean_Small_pop$rel_f_RS,DB_data_clean_Small_pop$rel_f_cMS))
DB_data_clean_Small_pop_Female_B
<- boot(DB_data_clean_Small_pop_Female_B, c, R=10000)
B_Small_pop_Female_bootvar rm("c")
#Jones index
#Area
<- function(d, i){
c <- d[i,]
d2 return(lm(d2$V1 ~d2$V2)$coefficients[2]*sqrt(var(d2$V2, na.rm=TRUE)))
}
<- boot(DB_data_clean_Large_area_Male_B, c, R=10000)
S_Large_area_Male_bootvar
<- boot(DB_data_clean_Small_area_Male_B, c, R=10000)
S_Small_area_Male_bootvar
<- boot(DB_data_clean_Large_area_Female_B, c, R=10000)
S_Large_area_Female_bootvar
<- boot(DB_data_clean_Small_area_Female_B, c, R=10000)
S_Small_area_Female_bootvar
#Population size
<- boot(DB_data_clean_Large_pop_Male_B, c, R=10000)
S_Large_pop_Male_bootvar
<- boot(DB_data_clean_Small_pop_Male_B, c, R=10000)
S_Small_pop_Male_bootvar
<- boot(DB_data_clean_Large_pop_Female_B, c, R=10000)
S_Large_pop_Female_bootvar
<- boot(DB_data_clean_Small_pop_Female_B, c, R=10000)
S_Small_pop_Female_bootvar rm("c")
#Make data table
<- as.data.frame(cbind("Male", "Small_pop", "Opportunity for selection", as.numeric(mean(I_Small_pop_Male_bootvar$t)), quantile(I_Small_pop_Male_bootvar$t,.025, names = FALSE), quantile(I_Small_pop_Male_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Small_pop_I <- as.data.frame(cbind("Male", "Large_pop", "Opportunity for selection", mean(I_Large_pop_Male_bootvar$t), quantile(I_Large_pop_Male_bootvar$t,.025, names = FALSE), quantile(I_Large_pop_Male_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Large_pop_I <- as.data.frame(cbind("Male", "Large_area", "Opportunity for selection", mean(I_Large_area_Male_bootvar$t), quantile(I_Large_area_Male_bootvar$t,.025, names = FALSE), quantile(I_Large_area_Male_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Large_area_I <- as.data.frame(cbind("Male", "Small_area", "Opportunity for selection", mean(I_Small_area_Male_bootvar$t), quantile(I_Small_area_Male_bootvar$t,.025, names = FALSE), quantile(I_Small_area_Male_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Small_area_I <- as.data.frame(cbind("Male", "Small_pop", "Opportunity for sexual selection", mean(Is_Small_pop_Male_bootvar$t), quantile(Is_Small_pop_Male_bootvar$t,.025, names = FALSE), quantile(Is_Small_pop_Male_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Small_pop_Is <- as.data.frame(cbind("Male", "Large_pop", "Opportunity for sexual selection", mean(Is_Large_pop_Male_bootvar$t), quantile(Is_Large_pop_Male_bootvar$t,.025, names = FALSE), quantile(Is_Large_pop_Male_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Large_pop_Is <- as.data.frame(cbind("Male", "Large_area", "Opportunity for sexual selection", mean(Is_Large_area_Male_bootvar$t), quantile(Is_Large_area_Male_bootvar$t,.025, names = FALSE), quantile(Is_Large_area_Male_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Large_area_Is <- as.data.frame(cbind("Male", "Small_area", "Opportunity for sexual selection", mean(Is_Small_area_Male_bootvar$t), quantile(Is_Small_area_Male_bootvar$t,.025, names = FALSE), quantile(Is_Small_area_Male_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Small_area_Is <- as.data.frame(cbind("Male", "Small_pop", "Bateman gradient", mean(B_Small_pop_Male_bootvar$t), quantile(B_Small_pop_Male_bootvar$t,.025, names = FALSE), quantile(B_Small_pop_Male_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Small_pop_B <- as.data.frame(cbind("Male", "Large_pop", "Bateman gradient", mean(B_Large_pop_Male_bootvar$t), quantile(B_Large_pop_Male_bootvar$t,.025, names = FALSE), quantile(B_Large_pop_Male_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Large_pop_B <- as.data.frame(cbind("Male", "Large_area", "Bateman gradient", mean(B_Large_area_Male_bootvar$t), quantile(B_Large_area_Male_bootvar$t,.025, names = FALSE), quantile(B_Large_area_Male_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Large_area_B <- as.data.frame(cbind("Male", "Small_area", "Bateman gradient", mean(B_Small_area_Male_bootvar$t), quantile(B_Small_area_Male_bootvar$t,.025, names = FALSE), quantile(B_Small_area_Male_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Small_area_B <- as.data.frame(cbind("Male", "Small_pop", "Maximum standardized sexual selection differential", mean(S_Small_pop_Male_bootvar$t,na.rm = T), quantile(S_Small_pop_Male_bootvar$t,.025, names = FALSE,na.rm = T), quantile(S_Small_pop_Male_bootvar$t,.975, names = FALSE,na.rm = T)))
PhenVarBoot_Table_Male_Small_pop_S <- as.data.frame(cbind("Male", "Large_pop", "Maximum standardized sexual selection differential", mean(S_Large_pop_Male_bootvar$t,na.rm = T), quantile(S_Large_pop_Male_bootvar$t,.025, names = FALSE,na.rm = T), quantile(S_Large_pop_Male_bootvar$t,.975, names = FALSE,na.rm = T)))
PhenVarBoot_Table_Male_Large_pop_S <- as.data.frame(cbind("Male", "Large_area", "Maximum standardized sexual selection differential", mean(S_Large_area_Male_bootvar$t,na.rm = T), quantile(S_Large_area_Male_bootvar$t,.025, names = FALSE,na.rm = T), quantile(S_Large_area_Male_bootvar$t,.975, names = FALSE,na.rm = T)))
PhenVarBoot_Table_Male_Large_area_S <- as.data.frame(cbind("Male", "Small_area", "Maximum standardized sexual selection differential", mean(S_Small_area_Male_bootvar$t,na.rm = T), quantile(S_Small_area_Male_bootvar$t,.025, names = FALSE,na.rm = T), quantile(S_Small_area_Male_bootvar$t,.975, names = FALSE,na.rm = T)))
PhenVarBoot_Table_Male_Small_area_S
<- as.data.frame(cbind("Female", "Small_pop", "Opportunity for selection", mean(I_Small_pop_Female_bootvar$t), quantile(I_Small_pop_Female_bootvar$t,.025, names = FALSE), quantile(I_Small_pop_Female_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Female_Small_pop_I <- as.data.frame(cbind("Female", "Large_pop", "Opportunity for selection", mean(I_Large_pop_Female_bootvar$t), quantile(I_Large_pop_Female_bootvar$t,.025, names = FALSE), quantile(I_Large_pop_Female_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Female_Large_pop_I <- as.data.frame(cbind("Female", "Large_area", "Opportunity for selection", mean(I_Large_area_Female_bootvar$t), quantile(I_Large_area_Female_bootvar$t,.025, names = FALSE), quantile(I_Large_area_Female_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Female_Large_area_I <- as.data.frame(cbind("Female", "Small_area", "Opportunity for selection", mean(I_Small_area_Female_bootvar$t), quantile(I_Small_area_Female_bootvar$t,.025, names = FALSE), quantile(I_Small_area_Female_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Female_Small_area_I <- as.data.frame(cbind("Female", "Small_pop", "Opportunity for sexual selection", mean(Is_Small_pop_Female_bootvar$t), quantile(Is_Small_pop_Female_bootvar$t,.025, names = FALSE), quantile(Is_Small_pop_Female_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Female_Small_pop_Is <- as.data.frame(cbind("Female", "Large_pop", "Opportunity for sexual selection", mean(Is_Large_pop_Female_bootvar$t), quantile(Is_Large_pop_Female_bootvar$t,.025, names = FALSE), quantile(Is_Large_pop_Female_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Female_Large_pop_Is <- as.data.frame(cbind("Female", "Large_area", "Opportunity for sexual selection", mean(Is_Large_area_Female_bootvar$t), quantile(Is_Large_area_Female_bootvar$t,.025, names = FALSE), quantile(Is_Large_area_Female_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Female_Large_area_Is <- as.data.frame(cbind("Female", "Small_area", "Opportunity for sexual selection", mean(Is_Small_area_Female_bootvar$t), quantile(Is_Small_area_Female_bootvar$t,.025, names = FALSE), quantile(Is_Small_area_Female_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Female_Small_area_Is <- as.data.frame(cbind("Female", "Small_pop", "Bateman gradient", mean(B_Small_pop_Female_bootvar$t), quantile(B_Small_pop_Female_bootvar$t,.025, names = FALSE), quantile(B_Small_pop_Female_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Female_Small_pop_B <- as.data.frame(cbind("Female", "Large_pop", "Bateman gradient", mean(B_Large_pop_Female_bootvar$t), quantile(B_Large_pop_Female_bootvar$t,.025, names = FALSE), quantile(B_Large_pop_Female_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Female_Large_pop_B <- as.data.frame(cbind("Female", "Large_area", "Bateman gradient", mean(B_Large_area_Female_bootvar$t), quantile(B_Large_area_Female_bootvar$t,.025, names = FALSE), quantile(B_Large_area_Female_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Female_Large_area_B <- as.data.frame(cbind("Female", "Small_area", "Bateman gradient", mean(B_Small_area_Female_bootvar$t), quantile(B_Small_area_Female_bootvar$t,.025, names = FALSE), quantile(B_Small_area_Female_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Female_Small_area_B <- as.data.frame(cbind("Female", "Small_pop", "Maximum standardized sexual selection differential", mean(S_Small_pop_Female_bootvar$t,na.rm = T), quantile(S_Small_pop_Female_bootvar$t,.025, names = FALSE,na.rm = T), quantile(S_Small_pop_Female_bootvar$t,.975, names = FALSE,na.rm = T)))
PhenVarBoot_Table_Female_Small_pop_S <- as.data.frame(cbind("Female", "Large_pop", "Maximum standardized sexual selection differential", mean(S_Large_pop_Female_bootvar$t,na.rm = T), quantile(S_Large_pop_Female_bootvar$t,.025, names = FALSE,na.rm = T), quantile(S_Large_pop_Female_bootvar$t,.975, names = FALSE,na.rm = T)))
PhenVarBoot_Table_Female_Large_pop_S <- as.data.frame(cbind("Female", "Large_area", "Maximum standardized sexual selection differential", mean(S_Large_area_Female_bootvar$t,na.rm = T), quantile(S_Large_area_Female_bootvar$t,.025, names = FALSE,na.rm = T), quantile(S_Large_area_Female_bootvar$t,.975, names = FALSE,na.rm = T)))
PhenVarBoot_Table_Female_Large_area_S <- as.data.frame(cbind("Female", "Small_area", "Maximum standardized sexual selection differential", mean(S_Small_area_Female_bootvar$t,na.rm = T), quantile(S_Small_area_Female_bootvar$t,.025, names = FALSE,na.rm = T), quantile(S_Small_area_Female_bootvar$t,.975, names = FALSE,na.rm = T)))
PhenVarBoot_Table_Female_Small_area_S
<- as.data.frame(as.matrix(rbind(PhenVarBoot_Table_Male_Small_pop_I,PhenVarBoot_Table_Male_Large_pop_I,PhenVarBoot_Table_Male_Large_area_I,PhenVarBoot_Table_Male_Small_area_I,
Table_BatemanMetrics
PhenVarBoot_Table_Male_Small_pop_Is,PhenVarBoot_Table_Male_Large_pop_Is,PhenVarBoot_Table_Male_Large_area_Is,PhenVarBoot_Table_Male_Small_area_Is,
PhenVarBoot_Table_Male_Small_pop_B,PhenVarBoot_Table_Male_Large_pop_B,PhenVarBoot_Table_Male_Large_area_B,PhenVarBoot_Table_Male_Small_area_B,
PhenVarBoot_Table_Male_Small_pop_S,PhenVarBoot_Table_Male_Large_pop_S,PhenVarBoot_Table_Male_Large_area_S,PhenVarBoot_Table_Male_Small_area_S,
PhenVarBoot_Table_Female_Small_pop_I,PhenVarBoot_Table_Female_Large_pop_I,PhenVarBoot_Table_Female_Large_area_I,PhenVarBoot_Table_Female_Small_area_I,
PhenVarBoot_Table_Female_Small_pop_Is,PhenVarBoot_Table_Female_Large_pop_Is,PhenVarBoot_Table_Female_Large_area_Is,PhenVarBoot_Table_Female_Small_area_Is,
PhenVarBoot_Table_Female_Small_pop_B,PhenVarBoot_Table_Female_Large_pop_B,PhenVarBoot_Table_Female_Large_area_B,PhenVarBoot_Table_Female_Small_area_B,digits=3)
PhenVarBoot_Table_Female_Small_pop_S,PhenVarBoot_Table_Female_Large_pop_S,PhenVarBoot_Table_Female_Large_area_S,PhenVarBoot_Table_Female_Small_area_S)),
is.table(Table_BatemanMetrics)
colnames(Table_BatemanMetrics)[1] <- "Sex"
colnames(Table_BatemanMetrics)[2] <- "Treatment"
colnames(Table_BatemanMetrics)[3] <- "Variable"
colnames(Table_BatemanMetrics)[4] <- "Variance"
colnames(Table_BatemanMetrics)[5] <- "l95.CI"
colnames(Table_BatemanMetrics)[6] <- "u95.CI"
4]=as.numeric(Table_BatemanMetrics[,4])
Table_BatemanMetrics[,5]=as.numeric(Table_BatemanMetrics[,5])
Table_BatemanMetrics[,6]=as.numeric(Table_BatemanMetrics[,6]) Table_BatemanMetrics[,
#Bootstrap treatment comparisons
#I
#Area
#Males
=c(I_Large_area_Male_bootvar$t)-c(I_Small_area_Male_bootvar$t)
Treat_diff_Male_area_I
=mean(Treat_diff_Male_area_I,na.rm=TRUE)
t_Treat_diff_Male_area_I=quantile(Treat_diff_Male_area_I,.025,na.rm=TRUE)
t_Treat_diff_Male_area_I_lower=quantile(Treat_diff_Male_area_I,.975,na.rm=TRUE)
t_Treat_diff_Male_area_I_upper
#Permutation test to calculate p value
=c(DB_data_clean_Large_area$rel_m_RS,DB_data_clean_Small_area$rel_m_RS)
comb_data
= var(na.omit((DB_data_clean_Large_area$rel_m_RS))) - var(na.omit((DB_data_clean_Small_area$rel_m_RS)))
diff.observed
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined dataset
= sample (na.omit(comb_data), length(c(DB_data_clean_Large_area$rel_m_RS)), TRUE)
a.random = sample (na.omit(comb_data), length(c(DB_data_clean_Small_area$rel_m_RS)), TRUE)
b.random
# Null (permuated) difference
= var(na.omit(b.random)) - var(na.omit(a.random))
diff.random[i]
}
# P-value is the fraction of how many times the permuted difference is
# equal or more extreme than the observed difference
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Treat_diff_Male_area_I_p
#Females
=c(I_Large_area_Female_bootvar$t)-c(I_Small_area_Female_bootvar$t)
Treat_diff_Female_area_I
=mean(Treat_diff_Female_area_I,na.rm=TRUE)
t_Treat_diff_Female_area_I=quantile(Treat_diff_Female_area_I,.025,na.rm=TRUE)
t_Treat_diff_Female_area_I_lower=quantile(Treat_diff_Female_area_I,.975,na.rm=TRUE)
t_Treat_diff_Female_area_I_upper
#Permutation test to calculate p value
=c(DB_data_clean_Large_area$rel_f_RS,DB_data_clean_Small_area$rel_f_RS)
comb_data
= var(na.omit((DB_data_clean_Large_area$rel_f_RS))) - var(na.omit((DB_data_clean_Small_area$rel_f_RS)))
diff.observed
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined dataset
= sample (na.omit(comb_data), length(c(DB_data_clean_Large_area$rel_f_RS)), TRUE)
a.random = sample (na.omit(comb_data), length(c(DB_data_clean_Small_area$rel_f_RS)), TRUE)
b.random
# Null (permuated) difference
= var(na.omit(b.random)) - var(na.omit(a.random))
diff.random[i]
}
# P-value is the fraction of how many times the permuted difference is
# equal or more extreme than the observed difference
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Treat_diff_Female_area_I_p
#Population size ####
#Males
=c(I_Small_pop_Male_bootvar$t)-c(I_Large_pop_Male_bootvar$t)
Treat_diff_Male_pop_I
=mean(Treat_diff_Male_pop_I,na.rm=TRUE)
t_Treat_diff_Male_pop_I=quantile(Treat_diff_Male_pop_I,.025,na.rm=TRUE)
t_Treat_diff_Male_pop_I_lower=quantile(Treat_diff_Male_pop_I,.975,na.rm=TRUE)
t_Treat_diff_Male_pop_I_upper
#Permutation test to calculate p value
=c(DB_data_clean_Small_pop$rel_m_RS,DB_data_clean_Large_pop$rel_m_RS)
comb_data
= var(na.omit((DB_data_clean_Small_pop$rel_m_RS))) - var(na.omit((DB_data_clean_Large_pop$rel_m_RS)))
diff.observed
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined dataset
= sample (na.omit(comb_data), length(c(DB_data_clean_Small_pop$rel_m_RS)), TRUE)
a.random = sample (na.omit(comb_data), length(c(DB_data_clean_Large_pop$rel_m_RS)), TRUE)
b.random
# Null (permuated) difference
= var(na.omit(b.random)) - var(na.omit(a.random))
diff.random[i]
}
# P-value is the fraction of how many times the permuted difference is
# equal or more extreme than the observed difference
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Treat_diff_Male_pop_I_p
#Females
=c(I_Small_pop_Female_bootvar$t)-c(I_Large_pop_Female_bootvar$t)
Treat_diff_Female_pop_I
=mean(Treat_diff_Female_pop_I,na.rm=TRUE)
t_Treat_diff_Female_pop_I=quantile(Treat_diff_Female_pop_I,.025,na.rm=TRUE)
t_Treat_diff_Female_pop_I_lower=quantile(Treat_diff_Female_pop_I,.975,na.rm=TRUE)
t_Treat_diff_Female_pop_I_upper
#Permutation test to calculate p value
=c(DB_data_clean_Small_pop$rel_f_RS,DB_data_clean_Large_pop$rel_f_RS)
comb_data
= var(na.omit(c(DB_data_clean_Small_pop$rel_f_RS))) - var(na.omit(c(DB_data_clean_Large_pop$rel_f_RS)))
diff.observed
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined dataset
= sample (na.omit(comb_data), length(c(DB_data_clean_Small_pop$rel_f_RS)), TRUE)
a.random = sample (na.omit(comb_data), length(c(DB_data_clean_Large_pop$rel_f_RS)), TRUE)
b.random
# Null (permuated) difference
= var(na.omit(b.random)) - var(na.omit(a.random))
diff.random[i]
}
# P-value is the fraction of how many times the permuted difference is
# equal or more extreme than the observed difference
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Treat_diff_Female_pop_I_p
#Is ####
#Area ####
#Males
=c(Is_Large_area_Male_bootvar$t)-c(Is_Small_area_Male_bootvar$t)
Treat_diff_Male_area_Is
=mean(Treat_diff_Male_area_Is,na.rm=TRUE)
t_Treat_diff_Male_area_Is=quantile(Treat_diff_Male_area_Is,.025,na.rm=TRUE)
t_Treat_diff_Male_area_Is_lower=quantile(Treat_diff_Male_area_Is,.975,na.rm=TRUE)
t_Treat_diff_Male_area_Is_upper
#Permutation test to calculate p value
=c(DB_data_clean_Large_area$rel_m_cMS,DB_data_clean_Small_area$rel_m_cMS)
comb_data
= var(na.omit(c(DB_data_clean_Large_area$rel_m_cMS))) - var(na.omit(c(DB_data_clean_Small_area$rel_m_cMS)))
diff.observed
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined dataset
= sample (na.omit(comb_data), length(c(DB_data_clean_Large_area$rel_m_cMS)), TRUE)
a.random = sample (na.omit(comb_data), length(c(DB_data_clean_Small_area$rel_m_cMS)), TRUE)
b.random
# Null (permuated) difference
= var(na.omit(b.random)) - var(na.omit(a.random))
diff.random[i]
}
# P-value is the fraction of how many times the permuted difference is
# equal or more extreme than the observed difference
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Treat_diff_Male_area_Is_p
#Females
=c(Is_Large_area_Female_bootvar$t)-c(Is_Small_area_Female_bootvar$t)
Treat_diff_Female_area_Is
=mean(Treat_diff_Female_area_Is,na.rm=TRUE)
t_Treat_diff_Female_area_Is=quantile(Treat_diff_Female_area_Is,.025,na.rm=TRUE)
t_Treat_diff_Female_area_Is_lower=quantile(Treat_diff_Female_area_Is,.975,na.rm=TRUE)
t_Treat_diff_Female_area_Is_upper
#Permutation test to calculate p value
=c(DB_data_clean_Large_area$rel_f_cMS,DB_data_clean_Small_area$rel_f_cMS)
comb_data
= var(na.omit(c(DB_data_clean_Large_area$rel_f_cMS))) - var(na.omit(c(DB_data_clean_Small_area$rel_f_cMS)))
diff.observed
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined dataset
= sample (na.omit(comb_data), length(c(DB_data_clean_Large_area$rel_f_cMS)), TRUE)
a.random = sample (na.omit(comb_data), length(c(DB_data_clean_Small_area$rel_f_cMS)), TRUE)
b.random
# Null (permuated) difference
= var(na.omit(b.random)) - var(na.omit(a.random))
diff.random[i]
}
# P-value is the fraction of how many times the permuted difference is
# equal or more extreme than the observed difference
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Treat_diff_Female_area_Is_p
#Population size ####
#Males
=c(Is_Small_pop_Male_bootvar$t)-c(Is_Large_pop_Male_bootvar$t)
Treat_diff_Male_pop_Is
=mean(Treat_diff_Male_pop_Is,na.rm=TRUE)
t_Treat_diff_Male_pop_Is=quantile(Treat_diff_Male_pop_Is,.025,na.rm=TRUE)
t_Treat_diff_Male_pop_Is_lower=quantile(Treat_diff_Male_pop_Is,.975,na.rm=TRUE)
t_Treat_diff_Male_pop_Is_upper
#Permutation test to calculate p value
=c(DB_data_clean_Small_pop$rel_m_cMS,DB_data_clean_Large_pop$rel_m_cMS)
comb_data
= var(na.omit(DB_data_clean_Small_pop$rel_m_cMS),na.rm = T) - var(na.omit(DB_data_clean_Large_pop$rel_m_cMS))
diff.observed
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined dataset
= sample (na.omit(comb_data), length(DB_data_clean_Small_pop$rel_m_cMS), TRUE)
a.random = sample (na.omit(comb_data), length(DB_data_clean_Large_pop$rel_m_cMS), TRUE)
b.random
# Null (permuated) difference
= var(na.omit(b.random)) - var(na.omit(a.random))
diff.random[i]
}
# P-value is the fraction of how many times the permuted difference is
# equal or more extreme than the observed difference
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Treat_diff_Male_pop_Is_p
#Females
=c(Is_Small_pop_Female_bootvar$t)-c(Is_Large_pop_Female_bootvar$t)
Treat_diff_Female_pop_Is
=mean(Treat_diff_Female_pop_Is,na.rm=TRUE)
t_Treat_diff_Female_pop_Is=quantile(Treat_diff_Female_pop_Is,.025,na.rm=TRUE)
t_Treat_diff_Female_pop_Is_lower=quantile(Treat_diff_Female_pop_Is,.975,na.rm=TRUE)
t_Treat_diff_Female_pop_Is_upper
#Permutation test to calculate p value
=c(DB_data_clean_Small_pop$rel_f_cMS,DB_data_clean_Large_pop$rel_f_cMS)
comb_data
= var(na.omit(DB_data_clean_Small_pop$rel_f_cMS)) - var(na.omit(DB_data_clean_Large_pop$rel_f_cMS))
diff.observed
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined dataset
= sample (na.omit(comb_data), length(c(DB_data_clean_Small_pop$rel_f_cMS)), TRUE)
a.random = sample (na.omit(comb_data), length(c(DB_data_clean_Large_pop$rel_f_cMS)), TRUE)
b.random
# Null (permuated) difference
= var(na.omit(b.random)) - var(na.omit(a.random))
diff.random[i]
}
# P-value is the fraction of how many times the permuted difference is
# equal or more extreme than the observed difference
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Treat_diff_Female_pop_Is_p
#B ####
#Area ####
#Males
=c(B_Large_area_Male_bootvar$t)-c(B_Small_area_Male_bootvar$t)
Treat_diff_Male_area_B
=mean(Treat_diff_Male_area_B,na.rm=TRUE)
t_Treat_diff_Male_area_B=quantile(Treat_diff_Male_area_B,.025,na.rm=TRUE)
t_Treat_diff_Male_area_B_lower=quantile(Treat_diff_Male_area_B,.975,na.rm=TRUE)
t_Treat_diff_Male_area_B_upper
#Permutation test to calculate p value
=c(DB_data_clean_Large_area$rel_m_RS, DB_data_clean_Small_area$rel_m_RS)
comb_data1=c(DB_data_clean_Large_area$rel_m_cMS,DB_data_clean_Small_area$rel_m_cMS)
comb_data2
= lm(DB_data_clean_Large_area$rel_m_RS ~DB_data_clean_Large_area$rel_m_cMS)$coefficients[2] - lm(DB_data_clean_Small_area$rel_m_RS ~DB_data_clean_Small_area$rel_m_cMS)$coefficients[2]
diff.observed
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined dataset
= sample (na.omit(comb_data1), length(DB_data_clean_Large_area$rel_m_RS), TRUE)
a.random = sample (na.omit(comb_data1), length(DB_data_clean_Small_area$rel_m_RS), TRUE)
b.random = sample (na.omit(comb_data2), length(DB_data_clean_Large_area$rel_m_cMS), TRUE)
c.random = sample (na.omit(comb_data2), length(DB_data_clean_Small_area$rel_m_cMS), TRUE)
d.random
# Null (permuated) difference
= lm(a.random ~c.random)$coefficients[2] - lm(b.random ~d.random)$coefficients[2]
diff.random[i]
}
# P-value is the fraction of how many times the permuted difference is
# equal or more extreme than the observed difference
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Treat_diff_Male_area_B_p
#Females
=c(B_Large_area_Female_bootvar$t)-c(B_Small_area_Female_bootvar$t)
Treat_diff_Female_area_B
=mean(Treat_diff_Female_area_B,na.rm=TRUE)
t_Treat_diff_Female_area_B=quantile(Treat_diff_Female_area_B,.025,na.rm=TRUE)
t_Treat_diff_Female_area_B_lower=quantile(Treat_diff_Female_area_B,.975,na.rm=TRUE)
t_Treat_diff_Female_area_B_upper
#Permutation test to calculate p value
=c(DB_data_clean_Large_area$rel_f_RS, DB_data_clean_Small_area$rel_f_RS)
comb_data1=c(DB_data_clean_Large_area$rel_f_cMS,DB_data_clean_Small_area$rel_f_cMS)
comb_data2
= lm(DB_data_clean_Large_area$rel_f_RS ~DB_data_clean_Large_area$rel_f_cMS)$coefficients[2] - lm(DB_data_clean_Small_area$rel_f_RS ~DB_data_clean_Small_area$rel_f_cMS)$coefficients[2]
diff.observed
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined dataset
= sample (na.omit(comb_data1), length(DB_data_clean_Large_area$rel_f_RS), TRUE)
a.random = sample (na.omit(comb_data1), length(DB_data_clean_Small_area$rel_f_RS), TRUE)
b.random = sample (na.omit(comb_data2), length(DB_data_clean_Large_area$rel_f_cMS), TRUE)
c.random = sample (na.omit(comb_data2), length(DB_data_clean_Small_area$rel_f_cMS), TRUE)
d.random
# Null (permuated) difference
= lm(a.random ~c.random)$coefficients[2] - lm(b.random ~d.random)$coefficients[2]
diff.random[i]
}
# P-value is the fraction of how many times the permuted difference is
# equal or more extreme than the observed difference
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Treat_diff_Female_area_B_p
#Population size ####
#Males
=c(B_Small_pop_Male_bootvar$t)-c(B_Large_pop_Male_bootvar$t)
Treat_diff_Male_pop_B
=mean(Treat_diff_Male_pop_B,na.rm=TRUE)
t_Treat_diff_Male_pop_B=quantile(Treat_diff_Male_pop_B,.025,na.rm=TRUE)
t_Treat_diff_Male_pop_B_lower=quantile(Treat_diff_Male_pop_B,.975,na.rm=TRUE)
t_Treat_diff_Male_pop_B_upper
#Permutation test to calculate p value
=c(DB_data_clean_Small_pop$rel_m_RS, DB_data_clean_Large_pop$rel_m_RS)
comb_data1=c(DB_data_clean_Small_pop$rel_m_cMS,DB_data_clean_Large_pop$rel_m_cMS)
comb_data2
= lm(DB_data_clean_Small_pop$rel_m_RS ~DB_data_clean_Small_pop$rel_m_cMS)$coefficients[2] - lm(DB_data_clean_Large_pop$rel_m_RS ~DB_data_clean_Large_pop$rel_m_cMS)$coefficients[2]
diff.observed
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined dataset
= sample (na.omit(comb_data1), length(DB_data_clean_Small_pop$rel_m_RS), TRUE)
a.random = sample (na.omit(comb_data1), length(DB_data_clean_Large_pop$rel_m_RS), TRUE)
b.random = sample (na.omit(comb_data2), length(DB_data_clean_Small_pop$rel_m_cMS), TRUE)
c.random = sample (na.omit(comb_data2), length(DB_data_clean_Large_pop$rel_m_cMS), TRUE)
d.random
# Null (permuated) difference
= lm(a.random ~c.random)$coefficients[2] - lm(b.random ~d.random)$coefficients[2]
diff.random[i]
}
# P-value is the fraction of how many times the permuted difference is
# equal or more extreme than the observed difference
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Treat_diff_Male_pop_B_p
#Females
=c(B_Small_pop_Female_bootvar$t)-c(B_Large_pop_Female_bootvar$t)
Treat_diff_Female_pop_B
=mean(Treat_diff_Female_pop_B,na.rm=TRUE)
t_Treat_diff_Female_pop_B=quantile(Treat_diff_Female_pop_B,.025,na.rm=TRUE)
t_Treat_diff_Female_pop_B_lower=quantile(Treat_diff_Female_pop_B,.975,na.rm=TRUE)
t_Treat_diff_Female_pop_B_upper
#Permutation test to calculate p value
=c(DB_data_clean_Small_pop$rel_f_RS, DB_data_clean_Large_pop$rel_f_RS)
comb_data1=c(DB_data_clean_Small_pop$rel_f_cMS,DB_data_clean_Large_pop$rel_f_cMS)
comb_data2
= lm(DB_data_clean_Small_pop$rel_f_RS ~DB_data_clean_Small_pop$rel_f_cMS)$coefficients[2] - lm(DB_data_clean_Large_pop$rel_f_RS ~DB_data_clean_Large_pop$rel_f_cMS)$coefficients[2]
diff.observed
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined dataset
= sample (na.omit(comb_data1), length(DB_data_clean_Small_pop$rel_f_RS), TRUE)
a.random = sample (na.omit(comb_data1), length(DB_data_clean_Large_pop$rel_f_RS), TRUE)
b.random = sample (na.omit(comb_data2), length(DB_data_clean_Small_pop$rel_f_cMS), TRUE)
c.random = sample (na.omit(comb_data2), length(DB_data_clean_Large_pop$rel_f_cMS), TRUE)
d.random
# Null (permuated) difference
= lm(a.random ~c.random)$coefficients[2] - lm(b.random ~d.random)$coefficients[2]
diff.random[i]
}
# P-value is the fraction of how many times the permuted difference is
# equal or more extreme than the observed difference
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Treat_diff_Female_pop_B_p
#S ####
#Area ####
#Males
=c(S_Large_area_Male_bootvar$t)-c(S_Small_area_Male_bootvar$t)
Treat_diff_Male_area_S
=mean(Treat_diff_Male_area_S,na.rm=TRUE)
t_Treat_diff_Male_area_S=quantile(Treat_diff_Male_area_S,.025,na.rm=TRUE)
t_Treat_diff_Male_area_S_lower=quantile(Treat_diff_Male_area_S,.975,na.rm=TRUE)
t_Treat_diff_Male_area_S_upper
#Permutation test to calculate p value
=c(DB_data_clean_Large_area$rel_m_cMS, DB_data_clean_Small_area$rel_m_cMS)
comb_data1=c(DB_data_clean_Large_area$rel_m_RS, DB_data_clean_Small_area$rel_m_RS)
comb_data2
= lm(DB_data_clean_Large_area$rel_m_RS ~DB_data_clean_Large_area$rel_m_cMS)$coefficients[2]*sqrt(var(DB_data_clean_Large_area$rel_m_cMS, na.rm=TRUE)) - lm(DB_data_clean_Small_area$rel_m_RS ~DB_data_clean_Small_area$rel_m_cMS)$coefficients[2]*sqrt(var(DB_data_clean_Small_area$rel_m_cMS, na.rm=TRUE))
diff.observed
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined dataset
= sample (na.omit(comb_data1), length(DB_data_clean_Large_area$rel_m_cMS), TRUE)
a.random = sample (na.omit(comb_data1), length(DB_data_clean_Small_area$rel_m_cMS), TRUE)
b.random = sample (na.omit(comb_data2), length(DB_data_clean_Large_area$rel_m_RS), TRUE)
c.random = sample (na.omit(comb_data2), length(DB_data_clean_Small_area$rel_m_RS), TRUE)
d.random
# Null (permuated) difference
= lm(c.random ~a.random)$coefficients[2]*sqrt(var(a.random, na.rm=TRUE)) - lm(d.random ~b.random)$coefficients[2]*sqrt(var(b.random, na.rm=TRUE))
diff.random[i]
}
# P-value is the fraction of how many times the permuted difference is
# equal or more extreme than the observed difference
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Treat_diff_Male_area_S_p
#Females
=c(S_Large_area_Female_bootvar$t)-c(S_Small_area_Female_bootvar$t)
Treat_diff_Female_area_S
=mean(Treat_diff_Female_area_S,na.rm=TRUE)
t_Treat_diff_Female_area_S=quantile(Treat_diff_Female_area_S,.025,na.rm=TRUE)
t_Treat_diff_Female_area_S_lower=quantile(Treat_diff_Female_area_S,.975,na.rm=TRUE)
t_Treat_diff_Female_area_S_upper
#Permutation test to calculate p value
=c(DB_data_clean_Large_area$rel_f_cMS, DB_data_clean_Small_area$rel_f_cMS)
comb_data1=c(DB_data_clean_Large_area$rel_f_RS, DB_data_clean_Small_area$rel_f_RS)
comb_data2
= lm(DB_data_clean_Large_area$rel_f_RS ~DB_data_clean_Large_area$rel_f_cMS)$coefficients[2]*sqrt(var(DB_data_clean_Large_area$rel_f_cMS, na.rm=TRUE)) - lm(DB_data_clean_Small_area$rel_f_RS ~DB_data_clean_Small_area$rel_f_cMS)$coefficients[2]*sqrt(var(DB_data_clean_Small_area$rel_f_cMS, na.rm=TRUE))
diff.observed
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined dataset
= sample (na.omit(comb_data1), length(DB_data_clean_Large_area$rel_f_cMS), TRUE)
a.random = sample (na.omit(comb_data1), length(DB_data_clean_Small_area$rel_f_cMS), TRUE)
b.random = sample (na.omit(comb_data2), length(DB_data_clean_Large_area$rel_f_RS), TRUE)
c.random = sample (na.omit(comb_data2), length(DB_data_clean_Small_area$rel_f_RS), TRUE)
d.random
# Null (permuated) difference
= lm(c.random ~a.random)$coefficients[2]*sqrt(var(a.random, na.rm=TRUE)) - lm(d.random ~b.random)$coefficients[2]*sqrt(var(b.random, na.rm=TRUE))
diff.random[i]
}
# P-value is the fraction of how many times the permuted difference is
# equal or more extreme than the observed difference
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Treat_diff_Female_area_S_p
#Population size ####
#Males
=c(S_Small_pop_Male_bootvar$t)-c(S_Large_pop_Male_bootvar$t)
Treat_diff_Male_pop_S
=mean(Treat_diff_Male_pop_S,na.rm=TRUE)
t_Treat_diff_Male_pop_S=quantile(Treat_diff_Male_pop_S,.025,na.rm=TRUE)
t_Treat_diff_Male_pop_S_lower=quantile(Treat_diff_Male_pop_S,.975,na.rm=TRUE)
t_Treat_diff_Male_pop_S_upper
#Permutation test to calculate p value
=c(DB_data_clean_Small_pop$rel_m_cMS, DB_data_clean_Large_pop$rel_m_cMS)
comb_data1=c(DB_data_clean_Small_pop$rel_m_RS, DB_data_clean_Large_pop$rel_m_RS)
comb_data2
= lm(DB_data_clean_Small_pop$rel_m_RS ~DB_data_clean_Small_pop$rel_m_cMS)$coefficients[2]*sqrt(var(DB_data_clean_Small_pop$rel_m_cMS, na.rm=TRUE)) - lm(DB_data_clean_Large_pop$rel_m_RS ~DB_data_clean_Large_pop$rel_m_cMS)$coefficients[2]*sqrt(var(DB_data_clean_Large_pop$rel_m_cMS, na.rm=TRUE))
diff.observed
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined dataset
= sample (na.omit(comb_data1), length(DB_data_clean_Small_pop$rel_m_cMS), TRUE)
a.random = sample (na.omit(comb_data1), length(DB_data_clean_Large_pop$rel_m_cMS), TRUE)
b.random = sample (na.omit(comb_data2), length(DB_data_clean_Small_pop$rel_m_RS), TRUE)
c.random = sample (na.omit(comb_data2), length(DB_data_clean_Large_pop$rel_m_RS), TRUE)
d.random
# Null (permuated) difference
= lm(c.random ~a.random)$coefficients[2]*sqrt(var(a.random, na.rm=TRUE)) - lm(d.random ~b.random)$coefficients[2]*sqrt(var(b.random, na.rm=TRUE))
diff.random[i]
}
# P-value is the fraction of how many times the permuted difference is
# equal or more extreme than the observed difference
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Treat_diff_Male_pop_S_p
#Females
=c(S_Small_pop_Female_bootvar$t)-c(S_Large_pop_Female_bootvar$t)
Treat_diff_Female_pop_S
=mean(Treat_diff_Female_pop_S,na.rm=TRUE)
t_Treat_diff_Female_pop_S=quantile(Treat_diff_Female_pop_S,.025,na.rm=TRUE)
t_Treat_diff_Female_pop_S_lower=quantile(Treat_diff_Female_pop_S,.975,na.rm=TRUE)
t_Treat_diff_Female_pop_S_upper
#Permutation test to calculate p value
=c(DB_data_clean_Small_pop$rel_f_cMS, DB_data_clean_Large_pop$rel_f_cMS)
comb_data1=c(DB_data_clean_Small_pop$rel_f_RS, DB_data_clean_Large_pop$rel_f_RS)
comb_data2
= lm(DB_data_clean_Small_pop$rel_f_RS ~DB_data_clean_Small_pop$rel_f_cMS)$coefficients[2]*sqrt(var(DB_data_clean_Small_pop$rel_f_cMS, na.rm=TRUE)) - lm(DB_data_clean_Large_pop$rel_f_RS ~DB_data_clean_Large_pop$rel_f_cMS)$coefficients[2]*sqrt(var(DB_data_clean_Large_pop$rel_f_cMS, na.rm=TRUE))
diff.observed
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined dataset
= sample (na.omit(comb_data1), length(DB_data_clean_Small_pop$rel_f_cMS), TRUE)
a.random = sample (na.omit(comb_data1), length(DB_data_clean_Large_pop$rel_f_cMS), TRUE)
b.random = sample (na.omit(comb_data2), length(DB_data_clean_Small_pop$rel_f_RS), TRUE)
c.random = sample (na.omit(comb_data2), length(DB_data_clean_Large_pop$rel_f_RS), TRUE)
d.random
# Null (permuated) difference
= lm(c.random ~a.random)$coefficients[2]*sqrt(var(a.random, na.rm=TRUE)) - lm(d.random ~b.random)$coefficients[2]*sqrt(var(b.random, na.rm=TRUE))
diff.random[i]
}
# P-value is the fraction of how many times the permuted difference is
# equal or more extreme than the observed difference
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Treat_diff_Female_pop_S_p
#Save data table ####
<- as.data.frame(cbind("Male", "Area", "Opportunity for selection", t_Treat_diff_Male_area_I, t_Treat_diff_Male_area_I_lower, t_Treat_diff_Male_area_I_upper, t_Treat_diff_Male_area_I_p))
CompTreat_Table_Male_area_I names(CompTreat_Table_Male_area_I)=c('V1','V2','V3','V4','V5','V6','V7')
<- as.data.frame(cbind("Male", "Population size", "Opportunity for selection", t_Treat_diff_Male_pop_I, t_Treat_diff_Male_pop_I_lower, t_Treat_diff_Male_pop_I_upper, t_Treat_diff_Male_pop_I_p))
CompTreat_Table_Male_pop_I names(CompTreat_Table_Male_pop_I)=c('V1','V2','V3','V4','V5','V6','V7')
<- as.data.frame(cbind("Male", "Area", "Opportunity for sexual selection", t_Treat_diff_Male_area_Is, t_Treat_diff_Male_area_Is_lower, t_Treat_diff_Male_area_Is_upper, t_Treat_diff_Male_area_Is_p))
CompTreat_Table_Male_area_Is names(CompTreat_Table_Male_area_Is)=c('V1','V2','V3','V4','V5','V6','V7')
<- as.data.frame(cbind("Male", "Population size", "Opportunity for sexual selection", t_Treat_diff_Male_pop_Is, t_Treat_diff_Male_pop_Is_lower, t_Treat_diff_Male_pop_Is_upper, t_Treat_diff_Male_pop_Is_p))
CompTreat_Table_Male_pop_Is names(CompTreat_Table_Male_pop_Is)=c('V1','V2','V3','V4','V5','V6','V7')
<- as.data.frame(cbind("Male", "Area", "Bateman gradient", t_Treat_diff_Male_area_B, t_Treat_diff_Male_area_B_lower, t_Treat_diff_Male_area_B_upper, t_Treat_diff_Male_area_B_p))
CompTreat_Table_Male_area_B names(CompTreat_Table_Male_area_B)=c('V1','V2','V3','V4','V5','V6','V7')
<- as.data.frame(cbind("Male", "Population size", "Bateman gradient", t_Treat_diff_Male_pop_B, t_Treat_diff_Male_pop_B_lower, t_Treat_diff_Male_pop_B_upper, t_Treat_diff_Male_pop_B_p))
CompTreat_Table_Male_pop_B names(CompTreat_Table_Male_pop_B)=c('V1','V2','V3','V4','V5','V6','V7')
<- as.data.frame(cbind("Male", "Area", "Jones index", t_Treat_diff_Male_area_S, t_Treat_diff_Male_area_S_lower, t_Treat_diff_Male_area_S_upper, t_Treat_diff_Male_area_S_p))
CompTreat_Table_Male_area_S names(CompTreat_Table_Male_area_S)=c('V1','V2','V3','V4','V5','V6','V7')
<- as.data.frame(cbind("Male", "Population size", "Jones index", t_Treat_diff_Male_pop_S, t_Treat_diff_Male_pop_S_lower, t_Treat_diff_Male_pop_S_upper, t_Treat_diff_Male_pop_S_p))
CompTreat_Table_Male_pop_S names(CompTreat_Table_Male_pop_S)=c('V1','V2','V3','V4','V5','V6','V7')
<- as.data.frame(cbind("Female", "Area", "Opportunity for selection", t_Treat_diff_Female_area_I, t_Treat_diff_Female_area_I_lower, t_Treat_diff_Female_area_I_upper, t_Treat_diff_Female_area_I_p))
CompTreat_Table_Female_area_I names(CompTreat_Table_Female_area_I)=c('V1','V2','V3','V4','V5','V6','V7')
<- as.data.frame(cbind("Female", "Population size", "Opportunity for selection", t_Treat_diff_Female_pop_I, t_Treat_diff_Female_pop_I_lower, t_Treat_diff_Female_pop_I_upper, t_Treat_diff_Female_pop_I_p))
CompTreat_Table_Female_pop_I names(CompTreat_Table_Female_pop_I)=c('V1','V2','V3','V4','V5','V6','V7')
<- as.data.frame(cbind("Female", "Area", "Opportunity for sexual selection", t_Treat_diff_Female_area_Is, t_Treat_diff_Female_area_Is_lower, t_Treat_diff_Female_area_Is_upper, t_Treat_diff_Female_area_Is_p))
CompTreat_Table_Female_area_Is names(CompTreat_Table_Female_area_Is)=c('V1','V2','V3','V4','V5','V6','V7')
<- as.data.frame(cbind("Female", "Population size", "Opportunity for sexual selection", t_Treat_diff_Female_pop_Is, t_Treat_diff_Female_pop_Is_lower, t_Treat_diff_Female_pop_Is_upper, t_Treat_diff_Female_pop_Is_p))
CompTreat_Table_Female_pop_Is names(CompTreat_Table_Female_pop_Is)=c('V1','V2','V3','V4','V5','V6','V7')
<- as.data.frame(cbind("Female", "Area", "Bateman gradient", t_Treat_diff_Female_area_B, t_Treat_diff_Female_area_B_lower, t_Treat_diff_Female_area_B_upper, t_Treat_diff_Female_area_B_p))
CompTreat_Table_Female_area_B names(CompTreat_Table_Female_area_B)=c('V1','V2','V3','V4','V5','V6','V7')
<- as.data.frame(cbind("Female", "Population size", "Bateman gradient", t_Treat_diff_Female_pop_B, t_Treat_diff_Female_pop_B_lower, t_Treat_diff_Female_pop_B_upper, t_Treat_diff_Female_pop_B_p))
CompTreat_Table_Female_pop_B names(CompTreat_Table_Female_pop_B)=c('V1','V2','V3','V4','V5','V6','V7')
<- as.data.frame(cbind("Female", "Area", "Jones index", t_Treat_diff_Female_area_S, t_Treat_diff_Female_area_S_lower, t_Treat_diff_Female_area_S_upper, t_Treat_diff_Female_area_S_p))
CompTreat_Table_Female_area_S names(CompTreat_Table_Female_area_S)=c('V1','V2','V3','V4','V5','V6','V7')
<- as.data.frame(cbind("Female", "Population size", "Jones index", t_Treat_diff_Female_pop_S, t_Treat_diff_Female_pop_S_lower, t_Treat_diff_Female_pop_S_upper, t_Treat_diff_Female_pop_S_p))
CompTreat_Table_Female_pop_S names(CompTreat_Table_Female_pop_S)=c('V1','V2','V3','V4','V5','V6','V7')
<- as.data.frame(as.matrix(rbind(CompTreat_Table_Male_area_I,CompTreat_Table_Male_area_Is,
Table_BatemanMetrics_TreatComp
CompTreat_Table_Male_area_B,CompTreat_Table_Male_area_S,
CompTreat_Table_Male_pop_I,CompTreat_Table_Male_pop_Is,
CompTreat_Table_Male_pop_B,CompTreat_Table_Male_pop_S,
CompTreat_Table_Female_area_I,CompTreat_Table_Female_area_Is,
CompTreat_Table_Female_area_B,CompTreat_Table_Female_area_S,
CompTreat_Table_Female_pop_I,CompTreat_Table_Female_pop_Is,
CompTreat_Table_Female_pop_B,CompTreat_Table_Female_pop_S
)))
4]=as.numeric(Table_BatemanMetrics_TreatComp[,4])
Table_BatemanMetrics_TreatComp[,5]=as.numeric(Table_BatemanMetrics_TreatComp[,5])
Table_BatemanMetrics_TreatComp[,6]=as.numeric(Table_BatemanMetrics_TreatComp[,6])
Table_BatemanMetrics_TreatComp[,7]=as.numeric(Table_BatemanMetrics_TreatComp[,7])
Table_BatemanMetrics_TreatComp[,
colnames(Table_BatemanMetrics_TreatComp)[1] <- "Sex"
colnames(Table_BatemanMetrics_TreatComp)[2] <- "Treatment"
colnames(Table_BatemanMetrics_TreatComp)[3] <- "Selection_metric"
colnames(Table_BatemanMetrics_TreatComp)[4] <- "Variance"
colnames(Table_BatemanMetrics_TreatComp)[5] <- "l95.CI"
colnames(Table_BatemanMetrics_TreatComp)[6] <- "u95.CI"
colnames(Table_BatemanMetrics_TreatComp)[7] <- "p-value"
4]=as.numeric(Table_BatemanMetrics_TreatComp[,4])
Table_BatemanMetrics_TreatComp[,5]=as.numeric(Table_BatemanMetrics_TreatComp[,5])
Table_BatemanMetrics_TreatComp[,6]=as.numeric(Table_BatemanMetrics_TreatComp[,6])
Table_BatemanMetrics_TreatComp[,7]=as.numeric(Table_BatemanMetrics_TreatComp[,7])
Table_BatemanMetrics_TreatComp[,
=cbind(Table_BatemanMetrics_TreatComp[,c(1,2,3)],round(Table_BatemanMetrics_TreatComp[,c(4,5,6,7)],digit=3))
Table_BatemanMetrics_TreatComp_roundrownames(Table_BatemanMetrics_TreatComp_round) <- NULL
#Bootstrap sex comparisons ####
#I ####
#Area ####
#Large
=c(I_Large_area_Male_bootvar$t)-c(I_Large_area_Female_bootvar$t)
Sex_diff_Large_area_I
=mean(Sex_diff_Large_area_I,na.rm=TRUE)
t_Sex_diff_Large_area_I=quantile(Sex_diff_Large_area_I,.025,na.rm=TRUE)
t_Sex_diff_Large_area_I_lower=quantile(Sex_diff_Large_area_I,.975,na.rm=TRUE)
t_Sex_diff_Large_area_I_upper
#Permutation test to calculate p value
=c(DB_data_clean_Large_area$rel_m_RS,DB_data_clean_Large_area$rel_f_RS)
comb_data
= var(na.omit((DB_data_clean_Large_area$rel_m_RS))) - var(na.omit((DB_data_clean_Large_area$rel_f_RS)))
diff.observed
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined dataset
= sample (na.omit(comb_data), length(c(DB_data_clean_Large_area$rel_m_RS)), TRUE)
a.random = sample (na.omit(comb_data), length(c(DB_data_clean_Large_area$rel_f_RS)), TRUE)
b.random
# Null (permuated) difference
= var(na.omit(b.random)) - var(na.omit(a.random))
diff.random[i]
}
# P-value is the fraction of how many times the permuted difference is
# equal or more extreme than the observed difference
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Sex_diff_Large_area_I_p
#Small
=c(I_Small_area_Male_bootvar$t)-c(I_Small_area_Female_bootvar$t)
Sex_diff_Small_area_I
=mean(Sex_diff_Small_area_I,na.rm=TRUE)
t_Sex_diff_Small_area_I=quantile(Sex_diff_Small_area_I,.025,na.rm=TRUE)
t_Sex_diff_Small_area_I_lower=quantile(Sex_diff_Small_area_I,.975,na.rm=TRUE)
t_Sex_diff_Small_area_I_upper
#Permutation test to calculate p value
=c(DB_data_clean_Small_area$rel_m_RS,DB_data_clean_Small_area$rel_f_RS)
comb_data
= var(na.omit((DB_data_clean_Small_area$rel_m_RS))) - var(na.omit((DB_data_clean_Small_area$rel_f_RS)))
diff.observed
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined dataset
= sample (na.omit(comb_data), length(c(DB_data_clean_Small_area$rel_m_RS)), TRUE)
a.random = sample (na.omit(comb_data), length(c(DB_data_clean_Small_area$rel_f_RS)), TRUE)
b.random
# Null (permuated) difference
= var(na.omit(b.random)) - var(na.omit(a.random))
diff.random[i]
}
# P-value is the fraction of how many times the permuted difference is
# equal or more extreme than the observed difference
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Sex_diff_Small_area_I_p
#Population size ####
#Small
=c(I_Small_pop_Male_bootvar$t)-c(I_Small_pop_Female_bootvar$t)
Sex_diff_Small_pop_I
=mean(Sex_diff_Small_pop_I,na.rm=TRUE)
t_Sex_diff_Small_pop_I=quantile(Sex_diff_Small_pop_I,.025,na.rm=TRUE)
t_Sex_diff_Small_pop_I_lower=quantile(Sex_diff_Small_pop_I,.975,na.rm=TRUE)
t_Sex_diff_Small_pop_I_upper
#Permutation test to calculate p value
=c(DB_data_clean_Small_pop$rel_m_RS,DB_data_clean_Small_pop$rel_f_RS)
comb_data
= var(na.omit((DB_data_clean_Small_pop$rel_m_RS))) - var(na.omit((DB_data_clean_Small_pop$rel_f_RS)))
diff.observed
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined dataset
= sample (na.omit(comb_data), length(c(DB_data_clean_Small_pop$rel_m_RS)), TRUE)
a.random = sample (na.omit(comb_data), length(c(DB_data_clean_Small_pop$rel_f_RS)), TRUE)
b.random
# Null (permuated) difference
= var(na.omit(b.random)) - var(na.omit(a.random))
diff.random[i]
}
# P-value is the fraction of how many times the permuted difference is
# equal or more extreme than the observed difference
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Sex_diff_Small_pop_I_p
#Large
=c(I_Large_pop_Male_bootvar$t)-c(I_Large_pop_Female_bootvar$t)
Sex_diff_Large_pop_I
=mean(Sex_diff_Large_pop_I,na.rm=TRUE)
t_Sex_diff_Large_pop_I=quantile(Sex_diff_Large_pop_I,.025,na.rm=TRUE)
t_Sex_diff_Large_pop_I_lower=quantile(Sex_diff_Large_pop_I,.975,na.rm=TRUE)
t_Sex_diff_Large_pop_I_upper
#Permutation test to calculate p value
=c(DB_data_clean_Large_pop$rel_m_RS,DB_data_clean_Large_pop$rel_f_RS)
comb_data
= var(na.omit(c(DB_data_clean_Large_pop$rel_m_RS))) - var(na.omit(c(DB_data_clean_Large_pop$rel_f_RS)))
diff.observed
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined dataset
= sample (na.omit(comb_data), length(c(DB_data_clean_Large_pop$rel_m_RS)), TRUE)
a.random = sample (na.omit(comb_data), length(c(DB_data_clean_Large_pop$rel_f_RS)), TRUE)
b.random
# Null (permuated) difference
= var(na.omit(b.random)) - var(na.omit(a.random))
diff.random[i]
}
# P-value is the fraction of how many times the permuted difference is
# equal or more extreme than the observed difference
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Sex_diff_Large_pop_I_p
#Is ####
#Area ####
#Small
=c(Is_Small_area_Male_bootvar$t)-c(Is_Small_area_Female_bootvar$t)
Sex_diff_Small_area_Is
=mean(Sex_diff_Small_area_Is,na.rm=TRUE)
t_Sex_diff_Small_area_Is=quantile(Sex_diff_Small_area_Is,.025,na.rm=TRUE)
t_Sex_diff_Small_area_Is_lower=quantile(Sex_diff_Small_area_Is,.975,na.rm=TRUE)
t_Sex_diff_Small_area_Is_upper
#Permutation test to calculate p value
=c(DB_data_clean_Small_area$rel_m_cMS,DB_data_clean_Small_area$rel_f_cMS)
comb_data
= var(na.omit(c(DB_data_clean_Small_area$rel_m_cMS))) - var(na.omit(c(DB_data_clean_Small_area$rel_f_cMS)))
diff.observed
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined dataset
= sample (na.omit(comb_data), length(c(DB_data_clean_Small_area$rel_m_cMS)), TRUE)
a.random = sample (na.omit(comb_data), length(c(DB_data_clean_Small_area$rel_f_cMS)), TRUE)
b.random
# Null (permuated) difference
= var(na.omit(b.random)) - var(na.omit(a.random))
diff.random[i]
}
# P-value is the fraction of how many times the permuted difference is
# equal or more extreme than the observed difference
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Sex_diff_Small_area_Is_p
#Large
=c(Is_Large_area_Male_bootvar$t)-c(Is_Large_area_Female_bootvar$t)
Sex_diff_Large_area_Is
=mean(Sex_diff_Large_area_Is,na.rm=TRUE)
t_Sex_diff_Large_area_Is=quantile(Sex_diff_Large_area_Is,.025,na.rm=TRUE)
t_Sex_diff_Large_area_Is_lower=quantile(Sex_diff_Large_area_Is,.975,na.rm=TRUE)
t_Sex_diff_Large_area_Is_upper
#Permutation test to calculate p value
=c(DB_data_clean_Large_area$rel_m_cMS,DB_data_clean_Large_area$rel_f_cMS)
comb_data
= var(na.omit(c(DB_data_clean_Large_area$rel_m_cMS))) - var(na.omit(c(DB_data_clean_Large_area$rel_f_cMS)))
diff.observed
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined dataset
= sample (na.omit(comb_data), length(c(DB_data_clean_Large_area$rel_m_cMS)), TRUE)
a.random = sample (na.omit(comb_data), length(c(DB_data_clean_Large_area$rel_f_cMS)), TRUE)
b.random
# Null (permuated) difference
= var(na.omit(b.random)) - var(na.omit(a.random))
diff.random[i]
}
# P-value is the fraction of how many times the permuted difference is
# equal or more extreme than the observed difference
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Sex_diff_Large_area_Is_p
#Population size ####
#Small
=c(Is_Small_pop_Male_bootvar$t)-c(Is_Small_pop_Female_bootvar$t)
Sex_diff_Small_pop_Is
=mean(Sex_diff_Small_pop_Is,na.rm=TRUE)
t_Sex_diff_Small_pop_Is=quantile(Sex_diff_Small_pop_Is,.025,na.rm=TRUE)
t_Sex_diff_Small_pop_Is_lower=quantile(Sex_diff_Small_pop_Is,.975,na.rm=TRUE)
t_Sex_diff_Small_pop_Is_upper
#Permutation test to calculate p value
=c(DB_data_clean_Small_pop$rel_m_cMS,DB_data_clean_Small_pop$rel_f_cMS)
comb_data
= var(na.omit(c(DB_data_clean_Small_pop$rel_m_cMS))) - var(na.omit(c(DB_data_clean_Small_pop$rel_f_cMS)))
diff.observed
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined dataset
= sample (na.omit(comb_data), length(c(DB_data_clean_Small_pop$rel_m_cMS)), TRUE)
a.random = sample (na.omit(comb_data), length(c(DB_data_clean_Small_pop$rel_f_cMS)), TRUE)
b.random
# Null (permuated) difference
= var(na.omit(b.random)) - var(na.omit(a.random))
diff.random[i]
}
# P-value is the fraction of how many times the permuted difference is
# equal or more extreme than the observed difference
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Sex_diff_Small_pop_Is_p
#Large
=c(Is_Large_pop_Male_bootvar$t)-c(Is_Large_pop_Female_bootvar$t)
Sex_diff_Large_pop_Is
=mean(Sex_diff_Large_pop_Is,na.rm=TRUE)
t_Sex_diff_Large_pop_Is=quantile(Sex_diff_Large_pop_Is,.025,na.rm=TRUE)
t_Sex_diff_Large_pop_Is_lower=quantile(Sex_diff_Large_pop_Is,.975,na.rm=TRUE)
t_Sex_diff_Large_pop_Is_upper
#Permutation test to calculate p value
=c(DB_data_clean_Large_pop$rel_m_cMS,DB_data_clean_Large_pop$rel_f_cMS)
comb_data
= var(na.omit(c(DB_data_clean_Large_pop$rel_m_cMS))) - var(na.omit(c(DB_data_clean_Large_pop$rel_f_cMS)))
diff.observed
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined dataset
= sample (na.omit(comb_data), length(c(DB_data_clean_Large_pop$rel_m_cMS)), TRUE)
a.random = sample (na.omit(comb_data), length(c(DB_data_clean_Large_pop$rel_f_cMS)), TRUE)
b.random
# Null (permuated) difference
= var(na.omit(b.random)) - var(na.omit(a.random))
diff.random[i]
}
# P-value is the fraction of how many times the permuted difference is
# equal or more extreme than the observed difference
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Sex_diff_Large_pop_Is_p
#B ####
#Area ####
#Large
=c(B_Large_area_Male_bootvar$t)-c(B_Large_area_Female_bootvar$t)
Sex_diff_Large_area_B
=mean(Sex_diff_Large_area_B,na.rm=TRUE)
t_Sex_diff_Large_area_B=quantile(Sex_diff_Large_area_B,.025,na.rm=TRUE)
t_Sex_diff_Large_area_B_lower=quantile(Sex_diff_Large_area_B,.975,na.rm=TRUE)
t_Sex_diff_Large_area_B_upper
#Permutation test to calculate p value
=c(DB_data_clean_Large_area$rel_m_RS, DB_data_clean_Large_area$rel_f_RS)
comb_data1=c(DB_data_clean_Large_area$rel_m_cMS,DB_data_clean_Large_area$rel_f_cMS)
comb_data2
= lm(DB_data_clean_Large_area$rel_m_RS ~DB_data_clean_Large_area$rel_m_cMS)$coefficients[2] - lm(DB_data_clean_Large_area$rel_f_RS ~DB_data_clean_Large_area$rel_f_cMS)$coefficients[2]
diff.observed
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined dataset
= sample (na.omit(comb_data1), length(DB_data_clean_Large_area$rel_m_RS), TRUE)
a.random = sample (na.omit(comb_data1), length(DB_data_clean_Small_area$rel_m_RS), TRUE)
b.random = sample (na.omit(comb_data2), length(DB_data_clean_Large_area$rel_m_cMS), TRUE)
c.random = sample (na.omit(comb_data2), length(DB_data_clean_Small_area$rel_m_cMS), TRUE)
d.random
# Null (permuated) difference
= lm(a.random ~c.random)$coefficients[2] - lm(b.random ~d.random)$coefficients[2]
diff.random[i]
}
# P-value is the fraction of how many times the permuted difference is
# equal or more extreme than the observed difference
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Sex_diff_Large_area_B_p
#Small
=c(B_Small_area_Male_bootvar$t)-c(B_Small_area_Female_bootvar$t)
Sex_diff_Small_area_B
=mean(Sex_diff_Small_area_B,na.rm=TRUE)
t_Sex_diff_Small_area_B=quantile(Sex_diff_Small_area_B,.025,na.rm=TRUE)
t_Sex_diff_Small_area_B_lower=quantile(Sex_diff_Small_area_B,.975,na.rm=TRUE)
t_Sex_diff_Small_area_B_upper
#Permutation test to calculate p value
=c(DB_data_clean_Small_area$rel_m_RS, DB_data_clean_Small_area$rel_f_RS)
comb_data1=c(DB_data_clean_Small_area$rel_m_cMS,DB_data_clean_Small_area$rel_f_cMS)
comb_data2
= lm(DB_data_clean_Small_area$rel_m_RS ~DB_data_clean_Small_area$rel_m_cMS)$coefficients[2] - lm(DB_data_clean_Small_area$rel_f_RS ~DB_data_clean_Small_area$rel_f_cMS)$coefficients[2]
diff.observed
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined dataset
= sample (na.omit(comb_data1), length(DB_data_clean_Small_area$rel_m_RS), TRUE)
a.random = sample (na.omit(comb_data1), length(DB_data_clean_Small_area$rel_f_RS), TRUE)
b.random = sample (na.omit(comb_data2), length(DB_data_clean_Small_area$rel_m_cMS), TRUE)
c.random = sample (na.omit(comb_data2), length(DB_data_clean_Small_area$rel_f_cMS), TRUE)
d.random
# Null (permuated) difference
= lm(a.random ~c.random)$coefficients[2] - lm(b.random ~d.random)$coefficients[2]
diff.random[i]
}
# P-value is the fraction of how many times the permuted difference is
# equal or more extreme than the observed difference
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Sex_diff_Small_area_B_p
#Population size ####
#Large
=c(B_Large_pop_Male_bootvar$t)-c(B_Large_pop_Female_bootvar$t)
Sex_diff_Large_pop_B
=mean(Sex_diff_Large_pop_B,na.rm=TRUE)
t_Sex_diff_Large_pop_B=quantile(Sex_diff_Large_pop_B,.025,na.rm=TRUE)
t_Sex_diff_Large_pop_B_lower=quantile(Sex_diff_Large_pop_B,.975,na.rm=TRUE)
t_Sex_diff_Large_pop_B_upper
#Permutation test to calculate p value
=c(DB_data_clean_Large_pop$rel_m_RS, DB_data_clean_Large_pop$rel_f_RS)
comb_data1=c(DB_data_clean_Large_pop$rel_m_cMS,DB_data_clean_Large_pop$rel_f_cMS)
comb_data2
= lm(DB_data_clean_Large_pop$rel_m_RS ~DB_data_clean_Large_pop$rel_m_cMS)$coefficients[2] - lm(DB_data_clean_Large_pop$rel_f_RS ~DB_data_clean_Large_pop$rel_f_cMS)$coefficients[2]
diff.observed
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined dataset
= sample (na.omit(comb_data1), length(DB_data_clean_Small_pop$rel_m_RS), TRUE)
a.random = sample (na.omit(comb_data1), length(DB_data_clean_Large_pop$rel_m_RS), TRUE)
b.random = sample (na.omit(comb_data2), length(DB_data_clean_Small_pop$rel_m_cMS), TRUE)
c.random = sample (na.omit(comb_data2), length(DB_data_clean_Large_pop$rel_m_cMS), TRUE)
d.random
# Null (permuated) difference
= lm(a.random ~c.random)$coefficients[2] - lm(b.random ~d.random)$coefficients[2]
diff.random[i]
}
# P-value is the fraction of how many times the permuted difference is
# equal or more extreme than the observed difference
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Sex_diff_Large_pop_B_p
#Small
=c(B_Small_pop_Male_bootvar$t)-c(B_Small_pop_Female_bootvar$t)
Sex_diff_Small_pop_B
=mean(Sex_diff_Small_pop_B,na.rm=TRUE)
t_Sex_diff_Small_pop_B=quantile(Sex_diff_Small_pop_B,.025,na.rm=TRUE)
t_Sex_diff_Small_pop_B_lower=quantile(Sex_diff_Small_pop_B,.975,na.rm=TRUE)
t_Sex_diff_Small_pop_B_upper
#Permutation test to calculate p value
=c(DB_data_clean_Small_pop$rel_m_RS, DB_data_clean_Small_pop$rel_f_RS)
comb_data1=c(DB_data_clean_Small_pop$rel_m_cMS,DB_data_clean_Small_pop$rel_f_cMS)
comb_data2
= lm(DB_data_clean_Small_pop$rel_m_RS ~DB_data_clean_Small_pop$rel_m_cMS)$coefficients[2] - lm(DB_data_clean_Small_pop$rel_f_RS ~DB_data_clean_Small_pop$rel_f_cMS)$coefficients[2]
diff.observed
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined dataset
= sample (na.omit(comb_data1), length(DB_data_clean_Small_pop$rel_m_RS), TRUE)
a.random = sample (na.omit(comb_data1), length(DB_data_clean_Small_pop$rel_f_RS), TRUE)
b.random = sample (na.omit(comb_data2), length(DB_data_clean_Small_pop$rel_m_cMS), TRUE)
c.random = sample (na.omit(comb_data2), length(DB_data_clean_Small_pop$rel_f_cMS), TRUE)
d.random
# Null (permuated) difference
= lm(a.random ~c.random)$coefficients[2] - lm(b.random ~d.random)$coefficients[2]
diff.random[i]
}
# P-value is the fraction of how many times the permuted difference is
# equal or more extreme than the observed difference
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Sex_diff_Small_pop_B_p
#S ####
#Area ####
#Large
=c(S_Large_area_Male_bootvar$t)-c(S_Large_area_Female_bootvar$t)
Sex_diff_Large_area_S
=mean(Sex_diff_Large_area_S,na.rm=TRUE)
t_Sex_diff_Large_area_S=quantile(Sex_diff_Large_area_S,.025,na.rm=TRUE)
t_Sex_diff_Large_area_S_lower=quantile(Sex_diff_Large_area_S,.975,na.rm=TRUE)
t_Sex_diff_Large_area_S_upper
#Permutation test to calculate p value
=c(DB_data_clean_Large_area$rel_m_cMS, DB_data_clean_Large_area$rel_f_cMS)
comb_data1=c(DB_data_clean_Large_area$rel_m_RS, DB_data_clean_Large_area$rel_f_RS)
comb_data2
= lm(DB_data_clean_Large_area$rel_m_RS ~DB_data_clean_Large_area$rel_m_cMS)$coefficients[2]*sqrt(var(DB_data_clean_Large_area$rel_m_cMS, na.rm=TRUE)) - lm(DB_data_clean_Large_area$rel_f_RS ~DB_data_clean_Large_area$rel_f_cMS)$coefficients[2]*sqrt(var(DB_data_clean_Large_area$rel_f_cMS, na.rm=TRUE))
diff.observed
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined dataset
= sample (na.omit(comb_data1), length(DB_data_clean_Large_area$rel_m_cMS), TRUE)
a.random = sample (na.omit(comb_data1), length(DB_data_clean_Large_area$rel_f_cMS), TRUE)
b.random = sample (na.omit(comb_data2), length(DB_data_clean_Large_area$rel_m_RS), TRUE)
c.random = sample (na.omit(comb_data2), length(DB_data_clean_Large_area$rel_f_RS), TRUE)
d.random
# Null (permuated) difference
= lm(c.random ~a.random)$coefficients[2]*sqrt(var(a.random, na.rm=TRUE)) - lm(d.random ~b.random)$coefficients[2]*sqrt(var(b.random, na.rm=TRUE))
diff.random[i]
}
# P-value is the fraction of how many times the permuted difference is
# equal or more extreme than the observed difference
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Sex_diff_Large_area_S_p
#Small
=c(S_Small_area_Male_bootvar$t)-c(S_Small_area_Female_bootvar$t)
Sex_diff_Small_area_S
=mean(Sex_diff_Small_area_S,na.rm=TRUE)
t_Sex_diff_Small_area_S=quantile(Sex_diff_Small_area_S,.025,na.rm=TRUE)
t_Sex_diff_Small_area_S_lower=quantile(Sex_diff_Small_area_S,.975,na.rm=TRUE)
t_Sex_diff_Small_area_S_upper
#Permutation test to calculate p value
=c(DB_data_clean_Small_area$rel_m_cMS, DB_data_clean_Small_area$rel_f_cMS)
comb_data1=c(DB_data_clean_Small_area$rel_m_RS, DB_data_clean_Small_area$rel_f_RS)
comb_data2
= lm(DB_data_clean_Small_area$rel_m_RS ~DB_data_clean_Small_area$rel_m_cMS)$coefficients[2]*sqrt(var(DB_data_clean_Small_area$rel_m_cMS, na.rm=TRUE)) - lm(DB_data_clean_Small_area$rel_f_RS ~DB_data_clean_Small_area$rel_f_cMS)$coefficients[2]*sqrt(var(DB_data_clean_Small_area$rel_f_cMS, na.rm=TRUE))
diff.observed
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined dataset
= sample (na.omit(comb_data1), length(DB_data_clean_Small_area$rel_m_cMS), TRUE)
a.random = sample (na.omit(comb_data1), length(DB_data_clean_Small_area$rel_f_cMS), TRUE)
b.random = sample (na.omit(comb_data2), length(DB_data_clean_Small_area$rel_m_RS), TRUE)
c.random = sample (na.omit(comb_data2), length(DB_data_clean_Small_area$rel_f_RS), TRUE)
d.random
# Null (permuated) difference
= lm(c.random ~a.random)$coefficients[2]*sqrt(var(a.random, na.rm=TRUE)) - lm(d.random ~b.random)$coefficients[2]*sqrt(var(b.random, na.rm=TRUE))
diff.random[i]
}
# P-value is the fraction of how many times the permuted difference is
# equal or more extreme than the observed difference
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Sex_diff_Small_area_S_p
#Population size ####
#Small
=c(S_Small_pop_Male_bootvar$t)-c(S_Small_pop_Female_bootvar$t)
Sex_diff_Small_pop_S
=mean(Sex_diff_Small_pop_S,na.rm=TRUE)
t_Sex_diff_Small_pop_S=quantile(Sex_diff_Small_pop_S,.025,na.rm=TRUE)
t_Sex_diff_Small_pop_S_lower=quantile(Sex_diff_Small_pop_S,.975,na.rm=TRUE)
t_Sex_diff_Small_pop_S_upper
#Permutation test to calculate p value
=c(DB_data_clean_Small_pop$rel_m_cMS, DB_data_clean_Small_pop$rel_f_cMS)
comb_data1=c(DB_data_clean_Small_pop$rel_m_RS, DB_data_clean_Small_pop$rel_f_RS)
comb_data2
= lm(DB_data_clean_Small_pop$rel_m_RS ~DB_data_clean_Small_pop$rel_m_cMS)$coefficients[2]*sqrt(var(DB_data_clean_Small_pop$rel_m_cMS, na.rm=TRUE)) - lm(DB_data_clean_Small_pop$rel_f_RS ~DB_data_clean_Small_pop$rel_f_cMS)$coefficients[2]*sqrt(var(DB_data_clean_Small_pop$rel_f_cMS, na.rm=TRUE))
diff.observed
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined dataset
= sample (na.omit(comb_data1), length(DB_data_clean_Small_pop$rel_m_cMS), TRUE)
a.random = sample (na.omit(comb_data1), length(DB_data_clean_Small_pop$rel_f_cMS), TRUE)
b.random = sample (na.omit(comb_data2), length(DB_data_clean_Small_pop$rel_m_RS), TRUE)
c.random = sample (na.omit(comb_data2), length(DB_data_clean_Small_pop$rel_f_RS), TRUE)
d.random
# Null (permuated) difference
= lm(c.random ~a.random)$coefficients[2]*sqrt(var(a.random, na.rm=TRUE)) - lm(d.random ~b.random)$coefficients[2]*sqrt(var(b.random, na.rm=TRUE))
diff.random[i]
}
# P-value is the fraction of how many times the permuted difference is
# equal or more extreme than the observed difference
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Sex_diff_Small_pop_S_p
#Large
=c(S_Large_pop_Male_bootvar$t)-c(S_Large_pop_Female_bootvar$t)
Sex_diff_Large_pop_S
=mean(Sex_diff_Large_pop_S,na.rm=TRUE)
t_Sex_diff_Large_pop_S=quantile(Sex_diff_Large_pop_S,.025,na.rm=TRUE)
t_Sex_diff_Large_pop_S_lower=quantile(Sex_diff_Large_pop_S,.975,na.rm=TRUE)
t_Sex_diff_Large_pop_S_upper
#Permutation test to calculate p value
=c(DB_data_clean_Large_pop$rel_m_cMS, DB_data_clean_Large_pop$rel_f_cMS)
comb_data1=c(DB_data_clean_Large_pop$rel_m_RS, DB_data_clean_Large_pop$rel_f_RS)
comb_data2
= lm(DB_data_clean_Large_pop$rel_m_RS ~DB_data_clean_Large_pop$rel_m_cMS)$coefficients[2]*sqrt(var(DB_data_clean_Large_pop$rel_m_cMS, na.rm=TRUE)) - lm(DB_data_clean_Large_pop$rel_f_RS ~DB_data_clean_Large_pop$rel_f_cMS)$coefficients[2]*sqrt(var(DB_data_clean_Large_pop$rel_f_cMS, na.rm=TRUE))
diff.observed
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined dataset
= sample (na.omit(comb_data1), length(DB_data_clean_Large_pop$rel_m_cMS), TRUE)
a.random = sample (na.omit(comb_data1), length(DB_data_clean_Large_pop$rel_f_cMS), TRUE)
b.random = sample (na.omit(comb_data2), length(DB_data_clean_Large_pop$rel_f_RS), TRUE)
c.random = sample (na.omit(comb_data2), length(DB_data_clean_Large_pop$rel_m_RS), TRUE)
d.random
# Null (permuated) difference
= lm(c.random ~a.random)$coefficients[2]*sqrt(var(a.random, na.rm=TRUE)) - lm(d.random ~b.random)$coefficients[2]*sqrt(var(b.random, na.rm=TRUE))
diff.random[i]
}
# P-value is the fraction of how many times the permuted difference is
# equal or more extreme than the observed difference
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Sex_diff_Large_pop_S_p
#Save data table ####
<- as.data.frame(cbind("Large area", "Opportunity for selection", t_Sex_diff_Large_area_I, t_Sex_diff_Large_area_I_lower, t_Sex_diff_Large_area_I_upper, t_Sex_diff_Large_area_I_p))
CompSex_Table_Large_area_I names(CompSex_Table_Large_area_I)=c('V1','V2','V3','V4','V5','V6')
<- as.data.frame(cbind("Large population size", "Opportunity for selection", t_Sex_diff_Large_pop_I, t_Sex_diff_Large_pop_I_lower, t_Sex_diff_Large_pop_I_upper, t_Sex_diff_Large_pop_I_p))
CompSex_Table_Large_pop_I names(CompSex_Table_Large_pop_I)=c('V1','V2','V3','V4','V5','V6')
<- as.data.frame(cbind("Large area", "Opportunity for sexual selection", t_Sex_diff_Large_area_Is, t_Sex_diff_Large_area_Is_lower, t_Sex_diff_Large_area_Is_upper, t_Sex_diff_Large_area_Is_p))
CompSex_Table_Large_area_Is names(CompSex_Table_Large_area_Is)=c('V1','V2','V3','V4','V5','V6')
<- as.data.frame(cbind("Large population size", "Opportunity for sexual selection", t_Sex_diff_Large_pop_Is, t_Sex_diff_Large_pop_Is_lower, t_Sex_diff_Large_pop_Is_upper, t_Sex_diff_Large_pop_Is_p))
CompSex_Table_Large_pop_Is names(CompSex_Table_Large_pop_Is)=c('V1','V2','V3','V4','V5','V6')
<- as.data.frame(cbind("Large area", "Bateman gradient", t_Sex_diff_Large_area_B, t_Sex_diff_Large_area_B_lower, t_Sex_diff_Large_area_B_upper, t_Sex_diff_Large_area_B_p))
CompSex_Table_Large_area_B names(CompSex_Table_Large_area_B)=c('V1','V2','V3','V4','V5','V6')
<- as.data.frame(cbind("Large population size", "Bateman gradient", t_Sex_diff_Large_pop_B, t_Sex_diff_Large_pop_B_lower, t_Sex_diff_Large_pop_B_upper, t_Sex_diff_Large_pop_B_p))
CompSex_Table_Large_pop_B names(CompSex_Table_Large_pop_B)=c('V1','V2','V3','V4','V5','V6')
<- as.data.frame(cbind("Large area", "Jones index", t_Sex_diff_Large_area_S, t_Sex_diff_Large_area_S_lower, t_Sex_diff_Large_area_S_upper, t_Sex_diff_Large_area_S_p))
CompSex_Table_Large_area_S names(CompSex_Table_Large_area_S)=c('V1','V2','V3','V4','V5','V6')
<- as.data.frame(cbind("Large population size", "Jones index", t_Sex_diff_Large_pop_S, t_Sex_diff_Large_pop_S_lower, t_Sex_diff_Large_pop_S_upper, t_Sex_diff_Large_pop_S_p))
CompSex_Table_Large_pop_S names(CompSex_Table_Large_pop_S)=c('V1','V2','V3','V4','V5','V6')
<- as.data.frame(cbind("Small area", "Opportunity for selection", t_Sex_diff_Small_area_I, t_Sex_diff_Small_area_I_lower, t_Sex_diff_Small_area_I_upper, t_Sex_diff_Small_area_I_p))
CompSex_Table_Small_area_I names(CompSex_Table_Small_area_I)=c('V1','V2','V3','V4','V5','V6')
<- as.data.frame(cbind("Small population size", "Opportunity for selection", t_Sex_diff_Small_pop_I, t_Sex_diff_Small_pop_I_lower, t_Sex_diff_Small_pop_I_upper, t_Sex_diff_Small_pop_I_p))
CompSex_Table_Small_pop_I names(CompSex_Table_Small_pop_I)=c('V1','V2','V3','V4','V5','V6')
<- as.data.frame(cbind("Small area", "Opportunity for sexual selection", t_Sex_diff_Small_area_Is, t_Sex_diff_Small_area_Is_lower, t_Sex_diff_Small_area_Is_upper, t_Sex_diff_Small_area_Is_p))
CompSex_Table_Small_area_Is names(CompSex_Table_Small_area_Is)=c('V1','V2','V3','V4','V5','V6')
<- as.data.frame(cbind("Small population size", "Opportunity for sexual selection", t_Sex_diff_Small_pop_Is, t_Sex_diff_Small_pop_Is_lower, t_Sex_diff_Small_pop_Is_upper, t_Sex_diff_Small_pop_Is_p))
CompSex_Table_Small_pop_Is names(CompSex_Table_Small_pop_Is)=c('V1','V2','V3','V4','V5','V6')
<- as.data.frame(cbind("Small area", "Bateman gradient", t_Sex_diff_Small_area_B, t_Sex_diff_Small_area_B_lower, t_Sex_diff_Small_area_B_upper, t_Sex_diff_Small_area_B_p))
CompSex_Table_Small_area_B names(CompSex_Table_Small_area_B)=c('V1','V2','V3','V4','V5','V6')
<- as.data.frame(cbind("Small population size", "Bateman gradient", t_Sex_diff_Small_pop_B, t_Sex_diff_Small_pop_B_lower, t_Sex_diff_Small_pop_B_upper, t_Sex_diff_Small_pop_B_p))
CompSex_Table_Small_pop_B names(CompSex_Table_Small_pop_B)=c('V1','V2','V3','V4','V5','V6')
<- as.data.frame(cbind("Small area", "Jones index", t_Sex_diff_Small_area_S, t_Sex_diff_Small_area_S_lower, t_Sex_diff_Small_area_S_upper, t_Sex_diff_Small_area_S_p))
CompSex_Table_Small_area_S names(CompSex_Table_Small_area_S)=c('V1','V2','V3','V4','V5','V6')
<- as.data.frame(cbind("Small population size", "Jones index", t_Sex_diff_Small_pop_S, t_Sex_diff_Small_pop_S_lower, t_Sex_diff_Small_pop_S_upper, t_Sex_diff_Small_pop_S_p))
CompSex_Table_Small_pop_S names(CompSex_Table_Small_pop_S)=c('V1','V2','V3','V4','V5','V6')
<- as.data.frame(as.matrix(rbind(CompSex_Table_Small_pop_I,CompSex_Table_Small_pop_Is,
Table_BatemanMetrics_SexComp
CompSex_Table_Small_pop_B,CompSex_Table_Small_pop_S,
CompSex_Table_Large_pop_I,CompSex_Table_Large_pop_Is,
CompSex_Table_Large_pop_B,CompSex_Table_Large_pop_S,
CompSex_Table_Large_area_I,CompSex_Table_Large_area_Is,
CompSex_Table_Large_area_B,CompSex_Table_Large_area_S,
CompSex_Table_Small_area_I,CompSex_Table_Small_area_Is,
CompSex_Table_Small_area_B,CompSex_Table_Small_area_S)))
colnames(Table_BatemanMetrics_SexComp)[1] <- "Treatment"
colnames(Table_BatemanMetrics_SexComp)[2] <- "Selection_metric"
colnames(Table_BatemanMetrics_SexComp)[3] <- "Variance"
colnames(Table_BatemanMetrics_SexComp)[4] <- "l95.CI"
colnames(Table_BatemanMetrics_SexComp)[5] <- "u95.CI"
colnames(Table_BatemanMetrics_SexComp)[6] <- "p-value"
3]=as.numeric(Table_BatemanMetrics_SexComp[,3])
Table_BatemanMetrics_SexComp[,4]=as.numeric(Table_BatemanMetrics_SexComp[,4])
Table_BatemanMetrics_SexComp[,5]=as.numeric(Table_BatemanMetrics_SexComp[,5])
Table_BatemanMetrics_SexComp[,6]=as.numeric(Table_BatemanMetrics_SexComp[,6])
Table_BatemanMetrics_SexComp[,
=cbind(Table_BatemanMetrics_SexComp[,c(1,2)],round(Table_BatemanMetrics_SexComp[,c(3,4,5,6)],digit=3))
Table_BatemanMetrics_SexComp_roundrownames(Table_BatemanMetrics_SexComp_round) <- NULL
Figure: Opportunity for selection (variance in reproductive success)
#Plot Selection Metrics
$Sex<- factor(Table_BatemanMetrics$Sex, levels=c("Female",'Male'))
Table_BatemanMetrics$Treatment<- factor(Table_BatemanMetrics$Treatment, levels=c("Small_pop",'Large_pop','Large_area','Small_area'))
Table_BatemanMetrics$Variable <- factor(Table_BatemanMetrics$Variable, levels=c("Opportunity for selection",'Opportunity for sexual selection','Bateman gradient','Maximum standardized sexual selection differential'))
Table_BatemanMetrics=Table_BatemanMetrics[Table_BatemanMetrics$Treatment!='Large_pop',]
Table_BatemanMetrics_area=Table_BatemanMetrics_area[Table_BatemanMetrics_area$Treatment!='Small_pop',]
Table_BatemanMetrics_area=Table_BatemanMetrics[Table_BatemanMetrics$Treatment!='Large_area',]
Table_BatemanMetrics_pop=Table_BatemanMetrics_pop[Table_BatemanMetrics_pop$Treatment!='Small_area',]
Table_BatemanMetrics_pop
# Opportunity for selection
<- ggplot(Table_BatemanMetrics_pop[c(1,2,9,10),], aes(x=Sex, y=Variance, fill=Treatment)) +
BarPlot_1scale_y_continuous(limits = c(0, 2), breaks = seq(0,2,0.5), expand = c(0 ,0)) +
geom_hline(yintercept=0, linetype="dashed", color = "black", size=1) +
geom_bar(stat="identity", color="black", position=position_dodge(), alpha=0.8) +
ylab(expression(paste(~italic("I"))))+ggtitle('Opportunity for selection')+labs(tag = "A")+xlab('Sex')+
scale_x_discrete(breaks=waiver(),labels = c("Female","Male"))+
theme(panel.border = element_blank(),
plot.title = element_text(hjust = 0.5),
panel.background = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
plot.tag.position=c(0.01,0.98),
legend.position = c(0.8, 0.9),
legend.title = element_blank(),
legend.text = element_text(colour="black", size=10),
axis.line.x = element_line(colour = "black", size = 1),
axis.line.y = element_line(colour = "black", size = 1),
axis.text.x = element_text(face="plain", color="black", size=16, angle=0),
axis.text.y = element_text(face="plain", color="black", size=16, angle=0),
axis.title.x = element_text(size=16,face="plain", margin = margin(r=0,10,0,0)),
axis.title.y = element_text(size=16,face="plain", margin = margin(r=10,0,0,0)),
axis.ticks = element_line(size = 1),
axis.ticks.length = unit(.3, "cm")) +
geom_errorbar(aes(ymin=l95.CI, ymax=u95.CI), width=.3,size=1, position=position_dodge(.9)) +
scale_fill_manual(values=c(colorESEB[1],colorESEB[2]),name = "Treatment", labels = c('Small group','Large group'))
<- ggplot(Table_BatemanMetrics_area[c(1,2,9,10),], aes(x=Sex, y=Variance, fill=Treatment)) +
BarPlot_2scale_y_continuous(limits = c(0, 2), breaks = seq(0,2,0.5), expand = c(0 ,0)) +
geom_hline(yintercept=0, linetype="dashed", color = "black", size=1) +
geom_bar(stat="identity", color="black", position=position_dodge(), alpha=0.8) +
ylab('')+ggtitle('Opportunity for selection')+labs(tag = "B")+xlab('Sex')+
scale_x_discrete(breaks=waiver(),labels = c("Female","Male"))+
theme(panel.border = element_blank(),
plot.title = element_text(hjust = 0.5),
panel.background = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
plot.tag.position=c(0.01,0.98),
legend.position = c(0.8, 0.9),
legend.title = element_blank(),
legend.text = element_text(colour="black", size=10),
axis.line.x = element_line(colour = "black", size = 1),
axis.line.y = element_line(colour = "black", size = 1),
axis.text.x = element_text(face="plain", color="black", size=16, angle=0),
axis.text.y = element_text(face="plain", color="black", size=16, angle=0),
axis.title.x = element_text(size=16,face="plain", margin = margin(r=0,10,0,0)),
axis.title.y = element_text(size=16,face="plain", margin = margin(r=10,0,0,0)),
axis.ticks = element_line(size = 1),
axis.ticks.length = unit(.3, "cm")) +
geom_errorbar(aes(ymin=l95.CI, ymax=u95.CI), width=.3,size=1, position=position_dodge(.9)) +
scale_fill_manual(values=c(colorESEB2[1],colorESEB2[2]),name = "Treatment", labels = c('Large area','Small area'))
grid.arrange(grobs = list(BarPlot_1,BarPlot_2), nrow = 1,ncol=2, widths=c(2.3, 2.3))
Figure 7: Effects of group size (A) and area treatment (B) on the
opportunity for selection in females and males. Means and 95% confidence
intervals.
Treatement comparisons via permutation test for the
opportunity for selection
c(1,5,9,13),] Table_BatemanMetrics_TreatComp_round[
Sex Treatment Selection_metric Variance l95.CI u95.CI
1 Male Area Opportunity for selection -0.261 -0.778 0.161
5 Male Population size Opportunity for selection 0.124 -0.310 0.653
9 Female Area Opportunity for selection 0.050 -0.170 0.258
13 Female Population size Opportunity for selection 0.240 0.043 0.450
p-value
1 0.112
5 0.445
9 0.499
13 0.001
Sex comparisons via permutation test for the opportunity for selection
c(1,5,9,13),] Table_BatemanMetrics_SexComp_round[
Treatment Selection_metric Variance l95.CI u95.CI
1 Small population size Opportunity for selection 0.023 -0.383 0.534
5 Large population size Opportunity for selection 0.140 -0.087 0.390
9 Large area Opportunity for selection -0.091 -0.322 0.172
13 Small area Opportunity for selection 0.220 -0.184 0.723
p-value
1 0.859
5 0.136
9 0.281
13 0.199
Figure: Opportunity for sexual selection (variance in mating success)
# Opportunity for sexual selection
<- ggplot(Table_BatemanMetrics_pop[c(3,4,11,12),], aes(x=Sex, y=Variance, fill=Treatment)) +
BarPlot_3scale_y_continuous(limits = c(0,1), breaks = seq(0,1,0.25), expand = c(0 ,0)) +
geom_hline(yintercept=0, linetype="dashed", color = "black", size=1) +
geom_bar(stat="identity", color="black", position=position_dodge(), alpha=0.8) +
ylab(expression(paste(~italic("I"['s']))))+ggtitle('Opportunity for sexual selection')+labs(tag = "A")+xlab('Sex')+
scale_x_discrete(breaks=waiver(),labels = c("Female","Male"))+
theme(panel.border = element_blank(),
plot.title = element_text(hjust = 0.5),
panel.background = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
plot.tag.position=c(0.01,0.98),
legend.position = c(0.8, 0.9),
legend.title = element_blank(),
legend.text = element_text(colour="black", size=10),
axis.line.x = element_line(colour = "black", size = 1),
axis.line.y = element_line(colour = "black", size = 1),
axis.text.x = element_text(face="plain", color="black", size=16, angle=0),
axis.text.y = element_text(face="plain", color="black", size=16, angle=0),
axis.title.x = element_text(size=16,face="plain", margin = margin(r=0,10,0,0)),
axis.title.y = element_text(size=16,face="plain", margin = margin(r=10,0,0,0)),
axis.ticks = element_line(size = 1),
axis.ticks.length = unit(.3, "cm")) +
geom_errorbar(aes(ymin=l95.CI, ymax=u95.CI), width=.3,size=1, position=position_dodge(.9)) +
scale_fill_manual(values=c(colorESEB[1],colorESEB[2]),name = "Treatment", labels = c('Small group','Large group'))
<- ggplot(Table_BatemanMetrics_area[c(3,4,11,12),], aes(x=Sex, y=Variance, fill=Treatment)) +
BarPlot_4scale_y_continuous(limits = c(0,1), breaks = seq(0,1,0.25), expand = c(0 ,0)) +
geom_hline(yintercept=0, linetype="dashed", color = "black", size=1) +
geom_bar(stat="identity", color="black", position=position_dodge(), alpha=0.8) +
ylab('')+ggtitle('Opportunity for sexual selection')+labs(tag = "B")+xlab('Sex')+
scale_x_discrete(breaks=waiver(),labels = c("Female","Male"))+
theme(panel.border = element_blank(),
plot.title = element_text(hjust = 0.5),
panel.background = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
plot.tag.position=c(0.01,0.98),
legend.position = c(0.8, 0.9),
legend.title = element_blank(),
legend.text = element_text(colour="black", size=10),
axis.line.x = element_line(colour = "black", size = 1),
axis.line.y = element_line(colour = "black", size = 1),
axis.text.x = element_text(face="plain", color="black", size=16, angle=0),
axis.text.y = element_text(face="plain", color="black", size=16, angle=0),
axis.title.x = element_text(size=16,face="plain", margin = margin(r=0,10,0,0)),
axis.title.y = element_text(size=16,face="plain", margin = margin(r=10,0,0,0)),
axis.ticks = element_line(size = 1),
axis.ticks.length = unit(.3, "cm")) +
geom_errorbar(aes(ymin=l95.CI, ymax=u95.CI), width=.3,size=1, position=position_dodge(.9)) +
scale_fill_manual(values=c(colorESEB2[1],colorESEB2[2]),name = "Treatment", labels = c('Large area','Small area'))
grid.arrange(grobs = list(BarPlot_3,BarPlot_4), nrow = 1,ncol=2, widths=c(2.3, 2.3))
Figure 8: Effects of group size (A) and area treatment (B) on the
opportunity for sexual selection in females and males. Means and 95%
confidence intervals.
Treatement comparisons via permutation
test for the opportunity for sexual selection
c(2,6,10,14),] Table_BatemanMetrics_TreatComp_round[
Sex Treatment Selection_metric Variance l95.CI
2 Male Area Opportunity for sexual selection 0.067 -0.055
6 Male Population size Opportunity for sexual selection -0.084 -0.216
10 Female Area Opportunity for sexual selection 0.036 -0.075
14 Female Population size Opportunity for sexual selection -0.099 -0.235
u95.CI p-value
2 0.206 0.172
6 0.033 0.090
10 0.155 0.373
14 0.025 0.010
Sex comparisons via permutation test for the opportunity for selection
c(2,6,10,14),] Table_BatemanMetrics_SexComp_round[
Treatment Selection_metric Variance l95.CI
2 Small population size Opportunity for sexual selection -0.001 -0.064
6 Large population size Opportunity for sexual selection -0.016 -0.187
10 Large area Opportunity for sexual selection 0.020 -0.119
14 Small area Opportunity for sexual selection -0.011 -0.111
u95.CI p-value
2 0.059 0.960
6 0.153 0.770
10 0.172 0.689
14 0.086 0.718
Figure: Bateman gradient (slope of mating success on reproductive success)
# Bateman gradient
<- ggplot(Table_BatemanMetrics_pop[c(5,6,13,14),], aes(x=Sex, y=Variance, fill=Treatment)) +
BarPlot_5scale_y_continuous(limits = c(0, 2.4), breaks = seq(0,2.4,0.5), expand = c(0 ,0)) +
geom_hline(yintercept=0, linetype="dashed", color = "black", size=1) +
geom_bar(stat="identity", color="black", position=position_dodge(), alpha=0.8) +
ylab(expression(paste(~italic(symbol("b")['ss']))))+ggtitle('Bateman gradient')+labs(tag = "A")+xlab('Sex')+
scale_x_discrete(breaks=waiver(),labels = c("Female","Male"))+
theme(panel.border = element_blank(),
plot.title = element_text(hjust = 0.5),
panel.background = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
plot.tag.position=c(0.01,0.98),
legend.position = c(0.8, 0.9),
legend.title = element_blank(),
legend.text = element_text(colour="black", size=10),
axis.line.x = element_line(colour = "black", size = 1),
axis.line.y = element_line(colour = "black", size = 1),
axis.text.x = element_text(face="plain", color="black", size=16, angle=0),
axis.text.y = element_text(face="plain", color="black", size=16, angle=0),
axis.title.x = element_text(size=16,face="plain", margin = margin(r=0,10,0,0)),
axis.title.y = element_text(size=16,face="plain", margin = margin(r=10,0,0,0)),
axis.ticks = element_line(size = 1),
axis.ticks.length = unit(.3, "cm")) +
geom_errorbar(aes(ymin=l95.CI, ymax=u95.CI), width=.3,size=1, position=position_dodge(.9)) +
scale_fill_manual(values=c(colorESEB[1],colorESEB[2]),name = "Treatment", labels = c('Small group','Large group'))
<- ggplot(Table_BatemanMetrics_area[c(5,6,13,14),], aes(x=Sex, y=Variance, fill=Treatment)) +
BarPlot_6scale_y_continuous(limits = c(0, 2.4), breaks = seq(0,2.4,0.5), expand = c(0 ,0)) +
geom_hline(yintercept=0, linetype="dashed", color = "black", size=1) +
geom_bar(stat="identity", color="black", position=position_dodge(), alpha=0.8) +
ylab('')+ggtitle('Bateman gradient')+labs(tag = "B")+xlab('Sex')+
scale_x_discrete(breaks=waiver(),labels = c("Female","Male"))+
theme(panel.border = element_blank(),
plot.title = element_text(hjust = 0.5),
panel.background = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
plot.tag.position=c(0.01,0.98),
legend.position = c(0.8, 0.9),
legend.title = element_blank(),
legend.text = element_text(colour="black", size=10),
axis.line.x = element_line(colour = "black", size = 1),
axis.line.y = element_line(colour = "black", size = 1),
axis.text.x = element_text(face="plain", color="black", size=16, angle=0),
axis.text.y = element_text(face="plain", color="black", size=16, angle=0),
axis.title.x = element_text(size=16,face="plain", margin = margin(r=0,10,0,0)),
axis.title.y = element_text(size=16,face="plain", margin = margin(r=10,0,0,0)),
axis.ticks = element_line(size = 1),
axis.ticks.length = unit(.3, "cm")) +
geom_errorbar(aes(ymin=l95.CI, ymax=u95.CI), width=.3,size=1, position=position_dodge(.9)) +
scale_fill_manual(values=c(colorESEB2[1],colorESEB2[2]),name = "Treatment", labels = c('Large area','Small area'))
grid.arrange(grobs = list(BarPlot_5,BarPlot_6), nrow = 1,ncol=2, widths=c(2.3, 2.3))
Figure 9: Effects of group size (A) and area treatment (B) on the
Bateman gradient in females and males. Means and 95% confidence
intervals.
Treatement comparisons via permutation test for the
Bateman gradient
c(3,7,11,15),] Table_BatemanMetrics_TreatComp_round[
Sex Treatment Selection_metric Variance l95.CI u95.CI p-value
3 Male Area Bateman gradient -1.074 -1.954 -0.270 0.001
7 Male Population size Bateman gradient 0.892 0.025 1.754 0.003
11 Female Area Bateman gradient 0.653 -0.124 1.410 0.031
15 Female Population size Bateman gradient -0.485 -1.258 0.277 0.107
Sex comparisons via permutation test for the opportunity for selection
c(3,7,11,15),] Table_BatemanMetrics_SexComp_round[
Treatment Selection_metric Variance l95.CI u95.CI p-value
3 Small population size Bateman gradient 0.854 -0.125 1.805 0.012
7 Large population size Bateman gradient -0.523 -1.180 0.077 0.052
11 Large area Bateman gradient -0.655 -1.363 0.025 0.021
15 Small area Bateman gradient 1.072 0.181 2.011 0.003
# Bateman gradient (scatter)
<-ggplot(DB_data_clean_Small_pop, aes(x=rel_m_cMS, y=rel_m_RS)) +
p1geom_point(alpha=0.4,shape=16, size = 3,color=colpal2[2]) +
geom_smooth(method=lm, se=TRUE,alpha=0.3) +
theme(plot.tag.position=c(0.1,0.98))+
labs(tag = "A")+xlab('Rel. mating success')+ylab("Rel. reproductive success")+ggtitle('Small group')+ theme(plot.title = element_text(hjust = 0.5))+
theme(axis.text=element_text(size=13),
axis.title=element_text(size=14))+ theme(legend.position="none")+
ylim(0,4.2)+xlim(0,3.2)+
annotate("text",label=expression(paste(beta['female'],' = 0.69')),x=.48,y=4.2,size=4)+
annotate("text",label=expression(paste(beta['male'],' = 1.15')),x=.42,y=3.85,size=4)+
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),panel.background = element_blank(), axis.line = element_line(colour = "black"))
=p1+geom_point(aes(x=rel_f_cMS, y=rel_f_RS),color=colpal2[1],alpha=0.4,shape=16, size = 3)+
p1geom_smooth(aes(x=rel_f_cMS, y=rel_f_RS),color=colpal2[1],method=lm, se=TRUE,alpha=0.3)
<-ggplot(DB_data_clean_Large_pop, aes(x=rel_m_cMS, y=rel_m_RS)) +
p2geom_point(alpha=0.4,shape=16, size = 3,color=colpal2[2]) +
geom_smooth(method=lm, se=TRUE,alpha=0.3) +
theme(plot.tag.position=c(0.1,0.98))+
labs(tag = "B")+xlab('Rel. mating success')+ylab("Rel. reproductive success")+ggtitle('Large group')+ theme(plot.title = element_text(hjust = 0.5))+
theme(axis.text=element_text(size=13),
axis.title=element_text(size=14))+ theme(legend.position="none")+
ylim(0,4.2)+xlim(0,3.2)+
annotate("text",label=expression(paste(beta['female'],' = 0.88')),x=.48,y=4.2,size=4)+
annotate("text",label=expression(paste(beta['male'],' = 0.59')),x=.42,y=3.85,size=4)+
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),panel.background = element_blank(), axis.line = element_line(colour = "black"))
=p2+geom_point(aes(x=rel_f_cMS, y=rel_f_RS),color=colpal2[1],alpha=0.4,shape=16, size = 3)+
p2geom_smooth(aes(x=rel_f_cMS, y=rel_f_RS),color=colpal2[1],method=lm, se=TRUE,alpha=0.3)
<-ggplot(DB_data_clean_Large_area, aes(x=rel_m_cMS, y=rel_m_RS)) +
p3geom_point(alpha=0.4,shape=16, size = 3,color=colpal2[2]) +
geom_smooth(method=lm, se=TRUE,alpha=0.3) +
theme(plot.tag.position=c(0.1,0.98))+
labs(tag = "C")+xlab('Rel. mating success')+ylab("Rel. reproductive success")+ggtitle('Large area')+ theme(plot.title = element_text(hjust = 0.5))+
theme(axis.text=element_text(size=13),
axis.title=element_text(size=14))+ theme(legend.position="none")+
ylim(0,4.2)+xlim(0,3.2)+
annotate("text",label=expression(paste(beta['female'],' = 0.93')),x=.48,y=4.2,size=4)+
annotate("text",label=expression(paste(beta['male'],' = 0.51')),x=.42,y=3.85,size=4)+
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),panel.background = element_blank(), axis.line = element_line(colour = "black"))
=p3+geom_point(aes(x=rel_f_cMS, y=rel_f_RS),color=colpal2[1],alpha=0.4,shape=16, size = 3)+
p3geom_smooth(aes(x=rel_f_cMS, y=rel_f_RS),color=colpal2[1],method=lm, se=TRUE,alpha=0.3)
<-ggplot(DB_data_clean_Small_area, aes(x=rel_m_cMS, y=rel_m_RS)) +
p4geom_point(alpha=0.4,shape=16, size = 3,color=colpal2[2]) +
geom_smooth(method=lm, se=TRUE,alpha=0.3) +
theme(plot.tag.position=c(0.1,0.98))+
labs(tag = "D")+xlab('Rel. mating success')+ylab("Rel. reproductive success")+ggtitle('Small area')+ theme(plot.title = element_text(hjust = 0.5))+
theme(axis.text=element_text(size=13),
axis.title=element_text(size=14))+
ylim(0,4.2)+xlim(0,3.2)+
theme(legend.position="none")+
annotate("text",label=expression(paste(beta['female'],' = 0.72')),x=.48,y=4.2,size=4)+
annotate("text",label=expression(paste(beta['male'],' = 1.19')),x=.42,y=3.85,size=4)+
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),panel.background = element_blank(), axis.line = element_line(colour = "black"))
=p4+geom_point(aes(x=rel_f_cMS, y=rel_f_RS),color=colpal2[1],alpha=0.4,shape=16, size = 3)+
p4geom_smooth(aes(x=rel_f_cMS, y=rel_f_RS),color=colpal2[1],method=lm, se=TRUE,alpha=0.3)
#Create legend
<-ggplot(DB_data_clean, aes(x=Total_N_MTP1, y=Total_N_Rd, color=Sex)) +
p5geom_point(alpha=0.4,shape=16, size = 3, position=position_jitterdodge(jitter.height=0,jitter.width=0,dodge.width = 0)) +
geom_smooth(method=lm, se=TRUE,alpha=0.3) +
scale_color_manual(values=c(colpal2[1],colpal2[2]),name = "Sex", labels = c('Females','Males'))+
xlab('Rel. mating success')+ylab("Rel. reproductive success")+
guides(color=guide_legend(override.aes=list(fill=NA)))+
theme(legend.key = element_rect(fill = "transparent"))
<- get_legend(p5)
legend
<-grid.arrange(p1,p2,legend,p3,p4,legend, nrow = 2,ncol=3, widths=c(2.3, 2.3, 0.65)) plot1
Figure 10: Scatter plot of the Bateman gradient in females and males.
Means and 95% confidence intervals.
Figure: Jones index (maximum strength of sexual selection)
# Jones index
<- ggplot(Table_BatemanMetrics_pop[c(7,8,14,15),], aes(x=Sex, y=Variance, fill=Treatment)) +
BarPlot_7scale_y_continuous(limits = c(0,1.3), breaks = seq(0,1.3,0.4), expand = c(0 ,0)) +
geom_hline(yintercept=0, linetype="dashed", color = "black", size=1) +
geom_bar(stat="identity", color="black", position=position_dodge(), alpha=0.8) +
ylab(expression(paste(~italic("s'"['max']))))+ggtitle('Jones index')+labs(tag = "A")+xlab('Sex')+
scale_x_discrete(breaks=waiver(),labels = c("Female","Male"))+
theme(panel.border = element_blank(),
plot.title = element_text(hjust = 0.5),
panel.background = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
plot.tag.position=c(0.01,0.98),
legend.position = c(0.8, 0.9),
legend.title = element_blank(),
legend.text = element_text(colour="black", size=10),
axis.line.x = element_line(colour = "black", size = 1),
axis.line.y = element_line(colour = "black", size = 1),
axis.text.x = element_text(face="plain", color="black", size=16, angle=0),
axis.text.y = element_text(face="plain", color="black", size=16, angle=0),
axis.title.x = element_text(size=16,face="plain", margin = margin(r=0,10,0,0)),
axis.title.y = element_text(size=16,face="plain", margin = margin(r=10,0,0,0)),
axis.ticks = element_line(size = 1),
axis.ticks.length = unit(.3, "cm")) +
geom_errorbar(aes(ymin=l95.CI, ymax=u95.CI), width=.3,size=1, position=position_dodge(.9)) +
scale_fill_manual(values=c(colorESEB[1],colorESEB[2]),name = "Treatment", labels = c('Small group','Large group'))
<- ggplot(Table_BatemanMetrics_area[c(7,8,14,15),], aes(x=Sex, y=Variance, fill=Treatment)) +
BarPlot_8scale_y_continuous(limits = c(0,1.3), breaks = seq(0,1.3,0.4), expand = c(0 ,0)) +
geom_hline(yintercept=0, linetype="dashed", color = "black", size=1) +
geom_bar(stat="identity", color="black", position=position_dodge(), alpha=0.8) +
ylab('')+ggtitle('Jones index')+labs(tag = "B")+xlab('Sex')+
scale_x_discrete(breaks=waiver(),labels = c("Female","Male"))+
theme(panel.border = element_blank(),
plot.title = element_text(hjust = 0.5),
panel.background = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
plot.tag.position=c(0.01,0.98),
legend.position = c(0.8, 0.9),
legend.title = element_blank(),
legend.text = element_text(colour="black", size=10),
axis.line.x = element_line(colour = "black", size = 1),
axis.line.y = element_line(colour = "black", size = 1),
axis.text.x = element_text(face="plain", color="black", size=16, angle=0),
axis.text.y = element_text(face="plain", color="black", size=16, angle=0),
axis.title.x = element_text(size=16,face="plain", margin = margin(r=0,10,0,0)),
axis.title.y = element_text(size=16,face="plain", margin = margin(r=10,0,0,0)),
axis.ticks = element_line(size = 1),
axis.ticks.length = unit(.3, "cm")) +
geom_errorbar(aes(ymin=l95.CI, ymax=u95.CI), width=.3,size=1, position=position_dodge(.9)) +
scale_fill_manual(values=c(colorESEB2[1],colorESEB2[2]),name = "Treatment", labels = c('Large area','Small area'))
grid.arrange(grobs = list(BarPlot_7,BarPlot_8), nrow = 1,ncol=2, widths=c(2.3, 2.3))
Figure 11: Effects of group size (A) and area treatment (B) on the Jones
index in females and males. Means and 95% confidence intervals.
Treatement comparisons via permutation test for the Jones index
c(4,8,12,16),] Table_BatemanMetrics_TreatComp_round[
Sex Treatment Selection_metric Variance l95.CI u95.CI p-value
4 Male Area Jones index -0.389 -0.777 -0.009 0.002
8 Male Population size Jones index 0.297 -0.075 0.694 0.018
12 Female Area Jones index 0.290 -0.026 0.600 0.017
16 Female Population size Jones index -0.269 -0.563 0.035 0.027
Sex comparisons via permutation test for the opportunity for selection
c(4,8,12,16),] Table_BatemanMetrics_SexComp_round[
Treatment Selection_metric Variance l95.CI u95.CI p-value
4 Small population size Jones index 0.319 -0.060 0.712 0.011
8 Large population size Jones index -0.246 -0.542 0.053 0.039
12 Large area Jones index -0.273 -0.593 0.057 0.018
16 Small area Jones index 0.406 0.046 0.780 0.002
We decomposed the variance in reproductive success for males and
females.
Components fro males were:
- Mating success
-
Insemination success
- Fertilization success
- Partner
fecundity
Components for females were:
- Mating success
- Fecundity
We used bootstrapping (10.000 bootstrap
replicates) to obtain 95% confidence intervals and permutation tests
(10.000 permutations) to statistically compare treatments and
sexes.
# Bootstrapping variances + CI
# mMS
# Large area
<-as.data.table(DB_data_clean_Large_area$rel_m_cMS)
DB_data_clean_Large_area_M_MS_n <- function(d, i){
c <- d[i,]
d2 return(var(d2[,1], na.rm=TRUE))
}<- boot(DB_data_clean_Large_area_M_MS_n, c, R=10000)
Large_area_M_MS_bootvar
# Small Area
<-as.data.table(DB_data_clean_Small_area$rel_m_cMS)
DB_data_clean_Small_area_M_MS_n
<- boot(DB_data_clean_Small_area_M_MS_n, c, R=10000)
Small_area_M_MS_bootvar
# Small group
<-as.data.table(DB_data_clean_Small_pop$rel_m_cMS)
DB_data_clean_Small_pop_M_MS_n
<- boot(DB_data_clean_Small_pop_M_MS_n, c, R=10000)
Small_pop_M_MS_bootvar
# Large group
<-as.data.table(DB_data_clean_Large_pop$rel_m_cMS)
DB_data_clean_Large_pop_M_MS_n
<- boot(DB_data_clean_Large_pop_M_MS_n, c, R=10000)
Large_pop_M_MS_bootvar
rm("c")
# InSuc ####
# Large area
<-as.data.table(DB_data_clean_Large_area$rel_m_InSuc)
DB_data_clean_Large_area_M_InSuc_n <- function(d, i){
c <- d[i,]
d2 return(var(d2[,1], na.rm=TRUE))
}<- boot(DB_data_clean_Large_area_M_InSuc_n, c, R=10000)
Large_area_M_InSuc_bootvar
# Small Area
<-as.data.table(DB_data_clean_Small_area$rel_m_InSuc)
DB_data_clean_Small_area_M_InSuc_n
<- boot(DB_data_clean_Small_area_M_InSuc_n, c, R=10000)
Small_area_M_InSuc_bootvar
# Small group
<-as.data.table(DB_data_clean_Small_pop$rel_m_InSuc)
DB_data_clean_Small_pop_M_InSuc_n
<- boot(DB_data_clean_Small_pop_M_InSuc_n, c, R=10000)
Small_pop_M_InSuc_bootvar
# Large group
<-as.data.table(DB_data_clean_Large_pop$rel_m_InSuc)
DB_data_clean_Large_pop_M_InSuc_n
<- boot(DB_data_clean_Large_pop_M_InSuc_n, c, R=10000)
Large_pop_M_InSuc_bootvar
rm("c")
# feSuc ####
# Large area
<-as.data.table(DB_data_clean_Large_area$rel_m_feSuc)
DB_data_clean_Large_area_M_feSuc_n <- function(d, i){
c <- d[i,]
d2 return(var(d2$V1, na.rm=TRUE))
}<- boot(DB_data_clean_Large_area_M_feSuc_n, c, R=10000)
Large_area_M_feSuc_bootvar
# Small Area
<-as.data.table(DB_data_clean_Small_area$rel_m_feSuc)
DB_data_clean_Small_area_M_feSuc_n
<- boot(DB_data_clean_Small_area_M_feSuc_n, c, R=10000)
Small_area_M_feSuc_bootvar
# Small group
<-as.data.table(DB_data_clean_Small_pop$rel_m_feSuc)
DB_data_clean_Small_pop_M_feSuc_n
<- boot(DB_data_clean_Small_pop_M_feSuc_n, c, R=10000)
Small_pop_M_feSuc_bootvar
# Large group
<-as.data.table(DB_data_clean_Large_pop$rel_m_feSuc)
DB_data_clean_Large_pop_M_feSuc_n
<- boot(DB_data_clean_Large_pop_M_feSuc_n, c, R=10000)
Large_pop_M_feSuc_bootvar
rm("c")
# pFec ####
# Large area
<-as.data.table(DB_data_clean_Large_area$rel_m_pFec)
DB_data_clean_Large_area_M_pFec_n <- function(d, i){
c <- d[i,]
d2 return(var(d2[,1], na.rm=TRUE))
}<- boot(DB_data_clean_Large_area_M_pFec_n, c, R=10000)
Large_area_M_pFec_bootvar
# Small Area
<-as.data.table(DB_data_clean_Small_area$rel_m_pFec)
DB_data_clean_Small_area_M_pFec_n
<- boot(DB_data_clean_Small_area_M_pFec_n, c, R=10000)
Small_area_M_pFec_bootvar
# Small group
<-as.data.table(DB_data_clean_Small_pop$rel_m_pFec)
DB_data_clean_Small_pop_M_pFec_n
<- boot(DB_data_clean_Small_pop_M_pFec_n, c, R=10000)
Small_pop_M_pFec_bootvar
# Large group
<-as.data.table(DB_data_clean_Large_pop$rel_m_pFec)
DB_data_clean_Large_pop_M_pFec_n
<- boot(DB_data_clean_Large_pop_M_pFec_n, c, R=10000)
Large_pop_M_pFec_bootvar
rm("c")
# fMS ####
# Large area
<-as.data.table(DB_data_clean_Large_area$rel_f_cMS)
DB_data_clean_Large_area_F_fMS_n <- function(d, i){
c <- d[i,]
d2 return(var(d2[,1], na.rm=TRUE))
}<- boot(DB_data_clean_Large_area_F_fMS_n, c, R=10000)
Large_area_F_fMS_bootvar
# Small Area
<-as.data.table(DB_data_clean_Small_area$rel_f_cMS)
DB_data_clean_Small_area_F_fMS_n
<- boot(DB_data_clean_Small_area_F_fMS_n, c, R=10000)
Small_area_F_fMS_bootvar
# Small group
<-as.data.table(DB_data_clean_Small_pop$rel_f_cMS)
DB_data_clean_Small_pop_F_fMS_n
<- boot(DB_data_clean_Small_pop_F_fMS_n, c, R=10000)
Small_pop_F_fMS_bootvar
# Large group
<-as.data.table(DB_data_clean_Large_pop$rel_f_cMS)
DB_data_clean_Large_pop_F_fMS_n
<- boot(DB_data_clean_Large_pop_F_fMS_n, c, R=10000)
Large_pop_F_fMS_bootvar
rm("c")
# fFec ####
# Large area
<-as.data.table(DB_data_clean_Large_area$rel_f_fec_pMate)
DB_data_clean_Large_area_F_fFec_n <- function(d, i){
c <- d[i,]
d2 return(var(d2[,1], na.rm=TRUE))
}<- boot(DB_data_clean_Large_area_F_fFec_n, c, R=10000)
Large_area_F_fFec_bootvar
# Small Area
<-as.data.table(DB_data_clean_Small_area$rel_f_fec_pMate)
DB_data_clean_Small_area_F_fFec_n
<- boot(DB_data_clean_Small_area_F_fFec_n, c, R=10000)
Small_area_F_fFec_bootvar
# Small group
<-as.data.table(DB_data_clean_Small_pop$rel_f_fec_pMate)
DB_data_clean_Small_pop_F_fFec_n
<- boot(DB_data_clean_Small_pop_F_fFec_n, c, R=10000)
Small_pop_F_fFec_bootvar
# Large group
<-as.data.table(DB_data_clean_Large_pop$rel_f_fec_pMate)
DB_data_clean_Large_pop_F_fFec_n
<- boot(DB_data_clean_Large_pop_F_fFec_n, c, R=10000)
Large_pop_F_fFec_bootvar
rm("c")
#Write Table ####
library(base)
<- as.data.frame(cbind("Male", "MS", "Large_area", mean(Large_area_M_MS_bootvar$t), quantile(Large_area_M_MS_bootvar$t,.025, names = FALSE), quantile(Large_area_M_MS_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Large_area_MS <- as.data.frame(cbind("Male", "MS", "Small_area", mean(Small_area_M_MS_bootvar$t), quantile(Small_area_M_MS_bootvar$t,.025, names = FALSE), quantile(Small_area_M_MS_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Small_area_MS <- as.data.frame(cbind("Male", "MS", "Small_pop", mean(Small_pop_M_MS_bootvar$t), quantile(Small_pop_M_MS_bootvar$t,.025, names = FALSE), quantile(Small_pop_M_MS_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Small_pop_MS <- as.data.frame(cbind("Male", "MS", "Large_pop", mean(Large_pop_M_MS_bootvar$t), quantile(Large_pop_M_MS_bootvar$t,.025, names = FALSE), quantile(Large_pop_M_MS_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Large_pop_MS
<- as.data.frame(cbind("Male", "InSuc", "Large_area", mean(Large_area_M_InSuc_bootvar$t), quantile(Large_area_M_InSuc_bootvar$t,.025, names = FALSE), quantile(Large_area_M_InSuc_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Large_area_InSuc <- as.data.frame(cbind("Male", "InSuc", "Small_area", mean(Small_area_M_InSuc_bootvar$t), quantile(Small_area_M_InSuc_bootvar$t,.025, names = FALSE), quantile(Small_area_M_InSuc_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Small_area_InSuc <- as.data.frame(cbind("Male", "InSuc", "Small_pop", mean(Small_pop_M_InSuc_bootvar$t), quantile(Small_pop_M_InSuc_bootvar$t,.025, names = FALSE), quantile(Small_pop_M_InSuc_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Small_pop_InSuc <- as.data.frame(cbind("Male", "InSuc", "Large_pop", mean(Large_pop_M_InSuc_bootvar$t), quantile(Large_pop_M_InSuc_bootvar$t,.025, names = FALSE), quantile(Large_pop_M_InSuc_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Large_pop_InSuc
<- as.data.frame(cbind("Male", "feSuc", "Large_area", mean(Large_area_M_feSuc_bootvar$t), quantile(Large_area_M_feSuc_bootvar$t,.025, names = FALSE), quantile(Large_area_M_feSuc_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Large_area_feSuc <- as.data.frame(cbind("Male", "feSuc", "Small_area", mean(Small_area_M_feSuc_bootvar$t), quantile(Small_area_M_feSuc_bootvar$t,.025, names = FALSE), quantile(Small_area_M_feSuc_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Small_area_feSuc <- as.data.frame(cbind("Male", "feSuc", "Small_pop", mean(Small_pop_M_feSuc_bootvar$t), quantile(Small_pop_M_feSuc_bootvar$t,.025, names = FALSE), quantile(Small_pop_M_feSuc_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Small_pop_feSuc <- as.data.frame(cbind("Male", "feSuc", "Large_pop", mean(Large_pop_M_feSuc_bootvar$t), quantile(Large_pop_M_feSuc_bootvar$t,.025, names = FALSE), quantile(Large_pop_M_feSuc_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Large_pop_feSuc
<- as.data.frame(cbind("Male", "pFec", "Large_area", mean(Large_area_M_pFec_bootvar$t), quantile(Large_area_M_pFec_bootvar$t,.025, names = FALSE), quantile(Large_area_M_pFec_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Large_area_pFec <- as.data.frame(cbind("Male", "pFec", "Small_area", mean(Small_area_M_pFec_bootvar$t), quantile(Small_area_M_pFec_bootvar$t,.025, names = FALSE), quantile(Small_area_M_pFec_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Small_area_pFec <- as.data.frame(cbind("Male", "pFec", "Small_pop", mean(Small_pop_M_pFec_bootvar$t), quantile(Small_pop_M_pFec_bootvar$t,.025, names = FALSE), quantile(Small_pop_M_pFec_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Small_pop_pFec <- as.data.frame(cbind("Male", "pFec", "Large_pop", mean(Large_pop_M_pFec_bootvar$t), quantile(Large_pop_M_pFec_bootvar$t,.025, names = FALSE), quantile(Large_pop_M_pFec_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Large_pop_pFec
<- as.data.frame(cbind("Female", "fMS", "Large_area", mean(Large_area_F_fMS_bootvar$t), quantile(Large_area_F_fMS_bootvar$t,.025, names = FALSE), quantile(Large_area_F_fMS_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Female_Large_area_fMS <- as.data.frame(cbind("Female", "fMS", "Small_area", mean(Small_area_F_fMS_bootvar$t), quantile(Small_area_F_fMS_bootvar$t,.025, names = FALSE), quantile(Small_area_F_fMS_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Female_Small_area_fMS <- as.data.frame(cbind("Female", "fMS", "Small_pop", mean(Small_pop_F_fMS_bootvar$t), quantile(Small_pop_F_fMS_bootvar$t,.025, names = FALSE), quantile(Small_pop_F_fMS_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Female_Small_pop_fMS <- as.data.frame(cbind("Female", "fMS", "Large_pop", mean(Large_pop_F_fMS_bootvar$t), quantile(Large_pop_F_fMS_bootvar$t,.025, names = FALSE), quantile(Large_pop_F_fMS_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Female_Large_pop_fMS
<- as.data.frame(cbind("Female", "fFec", "Large_area", mean(Large_area_F_fFec_bootvar$t), quantile(Large_area_F_fFec_bootvar$t,.025, names = FALSE), quantile(Large_area_F_fFec_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Female_Large_area_fFec <- as.data.frame(cbind("Female", "fFec", "Small_area", mean(Small_area_F_fFec_bootvar$t), quantile(Small_area_F_fFec_bootvar$t,.025, names = FALSE), quantile(Small_area_F_fFec_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Female_Small_area_fFec <- as.data.frame(cbind("Female", "fFec", "Small_pop", mean(Small_pop_F_fFec_bootvar$t), quantile(Small_pop_F_fFec_bootvar$t,.025, names = FALSE), quantile(Small_pop_F_fFec_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Female_Small_pop_fFec <- as.data.frame(cbind("Female", "fFec", "Large_pop", mean(Large_pop_F_fFec_bootvar$t,na.rm=T), quantile(Large_pop_F_fFec_bootvar$t,.025, names = FALSE,na.rm=T), quantile(Large_pop_F_fFec_bootvar$t,.975, names = FALSE,na.rm=T)))
PhenVarBoot_Table_Female_Large_pop_fFec
<- as.data.frame(as.matrix(rbind(PhenVarBoot_Table_Male_Small_pop_MS,PhenVarBoot_Table_Male_Large_pop_MS,
PhenVarBoot_Table
PhenVarBoot_Table_Male_Large_area_MS,PhenVarBoot_Table_Male_Small_area_MS,
PhenVarBoot_Table_Male_Small_pop_InSuc,PhenVarBoot_Table_Male_Large_pop_InSuc,
PhenVarBoot_Table_Male_Large_area_InSuc,PhenVarBoot_Table_Male_Small_area_InSuc,
PhenVarBoot_Table_Male_Small_pop_feSuc,PhenVarBoot_Table_Male_Large_pop_feSuc,
PhenVarBoot_Table_Male_Large_area_feSuc,PhenVarBoot_Table_Male_Small_area_feSuc,
PhenVarBoot_Table_Male_Small_pop_pFec,PhenVarBoot_Table_Male_Large_pop_pFec,
PhenVarBoot_Table_Male_Large_area_pFec,PhenVarBoot_Table_Male_Small_area_pFec,
PhenVarBoot_Table_Female_Small_pop_fMS,PhenVarBoot_Table_Female_Large_pop_fMS,
PhenVarBoot_Table_Female_Large_area_fMS,PhenVarBoot_Table_Female_Small_area_fMS,
PhenVarBoot_Table_Female_Small_pop_fFec,PhenVarBoot_Table_Female_Large_pop_fFec,
PhenVarBoot_Table_Female_Large_area_fFec,PhenVarBoot_Table_Female_Small_area_fFec)))
is.table(PhenVarBoot_Table)
colnames(PhenVarBoot_Table)[1] <- "Sex"
colnames(PhenVarBoot_Table)[2] <- "Variance_component"
colnames(PhenVarBoot_Table)[3] <- "Treatment"
colnames(PhenVarBoot_Table)[4] <- "Variance"
colnames(PhenVarBoot_Table)[5] <- "l95.CI"
colnames(PhenVarBoot_Table)[6] <- "u95.CI"
4]=as.numeric(PhenVarBoot_Table[,4])
PhenVarBoot_Table[,5]=as.numeric(PhenVarBoot_Table[,5])
PhenVarBoot_Table[,6]=as.numeric(PhenVarBoot_Table[,6])
PhenVarBoot_Table[,
=cbind(PhenVarBoot_Table[,c(1,2,3)],round(PhenVarBoot_Table[,c(4,5,6)],digit=3))
PhenVarBoot_Table_roundrownames(PhenVarBoot_Table_round) <- NULL
# Treatment comparison
#mMS
#Area
=c(Large_area_M_MS_bootvar$t)-c(Small_area_M_MS_bootvar$t)
Treat_diff_Male_area_mMS
=mean(Treat_diff_Male_area_mMS,na.rm=TRUE)
t_Treat_diff_Male_area_mMS=quantile(Treat_diff_Male_area_mMS,.025,na.rm=TRUE)
t_Treat_diff_Male_area_mMS_lower=quantile(Treat_diff_Male_area_mMS,.975,na.rm=TRUE)
t_Treat_diff_Male_area_mMS_upper
#Permutation test to calculate p value
=c(DB_data_clean_Large_area$rel_m_cMS,DB_data_clean_Small_area$rel_m_cMS)
comb_data
= var(na.omit((DB_data_clean_Large_area$rel_m_cMS))) - var(na.omit((DB_data_clean_Small_area$rel_m_cMS)))
diff.observed
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined dataset
= sample (na.omit(comb_data), length(c(DB_data_clean_Large_area$rel_m_cMS)), TRUE)
a.random = sample (na.omit(comb_data), length(c(DB_data_clean_Small_area$rel_m_cMS)), TRUE)
b.random
# Null (permuated) difference
= var(na.omit(b.random)) - var(na.omit(a.random))
diff.random[i]
}
# P-value is the fraction of how many times the permuted difference is
# equal or more extreme than the observed difference
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Treat_diff_Male_area_mMS_p
#Population size ####
=c(Small_pop_M_MS_bootvar$t)-c(Large_pop_M_MS_bootvar$t)
Treat_diff_Male_pop_mMS
=mean(Treat_diff_Male_pop_mMS,na.rm=TRUE)
t_Treat_diff_Male_pop_mMS=quantile(Treat_diff_Male_pop_mMS,.025,na.rm=TRUE)
t_Treat_diff_Male_pop_mMS_lower=quantile(Treat_diff_Male_pop_mMS,.975,na.rm=TRUE)
t_Treat_diff_Male_pop_mMS_upper
#Permutation test to calculate p value
=c(DB_data_clean_Small_pop$rel_m_cMS,DB_data_clean_Large_pop$rel_m_cMS)
comb_data
= var(na.omit((DB_data_clean_Small_pop$rel_m_cMS))) - var(na.omit((DB_data_clean_Large_pop$rel_m_cMS)))
diff.observed
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined dataset
= sample (na.omit(comb_data), length(c(DB_data_clean_Small_pop$rel_m_cMS)), TRUE)
a.random = sample (na.omit(comb_data), length(c(DB_data_clean_Large_pop$rel_m_cMS)), TRUE)
b.random
# Null (permuated) difference
= var(na.omit(b.random)) - var(na.omit(a.random))
diff.random[i]
}
# P-value is the fraction of how many times the permuted difference is
# equal or more extreme than the observed difference
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Treat_diff_Male_pop_mMS_p
#InSuc ####
#Area ####
=c(Large_area_M_InSuc_bootvar$t)-c(Small_area_M_InSuc_bootvar$t)
Treat_diff_Male_area_InSuc
=mean(Treat_diff_Male_area_InSuc,na.rm=TRUE)
t_Treat_diff_Male_area_InSuc=quantile(Treat_diff_Male_area_InSuc,.025,na.rm=TRUE)
t_Treat_diff_Male_area_InSuc_lower=quantile(Treat_diff_Male_area_InSuc,.975,na.rm=TRUE)
t_Treat_diff_Male_area_InSuc_upper
#Permutation test to calculate p value
=c(DB_data_clean_Large_area$rel_m_InSuc,DB_data_clean_Small_area$rel_m_InSuc)
comb_data
= var(na.omit((DB_data_clean_Large_area$rel_m_InSuc))) - var(na.omit((DB_data_clean_Small_area$rel_m_InSuc)))
diff.observed
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined dataset
= sample (na.omit(comb_data), length(c(DB_data_clean_Large_area$rel_m_InSuc)), TRUE)
a.random = sample (na.omit(comb_data), length(c(DB_data_clean_Small_area$rel_m_InSuc)), TRUE)
b.random
# Null (permuated) difference
= var(na.omit(b.random)) - var(na.omit(a.random))
diff.random[i]
}
# P-value is the fraction of how many times the permuted difference is
# equal or more extreme than the observed difference
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Treat_diff_Male_area_InSuc_p
#Population size ####
=c(Small_pop_M_InSuc_bootvar$t)-c(Large_pop_M_InSuc_bootvar$t)
Treat_diff_Male_pop_InSuc
=mean(Treat_diff_Male_pop_InSuc,na.rm=TRUE)
t_Treat_diff_Male_pop_InSuc=quantile(Treat_diff_Male_pop_InSuc,.025,na.rm=TRUE)
t_Treat_diff_Male_pop_InSuc_lower=quantile(Treat_diff_Male_pop_InSuc,.975,na.rm=TRUE)
t_Treat_diff_Male_pop_InSuc_upper
#Permutation test to calculate p value
=c(DB_data_clean_Small_pop$rel_m_InSuc,DB_data_clean_Large_pop$rel_m_InSuc)
comb_data
= var(na.omit((DB_data_clean_Small_pop$rel_m_InSuc))) - var(na.omit((DB_data_clean_Large_pop$rel_m_InSuc)))
diff.observed
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined dataset
= sample (na.omit(comb_data), length(c(DB_data_clean_Small_pop$rel_m_InSuc)), TRUE)
a.random = sample (na.omit(comb_data), length(c(DB_data_clean_Large_pop$rel_m_InSuc)), TRUE)
b.random
# Null (permuated) difference
= var(na.omit(b.random)) - var(na.omit(a.random))
diff.random[i]
}
# P-value is the fraction of how many times the permuted difference is
# equal or more extreme than the observed difference
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Treat_diff_Male_pop_InSuc_p
#feSuc ####
#Area ####
=c(Large_area_M_feSuc_bootvar$t)-c(Small_area_M_feSuc_bootvar$t)
Treat_diff_Male_area_feSuc
=mean(Treat_diff_Male_area_feSuc,na.rm=TRUE)
t_Treat_diff_Male_area_feSuc=quantile(Treat_diff_Male_area_feSuc,.025,na.rm=TRUE)
t_Treat_diff_Male_area_feSuc_lower=quantile(Treat_diff_Male_area_feSuc,.975,na.rm=TRUE)
t_Treat_diff_Male_area_feSuc_upper
#Permutation test to calculate p value
=c(DB_data_clean_Large_area$rel_m_feSuc,DB_data_clean_Small_area$rel_m_feSuc)
comb_data
= var(na.omit((DB_data_clean_Large_area$rel_m_feSuc))) - var(na.omit((DB_data_clean_Small_area$rel_m_feSuc)))
diff.observed
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined dataset
= sample (na.omit(comb_data), length(c(DB_data_clean_Large_area$rel_m_feSuc)), TRUE)
a.random = sample (na.omit(comb_data), length(c(DB_data_clean_Small_area$rel_m_feSuc)), TRUE)
b.random
# Null (permuated) difference
= var(na.omit(b.random)) - var(na.omit(a.random))
diff.random[i]
}
# P-value is the fraction of how many times the permuted difference is
# equal or more extreme than the observed difference
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Treat_diff_Male_area_feSuc_p
#Population size ####
=c(Small_pop_M_feSuc_bootvar$t)-c(Large_pop_M_feSuc_bootvar$t)
Treat_diff_Male_pop_feSuc
=mean(Treat_diff_Male_pop_feSuc,na.rm=TRUE)
t_Treat_diff_Male_pop_feSuc=quantile(Treat_diff_Male_pop_feSuc,.025,na.rm=TRUE)
t_Treat_diff_Male_pop_feSuc_lower=quantile(Treat_diff_Male_pop_feSuc,.975,na.rm=TRUE)
t_Treat_diff_Male_pop_feSuc_upper
#Permutation test to calculate p value
=c(DB_data_clean_Small_pop$rel_m_feSuc,DB_data_clean_Large_pop$rel_m_feSuc)
comb_data
= var(na.omit((DB_data_clean_Small_pop$rel_m_feSuc))) - var(na.omit((DB_data_clean_Large_pop$rel_m_feSuc)))
diff.observed
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined dataset
= sample (na.omit(comb_data), length(c(DB_data_clean_Small_pop$rel_m_feSuc)), TRUE)
a.random = sample (na.omit(comb_data), length(c(DB_data_clean_Large_pop$rel_m_feSuc)), TRUE)
b.random
# Null (permuated) difference
= var(na.omit(b.random)) - var(na.omit(a.random))
diff.random[i]
}
# P-value is the fraction of how many times the permuted difference is
# equal or more extreme than the observed difference
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Treat_diff_Male_pop_feSuc_p
#pFec ####
#Area ####
=c(Large_area_M_pFec_bootvar$t)-c(Small_area_M_pFec_bootvar$t)
Treat_diff_Male_area_mFec
=mean(Treat_diff_Male_area_mFec,na.rm=TRUE)
t_Treat_diff_Male_area_mFec=quantile(Treat_diff_Male_area_mFec,.025,na.rm=TRUE)
t_Treat_diff_Male_area_mFec_lower=quantile(Treat_diff_Male_area_mFec,.975,na.rm=TRUE)
t_Treat_diff_Male_area_mFec_upper
#Permutation test to calculate p value
=c(DB_data_clean_Large_area$rel_m_pFec,DB_data_clean_Small_area$rel_m_pFec)
comb_data
= var(na.omit((DB_data_clean_Large_area$rel_m_pFec))) - var(na.omit((DB_data_clean_Small_area$rel_m_pFec)))
diff.observed
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined dataset
= sample (na.omit(comb_data), length(c(DB_data_clean_Large_area$rel_m_pFec)), TRUE)
a.random = sample (na.omit(comb_data), length(c(DB_data_clean_Small_area$rel_m_pFec)), TRUE)
b.random
# Null (permuated) difference
= var(na.omit(b.random)) - var(na.omit(a.random))
diff.random[i]
}
# P-value is the fraction of how many times the permuted difference is
# equal or more extreme than the observed difference
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Treat_diff_Male_area_mFec_p
#Population size ####
=c(Small_pop_M_pFec_bootvar$t)-c(Large_pop_M_pFec_bootvar$t)
Treat_diff_Male_pop_mFec
=mean(Treat_diff_Male_pop_mFec,na.rm=TRUE)
t_Treat_diff_Male_pop_mFec=quantile(Treat_diff_Male_pop_mFec,.025,na.rm=TRUE)
t_Treat_diff_Male_pop_mFec_lower=quantile(Treat_diff_Male_pop_mFec,.975,na.rm=TRUE)
t_Treat_diff_Male_pop_mFec_upper
#Permutation test to calculate p value
=c(DB_data_clean_Small_pop$rel_m_pFec,DB_data_clean_Large_pop$rel_m_pFec)
comb_data
= var(na.omit((DB_data_clean_Small_pop$rel_m_pFec))) - var(na.omit((DB_data_clean_Large_pop$rel_m_pFec)))
diff.observed
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined dataset
= sample (na.omit(comb_data), length(c(DB_data_clean_Small_pop$rel_m_pFec)), TRUE)
a.random = sample (na.omit(comb_data), length(c(DB_data_clean_Large_pop$rel_m_pFec)), TRUE)
b.random
# Null (permuated) difference
= var(na.omit(b.random)) - var(na.omit(a.random))
diff.random[i]
}
# P-value is the fraction of how many times the permuted difference is
# equal or more extreme than the observed difference
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Treat_diff_Male_pop_mFec_p
#fMS ####
#Area ####
=c(Large_area_F_fMS_bootvar$t)-c(Small_area_F_fMS_bootvar$t)
Treat_diff_Female_area_fMS
=mean(Treat_diff_Female_area_fMS,na.rm=TRUE)
t_Treat_diff_Female_area_fMS=quantile(Treat_diff_Female_area_fMS,.025,na.rm=TRUE)
t_Treat_diff_Female_area_fMS_lower=quantile(Treat_diff_Female_area_fMS,.975,na.rm=TRUE)
t_Treat_diff_Female_area_fMS_upper
#Permutation test to calculate p value
=c(DB_data_clean_Large_area$rel_f_cMS,DB_data_clean_Small_area$rel_f_cMS)
comb_data
= var(na.omit((DB_data_clean_Large_area$rel_f_cMS))) - var(na.omit((DB_data_clean_Small_area$rel_f_cMS)))
diff.observed
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined dataset
= sample (na.omit(comb_data), length(c(DB_data_clean_Large_area$rel_f_cMS)), TRUE)
a.random = sample (na.omit(comb_data), length(c(DB_data_clean_Small_area$rel_f_cMS)), TRUE)
b.random
# Null (permuated) difference
= var(na.omit(b.random)) - var(na.omit(a.random))
diff.random[i]
}
# P-value is the fraction of how many times the permuted difference is
# equal or more extreme than the observed difference
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Treat_diff_Female_area_fMS_p
#Population size ####
=c(Small_pop_F_fMS_bootvar$t)-c(Large_pop_F_fMS_bootvar$t)
Treat_diff_Female_pop_fMS
=mean(Treat_diff_Female_pop_fMS,na.rm=TRUE)
t_Treat_diff_Female_pop_fMS=quantile(Treat_diff_Female_pop_fMS,.025,na.rm=TRUE)
t_Treat_diff_Female_pop_fMS_lower=quantile(Treat_diff_Female_pop_fMS,.975,na.rm=TRUE)
t_Treat_diff_Female_pop_fMS_upper
#Permutation test to calculate p value
=c(DB_data_clean_Small_pop$rel_f_cMS,DB_data_clean_Large_pop$rel_f_cMS)
comb_data
= var(na.omit((DB_data_clean_Small_pop$rel_f_cMS))) - var(na.omit((DB_data_clean_Large_pop$rel_f_cMS)))
diff.observed
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined dataset
= sample (na.omit(comb_data), length(c(DB_data_clean_Small_pop$rel_f_cMS)), TRUE)
a.random = sample (na.omit(comb_data), length(c(DB_data_clean_Large_pop$rel_f_cMS)), TRUE)
b.random
# Null (permuated) difference
= var(na.omit(b.random)) - var(na.omit(a.random))
diff.random[i]
}
# P-value is the fraction of how many times the permuted difference is
# equal or more extreme than the observed difference
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Treat_diff_Female_pop_fMS_p
#fFec ####
#Area ####
=c(Large_area_F_fFec_bootvar$t)-c(Small_area_F_fFec_bootvar$t)
Treat_diff_Female_area_fFec
=mean(Treat_diff_Female_area_fFec,na.rm=TRUE)
t_Treat_diff_Female_area_fFec=quantile(Treat_diff_Female_area_fFec,.025,na.rm=TRUE)
t_Treat_diff_Female_area_fFec_lower=quantile(Treat_diff_Female_area_fFec,.975,na.rm=TRUE)
t_Treat_diff_Female_area_fFec_upper
#Permutation test to calculate p value
=c(DB_data_clean_Large_area$rel_f_fec_pMate,DB_data_clean_Small_area$rel_f_fec_pMate)
comb_data
= var(na.omit((DB_data_clean_Large_area$rel_f_fec_pMate))) - var(na.omit((DB_data_clean_Small_area$rel_f_fec_pMate)))
diff.observed
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined dataset
= sample (na.omit(comb_data), length(c(DB_data_clean_Large_area$rel_f_fec_pMate)), TRUE)
a.random = sample (na.omit(comb_data), length(c(DB_data_clean_Small_area$rel_f_fec_pMate)), TRUE)
b.random
# Null (permuated) difference
= var(na.omit(b.random)) - var(na.omit(a.random))
diff.random[i]
}
# P-value is the fraction of how many times the permuted difference is
# equal or more extreme than the observed difference
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Treat_diff_Female_area_fFec_p
#Population size ####
=c(Small_pop_F_fFec_bootvar$t)-c(Large_pop_F_fFec_bootvar$t)
Treat_diff_Female_pop_fFec
=mean(Treat_diff_Female_pop_fFec,na.rm=TRUE)
t_Treat_diff_Female_pop_fFec=quantile(Treat_diff_Female_pop_fFec,.025,na.rm=TRUE)
t_Treat_diff_Female_pop_fFec_lower=quantile(Treat_diff_Female_pop_fFec,.975,na.rm=TRUE)
t_Treat_diff_Female_pop_fFec_upper
#Permutation test to calculate p value
=c(DB_data_clean_Small_pop$rel_f_fec_pMate,DB_data_clean_Large_pop$rel_f_fec_pMate)
comb_data
= var(na.omit((DB_data_clean_Small_pop$rel_f_fec_pMate))) - var(na.omit((DB_data_clean_Large_pop$rel_f_fec_pMate)))
diff.observed
diff.observed
= 100000
number_of_permutations = NULL
diff.random for (i in 1 : number_of_permutations) {
# Sample from the combined dataset
= sample (na.omit(comb_data), length(c(DB_data_clean_Small_pop$rel_f_fec_pMate)), TRUE)
a.random = sample (na.omit(comb_data), length(c(DB_data_clean_Large_pop$rel_f_fec_pMate)), TRUE)
b.random
# Null (permuated) difference
= var(na.omit(b.random)) - var(na.omit(a.random))
diff.random[i]
}
# P-value is the fraction of how many times the permuted difference is
# equal or more extreme than the observed difference
= sum(abs(diff.random) >= as.numeric(abs(diff.observed)))/ number_of_permutations
t_Treat_diff_Female_pop_fFec_p
#Save data table ####
<- as.data.frame(cbind("Male", "Area", "mMS", t_Treat_diff_Male_area_mMS, t_Treat_diff_Male_area_mMS_lower, t_Treat_diff_Male_area_mMS_upper, t_Treat_diff_Male_area_mMS_p))
CompTreat_Table_Male_area_mMS names(CompTreat_Table_Male_area_mMS)=c('V1','V2','V3','V4','V5','V6','V7')
<- as.data.frame(cbind("Male", "Area", "InSuc", t_Treat_diff_Male_area_InSuc, t_Treat_diff_Male_area_InSuc_lower, t_Treat_diff_Male_area_InSuc_upper, t_Treat_diff_Male_area_InSuc_p))
CompTreat_Table_Male_area_InSuc names(CompTreat_Table_Male_area_InSuc)=c('V1','V2','V3','V4','V5','V6','V7')
<- as.data.frame(cbind("Male", "Area", "feSuc", t_Treat_diff_Male_area_feSuc, t_Treat_diff_Male_area_feSuc_lower, t_Treat_diff_Male_area_feSuc_upper, t_Treat_diff_Male_area_feSuc_p))
CompTreat_Table_Male_area_feSuc names(CompTreat_Table_Male_area_feSuc)=c('V1','V2','V3','V4','V5','V6','V7')
<- as.data.frame(cbind("Male", "Area", "mFec", t_Treat_diff_Male_area_mFec, t_Treat_diff_Male_area_mFec_lower, t_Treat_diff_Male_area_mFec_upper, t_Treat_diff_Male_area_mFec_p))
CompTreat_Table_Male_area_mFec names(CompTreat_Table_Male_area_mFec)=c('V1','V2','V3','V4','V5','V6','V7')
<- as.data.frame(cbind("Female", "Area", "fMS", t_Treat_diff_Female_area_fMS, t_Treat_diff_Female_area_fMS_lower, t_Treat_diff_Female_area_fMS_upper, t_Treat_diff_Female_area_fMS_p))
CompTreat_Table_Female_area_fMS names(CompTreat_Table_Female_area_fMS)=c('V1','V2','V3','V4','V5','V6','V7')
<- as.data.frame(cbind("Female", "Area", "fFec", t_Treat_diff_Female_area_fFec, t_Treat_diff_Female_area_fFec_lower, t_Treat_diff_Female_area_fFec_upper, t_Treat_diff_Female_area_fFec_p))
CompTreat_Table_Female_area_fFec names(CompTreat_Table_Female_area_fFec)=c('V1','V2','V3','V4','V5','V6','V7')
<- as.data.frame(cbind("Male", "pop", "mMS", t_Treat_diff_Male_pop_mMS, t_Treat_diff_Male_pop_mMS_lower, t_Treat_diff_Male_pop_mMS_upper, t_Treat_diff_Male_pop_mMS_p))
CompTreat_Table_Male_pop_mMS names(CompTreat_Table_Male_pop_mMS)=c('V1','V2','V3','V4','V5','V6','V7')
<- as.data.frame(cbind("Male", "pop", "InSuc", t_Treat_diff_Male_pop_InSuc, t_Treat_diff_Male_pop_InSuc_lower, t_Treat_diff_Male_pop_InSuc_upper, t_Treat_diff_Male_pop_InSuc_p))
CompTreat_Table_Male_pop_InSuc names(CompTreat_Table_Male_pop_InSuc)=c('V1','V2','V3','V4','V5','V6','V7')
<- as.data.frame(cbind("Male", "pop", "feSuc", t_Treat_diff_Male_pop_feSuc, t_Treat_diff_Male_pop_feSuc_lower, t_Treat_diff_Male_pop_feSuc_upper, t_Treat_diff_Male_pop_feSuc_p))
CompTreat_Table_Male_pop_feSuc names(CompTreat_Table_Male_pop_feSuc)=c('V1','V2','V3','V4','V5','V6','V7')
<- as.data.frame(cbind("Male", "pop", "mFec", t_Treat_diff_Male_pop_mFec, t_Treat_diff_Male_pop_mFec_lower, t_Treat_diff_Male_pop_mFec_upper, t_Treat_diff_Male_pop_mFec_p))
CompTreat_Table_Male_pop_mFec names(CompTreat_Table_Male_pop_mFec)=c('V1','V2','V3','V4','V5','V6','V7')
<- as.data.frame(cbind("Female", "pop", "fMS", t_Treat_diff_Female_pop_fMS, t_Treat_diff_Female_pop_fMS_lower, t_Treat_diff_Female_pop_fMS_upper, t_Treat_diff_Female_pop_fMS_p))
CompTreat_Table_Female_pop_fMS names(CompTreat_Table_Female_pop_fMS)=c('V1','V2','V3','V4','V5','V6','V7')
<- as.data.frame(cbind("Female", "pop", "fFec", t_Treat_diff_Female_pop_fFec, t_Treat_diff_Female_pop_fFec_lower, t_Treat_diff_Female_pop_fFec_upper, t_Treat_diff_Female_pop_fFec_p))
CompTreat_Table_Female_pop_fFec names(CompTreat_Table_Female_pop_fFec)=c('V1','V2','V3','V4','V5','V6','V7')
<- as.data.frame(as.matrix(rbind(CompTreat_Table_Male_pop_mMS,CompTreat_Table_Male_area_mMS,
Table_VarianceDecomposition_TreatComp
CompTreat_Table_Male_pop_InSuc,CompTreat_Table_Male_area_InSuc,
CompTreat_Table_Male_pop_feSuc,CompTreat_Table_Male_area_feSuc,
CompTreat_Table_Male_pop_mFec,CompTreat_Table_Male_area_mFec,
CompTreat_Table_Female_pop_fMS,CompTreat_Table_Female_area_fMS,
CompTreat_Table_Female_pop_fFec,CompTreat_Table_Female_area_fFec)))
colnames(Table_VarianceDecomposition_TreatComp)[1] <- "Sex"
colnames(Table_VarianceDecomposition_TreatComp)[2] <- "Treatment"
colnames(Table_VarianceDecomposition_TreatComp)[3] <- "Variance_component"
colnames(Table_VarianceDecomposition_TreatComp)[4] <- "Variance"
colnames(Table_VarianceDecomposition_TreatComp)[5] <- "l95.CI"
colnames(Table_VarianceDecomposition_TreatComp)[6] <- "u95.CI"
colnames(Table_VarianceDecomposition_TreatComp)[7] <- "p-value"
4]=as.numeric(Table_VarianceDecomposition_TreatComp[,4])
Table_VarianceDecomposition_TreatComp[,5]=as.numeric(Table_VarianceDecomposition_TreatComp[,5])
Table_VarianceDecomposition_TreatComp[,6]=as.numeric(Table_VarianceDecomposition_TreatComp[,6])
Table_VarianceDecomposition_TreatComp[,7]=as.numeric(Table_VarianceDecomposition_TreatComp[,7])
Table_VarianceDecomposition_TreatComp[,
=cbind(Table_VarianceDecomposition_TreatComp[,c(1,2,3)],round(Table_VarianceDecomposition_TreatComp[,c(4,5,6,7)],digit=3))
Table_VarianceDecomposition_TreatComp_roundrownames(Table_VarianceDecomposition_TreatComp_round) <- NULL
Figure: Variance decomposition for males
#Figure ####
$Treatment<- factor(PhenVarBoot_Table$Treatment, levels=c("Small_pop",'Large_pop','Large_area','Small_area'))
PhenVarBoot_Table$Variance_component <- factor(PhenVarBoot_Table$Variance_component, levels=c("MS",'InSuc','feSuc','pFec','cov_mMS_PS','cov_mMS_pFec','cov_PS_pFec','fMS','fFec','cov_fMS_fFec'))
PhenVarBoot_Table=PhenVarBoot_Table[PhenVarBoot_Table$Treatment!='Large_pop',]
PhenVarBoot_Table_area=PhenVarBoot_Table_area[PhenVarBoot_Table_area$Treatment!='Small_pop',]
PhenVarBoot_Table_area=PhenVarBoot_Table[PhenVarBoot_Table$Treatment!='Large_area',]
PhenVarBoot_Table_pop=PhenVarBoot_Table_pop[PhenVarBoot_Table_pop$Treatment!='Small_area',]
PhenVarBoot_Table_pop
<- ggplot(PhenVarBoot_Table_pop[1:8,], aes(x=Variance_component, y=Variance, fill=Treatment)) +
BarPlot_1scale_y_continuous(limits = c(0, 0.6), breaks = seq(0,0.6,0.15), expand = c(0 ,0)) +
geom_hline(yintercept=0, linetype="solid", color = "black", size=1) +
geom_bar(stat="identity", color="black", position=position_dodge(), alpha=0.8) +
geom_errorbar(aes(ymin=l95.CI, ymax=u95.CI), width=.3,size=1, position=position_dodge(.9)) +
ylab('Variance') +xlab('Variance component') +ggtitle('Male')+labs(tag = "A")+
scale_x_discrete(breaks=waiver(),labels = c('MS','inSuc','feSuc','Fec'))+
theme(panel.border = element_blank(),
plot.title = element_text(hjust = 0.5),
panel.background = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
plot.tag.position=c(0.01,0.98),
legend.position = c(0.8, 0.9),
legend.title = element_blank(),
legend.text = element_text(colour="black", size=10),
axis.line.x = element_line(colour = "black", size = 1),
axis.line.y = element_line(colour = "black", size = 1),
axis.text.x = element_text(face="plain", color="black", size=16, angle=0),
axis.text.y = element_text(face="plain", color="black", size=16, angle=0),
axis.title.x = element_text(size=16,face="plain", margin = margin(r=0,10,0,0)),
axis.title.y = element_text(size=16,face="plain", margin = margin(r=10,0,0,0)),
axis.ticks = element_line(size = 1),
axis.ticks.length = unit(.3, "cm"))+
scale_fill_manual(values=c(colorESEB[1],colorESEB[2]),name = "Treatment", labels = c('Small group','Large group'))
<-ggplot(PhenVarBoot_Table_area[1:8,], aes(x=Variance_component, y=Variance, fill=Treatment)) +
BarPlot_2scale_y_continuous(limits = c(0, 0.6), breaks = seq(0,0.6,0.15), expand = c(0 ,0)) +
geom_hline(yintercept=0, linetype="solid", color = "black", size=1) +
geom_bar(stat="identity", color="black", position=position_dodge(), alpha=0.8) +
geom_errorbar(aes(ymin=l95.CI, ymax=u95.CI), width=.3,size=1, position=position_dodge(.9)) +
ylab('') +xlab('Variance component') +ggtitle('Male')+labs(tag = "B")+
scale_x_discrete(breaks=waiver(),labels = c('MS','inSuc','feSuc','Fec'))+
scale_fill_manual(values=c(colorESEB2[1],colorESEB2[2]),name = "Treatment", labels = c('Large area','Small area'))+
theme(panel.border = element_blank(),
plot.title = element_text(hjust = 0.5),
panel.background = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
legend.position = c(0.8, 0.9),
plot.tag.position=c(0.01,0.98),
legend.title = element_blank(),
legend.text = element_text(colour="black", size=10),
axis.line.x = element_line(colour = "black", size = 1),
axis.line.y = element_line(colour = "black", size = 1),
axis.text.x = element_text(face="plain", color="black", size=16, angle=0),
axis.text.y = element_text(face="plain", color="black", size=16, angle=0),
axis.title.x = element_text(size=16,face="plain", margin = margin(r=0,10,0,0)),
axis.title.y = element_text(size=16,face="plain", margin = margin(r=10,0,0,0)),
axis.ticks = element_line(size = 1),
axis.ticks.length = unit(.3, "cm"))
grid.arrange(grobs = list(BarPlot_1,BarPlot_2), nrow = 1,ncol=2, widths=c(2.3, 2.3))
Figure 12: Variance decomposition for males into mating success,
insemination success, fertilization success and fecundity of the
partners. Means and 95% confidence intervals.
Treatement comparisons via permutation test for the variance decomposition of male reproductive success.
c(1:8),] Table_VarianceDecomposition_TreatComp_round[
Sex Treatment Variance_component Variance l95.CI u95.CI p-value
1 Male pop mMS -0.084 -0.218 0.033 0.091
2 Male Area mMS 0.066 -0.059 0.208 0.171
3 Male pop InSuc 0.016 -0.122 0.152 0.709
4 Male Area InSuc -0.106 -0.242 0.036 0.033
5 Male pop feSuc -0.125 -0.206 -0.043 0.000
6 Male Area feSuc 0.048 -0.047 0.137 0.094
7 Male pop mFec 0.026 -0.053 0.109 0.307
8 Male Area mFec -0.011 -0.096 0.067 0.663
Figure: Variance decomposition for females
<- ggplot(PhenVarBoot_Table_pop[9:12,], aes(x=Variance_component, y=Variance, fill=Treatment)) +
BarPlot_3scale_y_continuous(limits = c(0, 2.7), breaks = seq(0,2.7,0.5), expand = c(0 ,0)) +
geom_hline(yintercept=0, linetype="solid", color = "black", size=1) +
geom_bar(stat="identity", color="black", position=position_dodge(), alpha=0.8) +
ylab('Variance') +xlab('Variance component') +ggtitle('Female')+labs(tag = "A")+
scale_x_discrete(breaks=waiver(),labels = c('MS','Fec'))+
theme(panel.border = element_blank(),
plot.title = element_text(hjust = 0.5),
panel.background = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
legend.position = c(0.8, 0.9),
plot.tag.position=c(0.01,0.98),
legend.title = element_blank(),
legend.text = element_text(colour="black", size=10),
axis.line.x = element_line(colour = "black", size = 1),
axis.line.y = element_line(colour = "black", size = 1),
axis.text.x = element_text(face="plain", color="black", size=16, angle=0),
axis.text.y = element_text(face="plain", color="black", size=16, angle=0),
axis.title.x = element_text(size=16,face="plain", margin = margin(r=0,10,0,0)),
axis.title.y = element_text(size=16,face="plain", margin = margin(r=10,0,0,0)),
axis.ticks = element_line(size = 1),
axis.ticks.length = unit(.3, "cm")) +
geom_errorbar(aes(ymin=l95.CI, ymax=u95.CI), width=.3,size=1, position=position_dodge(.9)) +
scale_fill_manual(values=c(colorESEB[1],colorESEB[2]),name = "Treatment", labels = c('Small group','Large group'))
<- ggplot(PhenVarBoot_Table_area[9:12,], aes(x=Variance_component, y=Variance, fill=Treatment)) +
BarPlot_4scale_y_continuous(limits = c(0, 2.7), breaks = seq(0,2.7,0.5), expand = c(0 ,0)) +
geom_hline(yintercept=0, linetype="solid", color = "black", size=1) +
geom_bar(stat="identity", color="black", position=position_dodge(), alpha=0.8) +
ylab('') +xlab('Variance component') +ggtitle('Female')+labs(tag = "B")+
scale_x_discrete(breaks=waiver(),labels = c('MS','Fec','cov\n(MS, Fec)'))+
theme(panel.border = element_blank(),
plot.title = element_text(hjust = 0.5),
panel.background = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
legend.position = c(0.8, 0.9),
plot.tag.position=c(0.01,0.98),
legend.title = element_blank(),
legend.text = element_text(colour="black", size=10),
axis.line.x = element_line(colour = "black", size = 1),
axis.line.y = element_line(colour = "black", size = 1),
axis.text.x = element_text(face="plain", color="black", size=16, angle=0),
axis.text.y = element_text(face="plain", color="black", size=16, angle=0),
axis.title.x = element_text(size=16,face="plain", margin = margin(r=0,10,0,0)),
axis.title.y = element_text(size=16,face="plain", margin = margin(r=10,0,0,0)),
axis.ticks = element_line(size = 1),
axis.ticks.length = unit(.3, "cm")) +
geom_errorbar(aes(ymin=l95.CI, ymax=u95.CI), width=.3,size=1, position=position_dodge(.9)) +
scale_fill_manual(values=c(colorESEB2[1],colorESEB2[2]),name = "Treatment", labels = c('Large area','Small area'))
grid.arrange(grobs = list(BarPlot_3,BarPlot_4), nrow = 1,ncol=2, widths=c(2.3, 2.3))
Figure 13: Variance decomposition for females into mating success,
fecundity and their covariance. Means and 95% confidence
intervals.
Treatement comparisons via permutation test for the
variance decomposition of female reproductive success.
c(9:10),] Table_VarianceDecomposition_TreatComp_round[
Sex Treatment Variance_component Variance l95.CI u95.CI p-value
9 Female pop fMS -0.098 -0.236 0.023 0.011
10 Female Area fMS 0.036 -0.076 0.151 0.372
#Compute covariace matrices ####
# Large Area ####
#Covariance mMS x inSuc
=as.data.frame(cbind(DB_data_clean_Large_area_M_MS_n,DB_data_clean_Large_area_M_InSuc_n))
x5<- function(d, i){
c <- d[i,]
d2 return(cov(d2[1],d2[2],use='pairwise.complete.obs'))
}<- boot(x5, c, R=10000)
Large_area_M_cov_mMS_inSuc_bootvar
#Covariance mMS x feSuc
=as.data.frame(cbind(DB_data_clean_Large_area_M_MS_n,DB_data_clean_Large_area_M_feSuc_n))
x6
<- boot(x6, c, R=10000)
Large_area_M_cov_mMS_feSuc_bootvar
#Covariance mMS x pFec
=as.data.frame(cbind(DB_data_clean_Large_area_M_MS_n,DB_data_clean_Large_area_M_pFec_n))
x7
<- boot(x7, c, R=10000)
Large_area_M_cov_mMS_pFec_bootvar
#Covariance inSuc x feSuc
=as.data.frame(cbind(DB_data_clean_Large_area_M_InSuc_n,DB_data_clean_Large_area_M_feSuc_n))
x8
<- boot(x8, c, R=10000)
Large_area_M_cov_inSuc_feSuc_bootvar
#Covariance inSuc x pFec
=as.data.frame(cbind(DB_data_clean_Large_area_M_InSuc_n,DB_data_clean_Large_area_M_pFec_n))
x9
<- boot(x9, c, R=10000)
Large_area_M_cov_inSuc_pFec_bootvar
#Covariance feSuc x pFec
=as.data.frame(cbind(DB_data_clean_Large_area_M_feSuc_n,DB_data_clean_Large_area_M_pFec_n))
x10
<- boot(x10, c, R=10000)
Large_area_M_cov_feSuc_pFec_bootvar
#Covariance fMS x fFec
=as.data.frame(cbind(DB_data_clean_Large_area_F_fMS_n,DB_data_clean_Large_area_F_fFec_n))
x13
<- boot(x13, c, R=10000)
Large_area_F_cov_fMS_fFec_bootvar
rm("c")
#Write Table ####
<- as.data.frame(cbind("Male", "cov_mMS_inSuc", "Large_area", mean(Large_area_M_cov_mMS_inSuc_bootvar$t), quantile(Large_area_M_cov_mMS_inSuc_bootvar$t,.025, names = FALSE), quantile(Large_area_M_cov_mMS_inSuc_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Large_area_cov_mMS_inSuc <- as.data.frame(cbind("Male", "cov_mMS_feSuc", "Large_area", mean(Large_area_M_cov_mMS_feSuc_bootvar$t), quantile(Large_area_M_cov_mMS_feSuc_bootvar$t,.025, names = FALSE), quantile(Large_area_M_cov_mMS_feSuc_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Large_area_cov_mMS_feSuc <- as.data.frame(cbind("Male", "cov_mMS_pFec", "Large_area", mean(Large_area_M_cov_mMS_pFec_bootvar$t), quantile(Large_area_M_cov_mMS_pFec_bootvar$t,.025, names = FALSE), quantile(Large_area_M_cov_mMS_pFec_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Large_area_cov_mMS_pFec
<- as.data.frame(cbind("Male", "cov_inSuc_feSuc", "Large_area", mean(Large_area_M_cov_inSuc_feSuc_bootvar$t), quantile(Large_area_M_cov_inSuc_feSuc_bootvar$t,.025, names = FALSE), quantile(Large_area_M_cov_inSuc_feSuc_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Large_area_cov_inSuc_feSuc <- as.data.frame(cbind("Male", "cov_inSuc_pFec", "Large_area", mean(Large_area_M_cov_inSuc_pFec_bootvar$t), quantile(Large_area_M_cov_inSuc_pFec_bootvar$t,.025, names = FALSE), quantile(Large_area_M_cov_inSuc_pFec_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Large_area_cov_inSuc_pFec
<- as.data.frame(cbind("Male", "cov_feSuc_pFec", "Large_area", mean(Large_area_M_cov_feSuc_pFec_bootvar$t), quantile(Large_area_M_cov_feSuc_pFec_bootvar$t,.025, names = FALSE), quantile(Large_area_M_cov_feSuc_pFec_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Large_area_cov_feSuc_pFec
<- as.data.frame(cbind("Female", "cov_fMS_fFec", "Large_area", mean(Large_area_F_cov_fMS_fFec_bootvar$t), quantile(Large_area_F_cov_fMS_fFec_bootvar$t,.025, names = FALSE), quantile(Large_area_F_cov_fMS_fFec_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Female_Large_area_cov_fMS_fFec
<- as.data.frame(as.matrix(rbind(PhenVarBoot_Table_Male_Large_area_cov_mMS_inSuc,PhenVarBoot_Table_Male_Large_area_cov_mMS_feSuc,
PhenVarBoot_Cov_Table_Large_area
PhenVarBoot_Table_Male_Large_area_cov_mMS_pFec,PhenVarBoot_Table_Male_Large_area_cov_inSuc_feSuc,
PhenVarBoot_Table_Male_Large_area_cov_inSuc_pFec,PhenVarBoot_Table_Male_Large_area_cov_feSuc_pFec,digits=3)
PhenVarBoot_Table_Female_Large_area_cov_fMS_fFec)),
is.table(PhenVarBoot_Cov_Table_Large_area)
colnames(PhenVarBoot_Cov_Table_Large_area)[1] <- "Sex"
colnames(PhenVarBoot_Cov_Table_Large_area)[2] <- "Trait"
colnames(PhenVarBoot_Cov_Table_Large_area)[3] <- "Density"
colnames(PhenVarBoot_Cov_Table_Large_area)[4] <- "Variance"
colnames(PhenVarBoot_Cov_Table_Large_area)[5] <- "l95.CI"
colnames(PhenVarBoot_Cov_Table_Large_area)[6] <- "u95.CI"
4]=as.numeric(PhenVarBoot_Cov_Table_Large_area[,4])
PhenVarBoot_Cov_Table_Large_area[,5]=as.numeric(PhenVarBoot_Cov_Table_Large_area[,5])
PhenVarBoot_Cov_Table_Large_area[,6]=as.numeric(PhenVarBoot_Cov_Table_Large_area[,6])
PhenVarBoot_Cov_Table_Large_area[,
=cbind(PhenVarBoot_Cov_Table_Large_area[,1:3],round(PhenVarBoot_Cov_Table_Large_area[,4:6],digit=3))
PhenVarBoot_Cov_Table_Large_area_round
# Small Area ####
#Covariance mMS x inSuc
=as.data.frame(cbind(DB_data_clean_Small_area_M_MS_n,DB_data_clean_Small_area_M_InSuc_n))
x5<- function(d, i){
c <- d[i,]
d2 return(cov(d2[1],d2[2],use='pairwise.complete.obs'))
}<- boot(x5, c, R=10000)
Small_area_M_cov_mMS_inSuc_bootvar
#Covariance mMS x feSuc
=as.data.frame(cbind(DB_data_clean_Small_area_M_MS_n,DB_data_clean_Small_area_M_feSuc_n))
x6
<- boot(x6, c, R=10000)
Small_area_M_cov_mMS_feSuc_bootvar
#Covariance mMS x pFec
=as.data.frame(cbind(DB_data_clean_Small_area_M_MS_n,DB_data_clean_Small_area_M_pFec_n))
x7
<- boot(x7, c, R=10000)
Small_area_M_cov_mMS_pFec_bootvar
#Covariance inSuc x feSuc
=as.data.frame(cbind(DB_data_clean_Small_area_M_InSuc_n,DB_data_clean_Small_area_M_feSuc_n))
x8
<- boot(x8, c, R=10000)
Small_area_M_cov_inSuc_feSuc_bootvar
#Covariance inSuc x pFec
=as.data.frame(cbind(DB_data_clean_Small_area_M_InSuc_n,DB_data_clean_Small_area_M_pFec_n))
x9
<- boot(x9, c, R=10000)
Small_area_M_cov_inSuc_pFec_bootvar
#Covariance feSuc x pFec
=as.data.frame(cbind(DB_data_clean_Small_area_M_feSuc_n,DB_data_clean_Small_area_M_pFec_n))
x10
<- boot(x10, c, R=10000)
Small_area_M_cov_feSuc_pFec_bootvar
#Covariance fMS x fFec
=as.data.frame(cbind(DB_data_clean_Small_area_F_fMS_n,DB_data_clean_Small_area_F_fFec_n))
x13
<- boot(x13, c, R=10000)
Small_area_F_cov_fMS_fFec_bootvar
rm("c")
#Write Table ####
<- as.data.frame(cbind("Male", "cov_mMS_inSuc", "Small_area", mean(Small_area_M_cov_mMS_inSuc_bootvar$t), quantile(Small_area_M_cov_mMS_inSuc_bootvar$t,.025, names = FALSE), quantile(Small_area_M_cov_mMS_inSuc_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Small_area_cov_mMS_inSuc <- as.data.frame(cbind("Male", "cov_mMS_feSuc", "Small_area", mean(Small_area_M_cov_mMS_feSuc_bootvar$t), quantile(Small_area_M_cov_mMS_feSuc_bootvar$t,.025, names = FALSE), quantile(Small_area_M_cov_mMS_feSuc_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Small_area_cov_mMS_feSuc <- as.data.frame(cbind("Male", "cov_mMS_pFec", "Small_area", mean(Small_area_M_cov_mMS_pFec_bootvar$t), quantile(Small_area_M_cov_mMS_pFec_bootvar$t,.025, names = FALSE), quantile(Small_area_M_cov_mMS_pFec_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Small_area_cov_mMS_pFec
<- as.data.frame(cbind("Male", "cov_inSuc_feSuc", "Small_area", mean(Small_area_M_cov_inSuc_feSuc_bootvar$t), quantile(Small_area_M_cov_inSuc_feSuc_bootvar$t,.025, names = FALSE), quantile(Small_area_M_cov_inSuc_feSuc_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Small_area_cov_inSuc_feSuc <- as.data.frame(cbind("Male", "cov_inSuc_pFec", "Small_area", mean(Small_area_M_cov_inSuc_pFec_bootvar$t), quantile(Small_area_M_cov_inSuc_pFec_bootvar$t,.025, names = FALSE), quantile(Small_area_M_cov_inSuc_pFec_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Small_area_cov_inSuc_pFec
<- as.data.frame(cbind("Male", "cov_feSuc_pFec", "Small_area", mean(Small_area_M_cov_feSuc_pFec_bootvar$t), quantile(Small_area_M_cov_feSuc_pFec_bootvar$t,.025, names = FALSE), quantile(Small_area_M_cov_feSuc_pFec_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Small_area_cov_feSuc_pFec
<- as.data.frame(cbind("Female", "cov_fMS_fFec", "Small_area", mean(Small_area_F_cov_fMS_fFec_bootvar$t), quantile(Small_area_F_cov_fMS_fFec_bootvar$t,.025, names = FALSE), quantile(Small_area_F_cov_fMS_fFec_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Female_Small_area_cov_fMS_fFec
<- as.data.frame(as.matrix(rbind(PhenVarBoot_Table_Male_Small_area_cov_mMS_inSuc,PhenVarBoot_Table_Male_Small_area_cov_mMS_feSuc,
PhenVarBoot_Cov_Table_Small_area
PhenVarBoot_Table_Male_Small_area_cov_mMS_pFec,PhenVarBoot_Table_Male_Small_area_cov_inSuc_feSuc,
PhenVarBoot_Table_Male_Small_area_cov_inSuc_pFec,PhenVarBoot_Table_Male_Small_area_cov_feSuc_pFec,digits=3)
PhenVarBoot_Table_Female_Small_area_cov_fMS_fFec)),
is.table(PhenVarBoot_Cov_Table_Small_area)
colnames(PhenVarBoot_Cov_Table_Small_area)[1] <- "Sex"
colnames(PhenVarBoot_Cov_Table_Small_area)[2] <- "Trait"
colnames(PhenVarBoot_Cov_Table_Small_area)[3] <- "Density"
colnames(PhenVarBoot_Cov_Table_Small_area)[4] <- "Variance"
colnames(PhenVarBoot_Cov_Table_Small_area)[5] <- "l95.CI"
colnames(PhenVarBoot_Cov_Table_Small_area)[6] <- "u95.CI"
4]=as.numeric(PhenVarBoot_Cov_Table_Small_area[,4])
PhenVarBoot_Cov_Table_Small_area[,5]=as.numeric(PhenVarBoot_Cov_Table_Small_area[,5])
PhenVarBoot_Cov_Table_Small_area[,6]=as.numeric(PhenVarBoot_Cov_Table_Small_area[,6])
PhenVarBoot_Cov_Table_Small_area[,
=cbind(PhenVarBoot_Cov_Table_Small_area[,1:3],round(PhenVarBoot_Cov_Table_Small_area[,4:6],digit=3))
PhenVarBoot_Cov_Table_Small_area_round
# Small group ####
#Covariance mMS x inSuc
=as.data.frame(cbind(DB_data_clean_Small_pop_M_MS_n,DB_data_clean_Small_pop_M_InSuc_n))
x5<- function(d, i){
c <- d[i,]
d2 return(cov(d2[1],d2[2],use='pairwise.complete.obs'))
}<- boot(x5, c, R=10000)
Small_pop_M_cov_mMS_inSuc_bootvar
#Covariance mMS x feSuc
=as.data.frame(cbind(DB_data_clean_Small_pop_M_MS_n,DB_data_clean_Small_pop_M_feSuc_n))
x6
<- boot(x6, c, R=10000)
Small_pop_M_cov_mMS_feSuc_bootvar
#Covariance mMS x pFec
=as.data.frame(cbind(DB_data_clean_Small_pop_M_MS_n,DB_data_clean_Small_pop_M_pFec_n))
x7
<- boot(x7, c, R=10000)
Small_pop_M_cov_mMS_pFec_bootvar
#Covariance inSuc x feSuc
=as.data.frame(cbind(DB_data_clean_Small_pop_M_InSuc_n,DB_data_clean_Small_pop_M_feSuc_n))
x8
<- boot(x8, c, R=10000)
Small_pop_M_cov_inSuc_feSuc_bootvar
#Covariance inSuc x pFec
=as.data.frame(cbind(DB_data_clean_Small_pop_M_InSuc_n,DB_data_clean_Small_pop_M_pFec_n))
x9
<- boot(x9, c, R=10000)
Small_pop_M_cov_inSuc_pFec_bootvar
#Covariance feSuc x pFec
=as.data.frame(cbind(DB_data_clean_Small_pop_M_feSuc_n,DB_data_clean_Small_pop_M_pFec_n))
x10
<- boot(x10, c, R=10000)
Small_pop_M_cov_feSuc_pFec_bootvar
#Covariance fMS x fFec
=as.data.frame(cbind(DB_data_clean_Small_pop_F_fMS_n,DB_data_clean_Small_pop_F_fFec_n))
x13
<- boot(x13, c, R=10000)
Small_pop_F_cov_fMS_fFec_bootvar
rm("c")
#Write Table ####
<- as.data.frame(cbind("Male", "cov_mMS_inSuc", "Small_pop", mean(Small_pop_M_cov_mMS_inSuc_bootvar$t), quantile(Small_pop_M_cov_mMS_inSuc_bootvar$t,.025, names = FALSE), quantile(Small_pop_M_cov_mMS_inSuc_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Small_pop_cov_mMS_inSuc <- as.data.frame(cbind("Male", "cov_mMS_feSuc", "Small_pop", mean(Small_pop_M_cov_mMS_feSuc_bootvar$t), quantile(Small_pop_M_cov_mMS_feSuc_bootvar$t,.025, names = FALSE), quantile(Small_pop_M_cov_mMS_feSuc_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Small_pop_cov_mMS_feSuc <- as.data.frame(cbind("Male", "cov_mMS_pFec", "Small_pop", mean(Small_pop_M_cov_mMS_pFec_bootvar$t), quantile(Small_pop_M_cov_mMS_pFec_bootvar$t,.025, names = FALSE), quantile(Small_pop_M_cov_mMS_pFec_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Small_pop_cov_mMS_pFec
<- as.data.frame(cbind("Male", "cov_inSuc_feSuc", "Small_pop", mean(Small_pop_M_cov_inSuc_feSuc_bootvar$t), quantile(Small_pop_M_cov_inSuc_feSuc_bootvar$t,.025, names = FALSE), quantile(Small_pop_M_cov_inSuc_feSuc_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Small_pop_cov_inSuc_feSuc <- as.data.frame(cbind("Male", "cov_inSuc_pFec", "Small_pop", mean(Small_pop_M_cov_inSuc_pFec_bootvar$t), quantile(Small_pop_M_cov_inSuc_pFec_bootvar$t,.025, names = FALSE), quantile(Small_pop_M_cov_inSuc_pFec_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Small_pop_cov_inSuc_pFec
<- as.data.frame(cbind("Male", "cov_feSuc_pFec", "Small_pop", mean(Small_pop_M_cov_feSuc_pFec_bootvar$t), quantile(Small_pop_M_cov_feSuc_pFec_bootvar$t,.025, names = FALSE), quantile(Small_pop_M_cov_feSuc_pFec_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Small_pop_cov_feSuc_pFec
<- as.data.frame(cbind("Female", "cov_fMS_fFec", "Small_pop", mean(Small_pop_F_cov_fMS_fFec_bootvar$t), quantile(Small_pop_F_cov_fMS_fFec_bootvar$t,.025, names = FALSE), quantile(Small_pop_F_cov_fMS_fFec_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Female_Small_pop_cov_fMS_fFec
<- as.data.frame(as.matrix(rbind(PhenVarBoot_Table_Male_Small_pop_cov_mMS_inSuc,PhenVarBoot_Table_Male_Small_pop_cov_mMS_feSuc,
PhenVarBoot_Cov_Table_Small_pop
PhenVarBoot_Table_Male_Small_pop_cov_mMS_pFec,PhenVarBoot_Table_Male_Small_pop_cov_inSuc_feSuc,
PhenVarBoot_Table_Male_Small_pop_cov_inSuc_pFec,PhenVarBoot_Table_Male_Small_pop_cov_feSuc_pFec,digits=3)
PhenVarBoot_Table_Female_Small_pop_cov_fMS_fFec)),
is.table(PhenVarBoot_Cov_Table_Small_pop)
colnames(PhenVarBoot_Cov_Table_Small_pop)[1] <- "Sex"
colnames(PhenVarBoot_Cov_Table_Small_pop)[2] <- "Trait"
colnames(PhenVarBoot_Cov_Table_Small_pop)[3] <- "Density"
colnames(PhenVarBoot_Cov_Table_Small_pop)[4] <- "Variance"
colnames(PhenVarBoot_Cov_Table_Small_pop)[5] <- "l95.CI"
colnames(PhenVarBoot_Cov_Table_Small_pop)[6] <- "u95.CI"
4]=as.numeric(PhenVarBoot_Cov_Table_Small_pop[,4])
PhenVarBoot_Cov_Table_Small_pop[,5]=as.numeric(PhenVarBoot_Cov_Table_Small_pop[,5])
PhenVarBoot_Cov_Table_Small_pop[,6]=as.numeric(PhenVarBoot_Cov_Table_Small_pop[,6])
PhenVarBoot_Cov_Table_Small_pop[,
=cbind(PhenVarBoot_Cov_Table_Small_pop[,1:3],round(PhenVarBoot_Cov_Table_Small_pop[,4:6],digit=3))
PhenVarBoot_Cov_Table_Small_pop_round
# Large group ####
#Covariance mMS x inSuc
=as.data.frame(cbind(DB_data_clean_Large_pop_M_MS_n,DB_data_clean_Large_pop_M_InSuc_n))
x5<- function(d, i){
c <- d[i,]
d2 return(cov(d2[1],d2[2],use='pairwise.complete.obs'))
}<- boot(x5, c, R=10000)
Large_pop_M_cov_mMS_inSuc_bootvar
#Covariance mMS x feSuc
=as.data.frame(cbind(DB_data_clean_Large_pop_M_MS_n,DB_data_clean_Large_pop_M_feSuc_n))
x6
<- boot(x6, c, R=10000)
Large_pop_M_cov_mMS_feSuc_bootvar
#Covariance mMS x pFec
=as.data.frame(cbind(DB_data_clean_Large_pop_M_MS_n,DB_data_clean_Large_pop_M_pFec_n))
x7
<- boot(x7, c, R=10000)
Large_pop_M_cov_mMS_pFec_bootvar
#Covariance inSuc x feSuc
=as.data.frame(cbind(DB_data_clean_Large_pop_M_InSuc_n,DB_data_clean_Large_pop_M_feSuc_n))
x8
<- boot(x8, c, R=10000)
Large_pop_M_cov_inSuc_feSuc_bootvar
#Covariance inSuc x pFec
=as.data.frame(cbind(DB_data_clean_Large_pop_M_InSuc_n,DB_data_clean_Large_pop_M_pFec_n))
x9
<- boot(x9, c, R=10000)
Large_pop_M_cov_inSuc_pFec_bootvar
#Covariance feSuc x pFec
=as.data.frame(cbind(DB_data_clean_Large_pop_M_feSuc_n,DB_data_clean_Large_pop_M_pFec_n))
x10
<- boot(x10, c, R=10000)
Large_pop_M_cov_feSuc_pFec_bootvar
#Covariance fMS x fFec
=as.data.frame(cbind(DB_data_clean_Large_pop_F_fMS_n,DB_data_clean_Large_pop_F_fFec_n))
x13
<- boot(x13, c, R=10000)
Large_pop_F_cov_fMS_fFec_bootvar
rm("c")
#Write Table ####
<- as.data.frame(cbind("Male", "cov_mMS_inSuc", "Large_pop", mean(Large_pop_M_cov_mMS_inSuc_bootvar$t), quantile(Large_pop_M_cov_mMS_inSuc_bootvar$t,.025, names = FALSE), quantile(Large_pop_M_cov_mMS_inSuc_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Large_pop_cov_mMS_inSuc <- as.data.frame(cbind("Male", "cov_mMS_feSuc", "Large_pop", mean(Large_pop_M_cov_mMS_feSuc_bootvar$t), quantile(Large_pop_M_cov_mMS_feSuc_bootvar$t,.025, names = FALSE), quantile(Large_pop_M_cov_mMS_feSuc_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Large_pop_cov_mMS_feSuc <- as.data.frame(cbind("Male", "cov_mMS_pFec", "Large_pop", mean(Large_pop_M_cov_mMS_pFec_bootvar$t), quantile(Large_pop_M_cov_mMS_pFec_bootvar$t,.025, names = FALSE), quantile(Large_pop_M_cov_mMS_pFec_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Large_pop_cov_mMS_pFec
<- as.data.frame(cbind("Male", "cov_inSuc_feSuc", "Large_pop", mean(Large_pop_M_cov_inSuc_feSuc_bootvar$t), quantile(Large_pop_M_cov_inSuc_feSuc_bootvar$t,.025, names = FALSE), quantile(Large_pop_M_cov_inSuc_feSuc_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Large_pop_cov_inSuc_feSuc <- as.data.frame(cbind("Male", "cov_inSuc_pFec", "Large_pop", mean(Large_pop_M_cov_inSuc_pFec_bootvar$t), quantile(Large_pop_M_cov_inSuc_pFec_bootvar$t,.025, names = FALSE), quantile(Large_pop_M_cov_inSuc_pFec_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Large_pop_cov_inSuc_pFec
<- as.data.frame(cbind("Male", "cov_feSuc_pFec", "Large_pop", mean(Large_pop_M_cov_feSuc_pFec_bootvar$t), quantile(Large_pop_M_cov_feSuc_pFec_bootvar$t,.025, names = FALSE), quantile(Large_pop_M_cov_feSuc_pFec_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Male_Large_pop_cov_feSuc_pFec
<- as.data.frame(cbind("Female", "cov_fMS_fFec", "Large_pop", mean(Large_pop_F_cov_fMS_fFec_bootvar$t), quantile(Large_pop_F_cov_fMS_fFec_bootvar$t,.025, names = FALSE), quantile(Large_pop_F_cov_fMS_fFec_bootvar$t,.975, names = FALSE)))
PhenVarBoot_Table_Female_Large_pop_cov_fMS_fFec
<- as.data.frame(as.matrix(rbind(PhenVarBoot_Table_Male_Large_pop_cov_mMS_inSuc,PhenVarBoot_Table_Male_Large_pop_cov_mMS_feSuc,
PhenVarBoot_Cov_Table_Large_pop
PhenVarBoot_Table_Male_Large_pop_cov_mMS_pFec,PhenVarBoot_Table_Male_Large_pop_cov_inSuc_feSuc,
PhenVarBoot_Table_Male_Large_pop_cov_inSuc_pFec,PhenVarBoot_Table_Male_Large_pop_cov_feSuc_pFec,digits=3)
PhenVarBoot_Table_Female_Large_pop_cov_fMS_fFec)),
is.table(PhenVarBoot_Cov_Table_Large_pop)
colnames(PhenVarBoot_Cov_Table_Large_pop)[1] <- "Sex"
colnames(PhenVarBoot_Cov_Table_Large_pop)[2] <- "Trait"
colnames(PhenVarBoot_Cov_Table_Large_pop)[3] <- "Density"
colnames(PhenVarBoot_Cov_Table_Large_pop)[4] <- "Variance"
colnames(PhenVarBoot_Cov_Table_Large_pop)[5] <- "l95.CI"
colnames(PhenVarBoot_Cov_Table_Large_pop)[6] <- "u95.CI"
4]=as.numeric(PhenVarBoot_Cov_Table_Large_pop[,4])
PhenVarBoot_Cov_Table_Large_pop[,5]=as.numeric(PhenVarBoot_Cov_Table_Large_pop[,5])
PhenVarBoot_Cov_Table_Large_pop[,6]=as.numeric(PhenVarBoot_Cov_Table_Large_pop[,6])
PhenVarBoot_Cov_Table_Large_pop[,
=cbind(PhenVarBoot_Cov_Table_Large_pop[,1:3],round(PhenVarBoot_Cov_Table_Large_pop[,4:6],digit=3))
PhenVarBoot_Cov_Table_Large_pop_round
#Figure ####
<- as.data.frame(as.matrix(rbind( PhenVarBoot_Table_Male_Small_pop_cov_mMS_inSuc,PhenVarBoot_Table_Male_Large_pop_cov_mMS_inSuc,
PhenVarBoot_Table_plot_cov
PhenVarBoot_Table_Male_Large_area_cov_mMS_inSuc,PhenVarBoot_Table_Male_Small_area_cov_mMS_inSuc,
PhenVarBoot_Table_Male_Small_pop_cov_mMS_feSuc,PhenVarBoot_Table_Male_Large_pop_cov_mMS_feSuc,
PhenVarBoot_Table_Male_Large_area_cov_mMS_feSuc,PhenVarBoot_Table_Male_Small_area_cov_mMS_feSuc,
PhenVarBoot_Table_Male_Small_pop_cov_mMS_pFec,PhenVarBoot_Table_Male_Large_pop_cov_mMS_pFec,
PhenVarBoot_Table_Male_Large_area_cov_mMS_pFec,PhenVarBoot_Table_Male_Small_area_cov_mMS_pFec,
PhenVarBoot_Table_Male_Small_pop_cov_inSuc_feSuc,PhenVarBoot_Table_Male_Large_pop_cov_inSuc_feSuc,
PhenVarBoot_Table_Male_Large_area_cov_inSuc_feSuc,PhenVarBoot_Table_Male_Small_area_cov_inSuc_feSuc,
PhenVarBoot_Table_Male_Small_pop_cov_inSuc_pFec,PhenVarBoot_Table_Male_Large_pop_cov_inSuc_pFec,
PhenVarBoot_Table_Male_Large_area_cov_inSuc_pFec,PhenVarBoot_Table_Male_Small_area_cov_inSuc_pFec,
PhenVarBoot_Table_Male_Small_pop_cov_feSuc_pFec,PhenVarBoot_Table_Male_Large_pop_cov_feSuc_pFec,
PhenVarBoot_Table_Male_Large_area_cov_feSuc_pFec,PhenVarBoot_Table_Male_Small_area_cov_feSuc_pFec,
PhenVarBoot_Table_Female_Small_pop_cov_fMS_fFec,PhenVarBoot_Table_Female_Large_pop_cov_fMS_fFec,
PhenVarBoot_Table_Female_Large_area_cov_fMS_fFec,PhenVarBoot_Table_Female_Small_area_cov_fMS_fFec
)))
is.table(PhenVarBoot_Table_plot_cov)
colnames(PhenVarBoot_Table_plot_cov)[1] <- "Sex"
colnames(PhenVarBoot_Table_plot_cov)[2] <- "Variance_component"
colnames(PhenVarBoot_Table_plot_cov)[3] <- "Treatment"
colnames(PhenVarBoot_Table_plot_cov)[4] <- "Variance"
colnames(PhenVarBoot_Table_plot_cov)[5] <- "l95.CI"
colnames(PhenVarBoot_Table_plot_cov)[6] <- "u95.CI"
4]=as.numeric(PhenVarBoot_Table_plot_cov[,4])
PhenVarBoot_Table_plot_cov[,5]=as.numeric(PhenVarBoot_Table_plot_cov[,5])
PhenVarBoot_Table_plot_cov[,6]=as.numeric(PhenVarBoot_Table_plot_cov[,6])
PhenVarBoot_Table_plot_cov[,
=cbind(PhenVarBoot_Table_plot_cov[,1:3],round(PhenVarBoot_Table_plot_cov[,4:6],digit=3))
PhenVarBoot_Table_plot_cov_round
$Treatment<- factor(PhenVarBoot_Table_plot_cov$Treatment, levels=c("Small_pop",'Large_pop','Large_area','Small_area'))
PhenVarBoot_Table_plot_cov$Variance_component <- factor(PhenVarBoot_Table_plot_cov$Variance_component, levels=c("cov_mMS_inSuc",'cov_mMS_feSuc','cov_mMS_pFec','cov_inSuc_feSuc','cov_inSuc_pFec','cov_feSuc_pFec','cov_fMS_fFec'))
PhenVarBoot_Table_plot_cov=PhenVarBoot_Table_plot_cov[PhenVarBoot_Table_plot_cov$Treatment!='Large_pop',]
PhenVarBoot_Table_plot_cov_area=PhenVarBoot_Table_plot_cov_area[PhenVarBoot_Table_plot_cov_area$Treatment!='Small_pop',]
PhenVarBoot_Table_plot_cov_area=PhenVarBoot_Table_plot_cov[PhenVarBoot_Table_plot_cov$Treatment!='Large_area',]
PhenVarBoot_Table_plot_cov_pop=PhenVarBoot_Table_plot_cov_pop[PhenVarBoot_Table_plot_cov_pop$Treatment!='Small_area',] PhenVarBoot_Table_plot_cov_pop
Figure: Covariances of variance decomposition for females
<- ggplot(PhenVarBoot_Table_plot_cov_pop[1:12,], aes(x=Variance_component, y=Variance, fill=Treatment)) +
BarPlot_5scale_y_continuous(limits = c(-0.25, 0.2), breaks = seq(-0.25,0.2,0.1), expand = c(0 ,0)) +
geom_hline(yintercept=0, linetype="solid", color = "black", size=1) +
geom_bar(stat="identity", color="black", position=position_dodge(), alpha=0.8) +
geom_errorbar(aes(ymin=l95.CI, ymax=u95.CI), width=.3,size=1, position=position_dodge(.9)) +
ylab('Variance') +xlab('Variance component') +ggtitle('Male')+labs(tag = "A")+
scale_x_discrete(breaks=waiver(),labels = c('cov\n(MS, inSuc)','cov\n(MS, feSuc)','cov\n(MS, Fec)','cov\n(inSuc, feSuc)','cov\n(inSuc,Fec)','cov\n(feSuc, Fec)'))+
theme(panel.border = element_blank(),
plot.title = element_text(hjust = 0.5),
panel.background = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
plot.tag.position=c(0.01,0.98),
legend.position = c(0.8, 0.9),
legend.title = element_blank(),
legend.text = element_text(colour="black", size=10),
axis.line.x = element_line(colour = "black", size = 1),
axis.line.y = element_line(colour = "black", size = 1),
axis.text.x = element_text(face="plain", color="black", size=16, angle=0),
axis.text.y = element_text(face="plain", color="black", size=16, angle=0),
axis.title.x = element_text(size=16,face="plain", margin = margin(r=0,10,0,0)),
axis.title.y = element_text(size=16,face="plain", margin = margin(r=10,0,0,0)),
axis.ticks = element_line(size = 1),
axis.ticks.length = unit(.3, "cm"))+
scale_fill_manual(values=c(colorESEB[1],colorESEB[2]),name = "Treatment", labels = c('Small group','Large group'))
<-ggplot(PhenVarBoot_Table_plot_cov_area[1:12,], aes(x=Variance_component, y=Variance, fill=Treatment)) +
BarPlot_6scale_y_continuous(limits = c(-0.25, 0.2), breaks = seq(-0.25,0.2,0.1), expand = c(0 ,0)) +
geom_hline(yintercept=0, linetype="solid", color = "black", size=1) +
geom_bar(stat="identity", color="black", position=position_dodge(), alpha=0.8) +
geom_errorbar(aes(ymin=l95.CI, ymax=u95.CI), width=.3,size=1, position=position_dodge(.9)) +
ylab('') +xlab('Variance component') +ggtitle('Male')+labs(tag = "B")+
scale_x_discrete(breaks=waiver(),labels = c('cov\n(MS, inSuc)','cov\n(MS, feSuc)','cov\n(MS, Fec)','cov\n(inSuc, feSuc)','cov\n(inSuc,Fec)','cov\n(feSuc, Fec)'))+
scale_fill_manual(values=c(colorESEB2[1],colorESEB2[2]),name = "Treatment", labels = c('Large area','Small area'))+
theme(panel.border = element_blank(),
plot.title = element_text(hjust = 0.5),
panel.background = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
legend.position = c(0.8, 0.9),
plot.tag.position=c(0.01,0.98),
legend.title = element_blank(),
legend.text = element_text(colour="black", size=10),
axis.line.x = element_line(colour = "black", size = 1),
axis.line.y = element_line(colour = "black", size = 1),
axis.text.x = element_text(face="plain", color="black", size=16, angle=0),
axis.text.y = element_text(face="plain", color="black", size=16, angle=0),
axis.title.x = element_text(size=16,face="plain", margin = margin(r=0,10,0,0)),
axis.title.y = element_text(size=16,face="plain", margin = margin(r=10,0,0,0)),
axis.ticks = element_line(size = 1),
axis.ticks.length = unit(.3, "cm"))
grid.arrange(grobs = list(BarPlot_5,BarPlot_6), nrow = 1,ncol=2, widths=c(2.3, 2.3))
Figure 14: Covariance components for variance decomposition in males
into mating success, insemination success, fertilization success and
fecundity of the partners. Means and 95% confidence
intervals.
sessionInfo()
R version 4.0.2 (2020-06-22)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19042)
Matrix products: default
locale:
[1] LC_COLLATE=German_Germany.1252 LC_CTYPE=German_Germany.1252
[3] LC_MONETARY=German_Germany.1252 LC_NUMERIC=C
[5] LC_TIME=German_Germany.1252
attached base packages:
[1] grid stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] ICC_2.4.0 tidyr_1.2.0 data.table_1.14.2 boot_1.3-25
[5] RColorBrewer_1.1-3 car_3.1-0 carData_3.0-5 gridGraphics_0.5-1
[9] cowplot_1.1.1 EnvStats_2.7.0 dplyr_1.0.9 readr_2.1.2
[13] lmerTest_3.1-3 lme4_1.1-30 Matrix_1.2-18 gridExtra_2.3
[17] ggplot2_3.3.6 ggeffects_1.1.2 workflowr_1.7.0
loaded via a namespace (and not attached):
[1] httr_1.4.3 sass_0.4.1 bit64_4.0.5
[4] vroom_1.5.7 jsonlite_1.8.0 splines_4.0.2
[7] bslib_0.3.1 assertthat_0.2.1 getPass_0.2-2
[10] highr_0.9 yaml_2.3.5 numDeriv_2016.8-1.1
[13] pillar_1.7.0 lattice_0.20-41 glue_1.6.2
[16] digest_0.6.29 promises_1.2.0.1 minqa_1.2.4
[19] colorspace_2.0-3 htmltools_0.5.2 httpuv_1.6.5
[22] pkgconfig_2.0.3 purrr_0.3.4 scales_1.2.0
[25] processx_3.7.0 whisker_0.4 later_1.3.0
[28] tzdb_0.3.0 git2r_0.30.1 tibble_3.1.7
[31] mgcv_1.8-31 farver_2.1.1 generics_0.1.3
[34] ellipsis_0.3.2 withr_2.5.0 cli_3.3.0
[37] magrittr_2.0.3 crayon_1.5.1 evaluate_0.15
[40] ps_1.7.1 fs_1.5.2 fansi_1.0.3
[43] nlme_3.1-148 MASS_7.3-51.6 tools_4.0.2
[46] hms_1.1.1 lifecycle_1.0.1 stringr_1.4.0
[49] munsell_0.5.0 callr_3.7.1 compiler_4.0.2
[52] jquerylib_0.1.4 rlang_1.0.4 nloptr_2.0.3
[55] rstudioapi_0.13 labeling_0.4.2 rmarkdown_2.14
[58] gtable_0.3.0 abind_1.4-5 DBI_1.1.3
[61] R6_2.5.1 knitr_1.39 bit_4.0.4
[64] fastmap_1.1.0 utf8_1.2.2 rprojroot_2.0.3
[67] stringi_1.7.6 parallel_4.0.2 Rcpp_1.0.9
[70] vctrs_0.4.1 tidyselect_1.1.2 xfun_0.31