Last updated: 2023-07-05

Checks: 7 0

Knit directory: hashtag-demux-paper/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20230522) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 09fa707. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/BAL_data/.DS_Store

Untracked files:
    Untracked:  .ipynb_checkpoints/
    Untracked:  Dear editors.docx
    Untracked:  NAR.cls
    Untracked:  analysis/Fscore_MCC_comparison.Rmd
    Untracked:  analysis/gmm_demux.Rmd
    Untracked:  analysis/hashsolo_prep.Rmd
    Untracked:  analysis/run_GMM_demux_BAL.sh
    Untracked:  cover_letter.docx
    Untracked:  data/BAL_data/batch1_all_methods.SEU.rds
    Untracked:  data/BAL_data/batch1_c1_donors_original.csv
    Untracked:  data/BAL_data/batch1_c1_hto_counts_original.csv
    Untracked:  data/BAL_data/batch1_c1_relabelled.SEU.rds
    Untracked:  data/BAL_data/batch1_c2_donors_original.csv
    Untracked:  data/BAL_data/batch1_c2_hto_counts_original.csv
    Untracked:  data/BAL_data/batch1_c2_relabelled.SEU.rds
    Untracked:  data/BAL_data/batch1_relabelled.SEU.rds
    Untracked:  data/BAL_data/batch2_all_methods.SEU.rds
    Untracked:  data/BAL_data/batch2_c1_donors_original.csv
    Untracked:  data/BAL_data/batch2_c1_hto_counts_original.csv
    Untracked:  data/BAL_data/batch2_c1_relabelled.SEU.rds
    Untracked:  data/BAL_data/batch2_c2_donors_original.csv
    Untracked:  data/BAL_data/batch2_c2_hto_counts_original.csv
    Untracked:  data/BAL_data/batch2_c2_relabelled.SEU.rds
    Untracked:  data/BAL_data/batch2_relabelled.SEU.rds
    Untracked:  data/BAL_data/batch3_all_methods.SEU.rds
    Untracked:  data/BAL_data/batch3_c1_donors_original.csv
    Untracked:  data/BAL_data/batch3_c1_hto_counts_original.csv
    Untracked:  data/BAL_data/batch3_c1_relabelled.SEU.rds
    Untracked:  data/BAL_data/batch3_c2_donors_original.csv
    Untracked:  data/BAL_data/batch3_c2_hto_counts_original.csv
    Untracked:  data/BAL_data/batch3_c2_relabelled.SEU.rds
    Untracked:  data/BAL_data/batch3_relabelled.SEU.rds
    Untracked:  data/adata/batch1_c1_hashsolo.csv
    Untracked:  data/adata/batch1_c1_hs_n10_d10.csv
    Untracked:  data/adata/batch1_c1_hs_n10_d20.csv
    Untracked:  data/adata/batch1_c1_hs_n10_d30.csv
    Untracked:  data/adata/batch1_c1_hs_n1_d10.csv
    Untracked:  data/adata/batch1_c1_hs_n1_d20.csv
    Untracked:  data/adata/batch1_c1_hs_n1_d30.csv
    Untracked:  data/adata/batch1_c1_hs_n5_d10.csv
    Untracked:  data/adata/batch1_c1_hs_n5_d30.csv
    Untracked:  data/adata/batch1_c2_hashsolo.csv
    Untracked:  data/adata/batch1_c2_hs_n10_d10.csv
    Untracked:  data/adata/batch1_c2_hs_n10_d20.csv
    Untracked:  data/adata/batch1_c2_hs_n10_d30.csv
    Untracked:  data/adata/batch1_c2_hs_n1_d10.csv
    Untracked:  data/adata/batch1_c2_hs_n1_d20.csv
    Untracked:  data/adata/batch1_c2_hs_n1_d30.csv
    Untracked:  data/adata/batch1_c2_hs_n5_d10.csv
    Untracked:  data/adata/batch1_c2_hs_n5_d30.csv
    Untracked:  data/adata/batch2_c1_hashsolo.csv
    Untracked:  data/adata/batch2_c1_hs_n10_d10.csv
    Untracked:  data/adata/batch2_c1_hs_n10_d20.csv
    Untracked:  data/adata/batch2_c1_hs_n10_d30.csv
    Untracked:  data/adata/batch2_c1_hs_n1_d10.csv
    Untracked:  data/adata/batch2_c1_hs_n1_d20.csv
    Untracked:  data/adata/batch2_c1_hs_n1_d30.csv
    Untracked:  data/adata/batch2_c1_hs_n5_d10.csv
    Untracked:  data/adata/batch2_c1_hs_n5_d30.csv
    Untracked:  data/adata/batch2_c2_hashsolo.csv
    Untracked:  data/adata/batch2_c2_hs_n10_d10.csv
    Untracked:  data/adata/batch2_c2_hs_n10_d20.csv
    Untracked:  data/adata/batch2_c2_hs_n10_d30.csv
    Untracked:  data/adata/batch2_c2_hs_n1_d10.csv
    Untracked:  data/adata/batch2_c2_hs_n1_d20.csv
    Untracked:  data/adata/batch2_c2_hs_n1_d30.csv
    Untracked:  data/adata/batch2_c2_hs_n5_d10.csv
    Untracked:  data/adata/batch2_c2_hs_n5_d30.csv
    Untracked:  data/adata/batch3_c1_hashsolo.csv
    Untracked:  data/adata/batch3_c1_hs_n10_d10.csv
    Untracked:  data/adata/batch3_c1_hs_n10_d20.csv
    Untracked:  data/adata/batch3_c1_hs_n10_d30.csv
    Untracked:  data/adata/batch3_c1_hs_n1_d10.csv
    Untracked:  data/adata/batch3_c1_hs_n1_d20.csv
    Untracked:  data/adata/batch3_c1_hs_n1_d30.csv
    Untracked:  data/adata/batch3_c1_hs_n5_d10.csv
    Untracked:  data/adata/batch3_c1_hs_n5_d30.csv
    Untracked:  data/adata/batch3_c2_hashsolo.csv
    Untracked:  data/adata/batch3_c2_hs_n10_d10.csv
    Untracked:  data/adata/batch3_c2_hs_n10_d20.csv
    Untracked:  data/adata/batch3_c2_hs_n10_d30.csv
    Untracked:  data/adata/batch3_c2_hs_n1_d10.csv
    Untracked:  data/adata/batch3_c2_hs_n1_d20.csv
    Untracked:  data/adata/batch3_c2_hs_n1_d30.csv
    Untracked:  data/adata/batch3_c2_hs_n5_d10.csv
    Untracked:  data/adata/batch3_c2_hs_n5_d30.csv
    Untracked:  data/adata/solid_tissue_batch1_hashsolo.csv
    Untracked:  data/adata/solid_tissue_batch2_hashsolo.csv
    Untracked:  data/solid_tumor_data/
    Untracked:  figures/QC_plots_new.png
    Untracked:  figures/Users/
    Untracked:  filter_wrong_empties.Rmd
    Untracked:  iscb_long_abstract.docx
    Untracked:  iscb_long_abstract.pdf
    Untracked:  oup-authoring-template/
    Untracked:  output/mean_fscore_mcc.xlsx
    Untracked:  paper_latex/

Unstaged changes:
    Modified:   data/.DS_Store
    Deleted:    data/GMM-Demux/SSD_mtx/barcodes.tsv.gz
    Deleted:    data/GMM-Demux/SSD_mtx/features.tsv.gz
    Deleted:    data/GMM-Demux/SSD_mtx/matrix.mtx.gz
    Deleted:    data/GMM-Demux/batch1_c1_hto_counts_transpose.csv
    Deleted:    data/GMM-Demux/batch1_c2_hto_counts_transpose.csv
    Deleted:    data/GMM-Demux/batch2_c1_hto_counts_transpose.csv
    Deleted:    data/GMM-Demux/batch2_c2_hto_counts_transpose.csv
    Deleted:    data/GMM-Demux/batch3_c1_hto_counts_transpose.csv
    Deleted:    data/GMM-Demux/batch3_c2_hto_counts_transpose.csv
    Deleted:    data/GMM-Demux/gmm_out_LMO_c1/full_report/GMM_full.config
    Deleted:    data/GMM-Demux/gmm_out_LMO_c1/full_report/GMM_full.csv
    Deleted:    data/GMM-Demux/gmm_out_LMO_c1/simplified_report/GMM_simplified.config
    Deleted:    data/GMM-Demux/gmm_out_LMO_c1/simplified_report/GMM_simplified.csv
    Deleted:    data/GMM-Demux/gmm_out_LMO_c2/full_report/GMM_full.config
    Deleted:    data/GMM-Demux/gmm_out_LMO_c2/full_report/GMM_full.csv
    Deleted:    data/GMM-Demux/gmm_out_LMO_c2/simplified_report/GMM_simplified.config
    Deleted:    data/GMM-Demux/gmm_out_LMO_c2/simplified_report/GMM_simplified.csv
    Deleted:    data/GMM-Demux/gmm_out_LMO_c3/full_report/GMM_full.config
    Deleted:    data/GMM-Demux/gmm_out_LMO_c3/full_report/GMM_full.csv
    Deleted:    data/GMM-Demux/gmm_out_LMO_c3/simplified_report/GMM_simplified.config
    Deleted:    data/GMM-Demux/gmm_out_LMO_c3/simplified_report/GMM_simplified.csv
    Deleted:    data/GMM-Demux/gmm_out_batch1_c1/full_report/GMM_full.config
    Deleted:    data/GMM-Demux/gmm_out_batch1_c1/full_report/GMM_full.csv
    Deleted:    data/GMM-Demux/gmm_out_batch1_c1/simplified_report/GMM_simplified.config
    Deleted:    data/GMM-Demux/gmm_out_batch1_c1/simplified_report/GMM_simplified.csv
    Deleted:    data/GMM-Demux/gmm_out_batch1_c2/full_report/GMM_full.config
    Deleted:    data/GMM-Demux/gmm_out_batch1_c2/full_report/GMM_full.csv
    Deleted:    data/GMM-Demux/gmm_out_batch1_c2/simplified_report/GMM_simplified.config
    Deleted:    data/GMM-Demux/gmm_out_batch1_c2/simplified_report/GMM_simplified.csv
    Deleted:    data/GMM-Demux/gmm_out_batch2_c1/full_report/GMM_full.config
    Deleted:    data/GMM-Demux/gmm_out_batch2_c1/full_report/GMM_full.csv
    Deleted:    data/GMM-Demux/gmm_out_batch2_c1/simplified_report/GMM_simplified.config
    Deleted:    data/GMM-Demux/gmm_out_batch2_c1/simplified_report/GMM_simplified.csv
    Deleted:    data/GMM-Demux/gmm_out_batch2_c2/full_report/GMM_full.config
    Deleted:    data/GMM-Demux/gmm_out_batch2_c2/full_report/GMM_full.csv
    Deleted:    data/GMM-Demux/gmm_out_batch2_c2/simplified_report/GMM_simplified.config
    Deleted:    data/GMM-Demux/gmm_out_batch2_c2/simplified_report/GMM_simplified.csv
    Deleted:    data/GMM-Demux/gmm_out_batch3_c1/full_report/GMM_full.config
    Deleted:    data/GMM-Demux/gmm_out_batch3_c1/full_report/GMM_full.csv
    Deleted:    data/GMM-Demux/gmm_out_batch3_c1/simplified_report/GMM_simplified.config
    Deleted:    data/GMM-Demux/gmm_out_batch3_c1/simplified_report/GMM_simplified.csv
    Deleted:    data/GMM-Demux/gmm_out_batch3_c2/full_report/GMM_full.config
    Deleted:    data/GMM-Demux/gmm_out_batch3_c2/full_report/GMM_full.csv
    Deleted:    data/GMM-Demux/gmm_out_batch3_c2/simplified_report/GMM_simplified.config
    Deleted:    data/GMM-Demux/gmm_out_batch3_c2/simplified_report/GMM_simplified.csv
    Deleted:    data/GMM-Demux/lmo_counts_capture1_transpose.csv
    Deleted:    data/GMM-Demux/lmo_counts_capture2_transpose.csv
    Deleted:    data/GMM-Demux/lmo_counts_capture3_transpose.csv
    Deleted:    data/GMM-Demux/run_GMM_demux_BAL.sh
    Deleted:    data/GMM-Demux/run_GMM_demux_LMO.sh
    Modified:   data/adata/batch1_HTOs.csv
    Modified:   data/adata/batch1_c1_barcodes.csv
    Modified:   data/adata/batch1_c1_counts.mtx
    Modified:   data/adata/batch1_c2_barcodes.csv
    Modified:   data/adata/batch1_c2_counts.mtx
    Modified:   data/adata/batch2_HTOs.csv
    Modified:   data/adata/batch2_c1_barcodes.csv
    Modified:   data/adata/batch2_c1_counts.mtx
    Modified:   data/adata/batch2_c2_barcodes.csv
    Modified:   data/adata/batch2_c2_counts.mtx
    Modified:   data/adata/batch3_HTOs.csv
    Modified:   data/adata/batch3_c1_barcodes.csv
    Modified:   data/adata/batch3_c1_counts.mtx
    Modified:   data/adata/batch3_c2_barcodes.csv
    Modified:   data/adata/batch3_c2_counts.mtx
    Deleted:    data/batch1_c1_donors.csv
    Deleted:    data/batch1_c1_hto_counts.csv
    Deleted:    data/batch1_c2_donors.csv
    Deleted:    data/batch1_c2_hto_counts.csv
    Deleted:    data/batch1_hto_counts.csv
    Deleted:    data/batch2_c1_donors.csv
    Deleted:    data/batch2_c1_hto_counts.csv
    Deleted:    data/batch2_c2_donors.csv
    Deleted:    data/batch2_c2_hto_counts.csv
    Deleted:    data/batch2_hto_counts.csv
    Deleted:    data/batch3_c1_donors.csv
    Deleted:    data/batch3_c1_hto_counts.csv
    Deleted:    data/batch3_c2_donors.csv
    Deleted:    data/batch3_c2_hto_counts.csv
    Deleted:    data/batch3_hto_counts.csv
    Deleted:    data/lmo_counts.csv
    Deleted:    data/lmo_counts_capture1.csv
    Deleted:    data/lmo_counts_capture2.csv
    Deleted:    data/lmo_counts_capture3.csv
    Deleted:    data/lmo_donors.csv
    Deleted:    data/lmo_donors_capture1.csv
    Deleted:    data/lmo_donors_capture2.csv
    Deleted:    data/lmo_donors_capture3.csv
    Modified:   figures/QC_plots.png
    Modified:   figures/category_fractions.png
    Modified:   hashsolo_calls.ipynb
    Modified:   notebook_for_paper.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/index.Rmd) and HTML (docs/index.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 09fa707 George Howitt 2023-07-05 wflow_publish("analysis/index.Rmd")
html 08ecf73 George Howitt 2023-07-05 Build site.
Rmd 134b64f George Howitt 2023-07-05 wflow_publish("analysis/index.Rmd")
Rmd 397b63f George Howitt 2023-05-22 Start workflowr project.

“Benchmarking single-cell hashtag oligo demultiplexing methods”

https://www.biorxiv.org/content/10.1101/2022.12.20.521313v2

date: “2023-07-05”


Follow the links below to view the different parts of the analysis.

Abstract

Sample multiplexing is often used to reduce cost and limit batch effects in single-cell RNA sequencing (scRNAseq)experiments. A commonly used multiplexing technique involves tagging cells prior to pooling with a hashtag oligo (HTO) that can be sequenced along with the cells’ RNA to determine their sample of origin. Several tools have been developed to demultiplex HTO sequencing data and assign cells to samples. In this study, we critically assess the performance of seven HTO demultiplexing tools: hashedDrops, HTODemux, GMM-Demux, demuxmix, deMULTIplex, BFF and HashSolo. The comparison uses data sets where each sample has also been demultiplexed using genetic variants from the RNA, enabling comparison of HTO demultiplexing techniques against complementary data from the genetic “ground truth”. We find that all methods perform similarly where HTO labelling is of high quality, but methods that assume a bimodal counts distribution perform poorly on lower quality data. We also provide heuristic approaches for assessing the quality of HTO counts in a scRNA-seq experiment.

Authors

George Howitt, Yuzhou Feng, Lucas Tobar, Dane Vassiliadis, Peter Hickey, Mark A. Dawson Sarath Ranganathan Shivanthan Shanthikumar Melanie Neeland Jovana Maksimovic and Alicia Oshlack

Analysis Overview

Analysis of each data set is included in a separate notebook a) BAL data set b) Ovarian tumour data set c) Cell line data set


sessionInfo()
R version 4.2.2 (2022-10-31)
Platform: aarch64-apple-darwin20 (64-bit)
Running under: macOS Ventura 13.0.1

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] workflowr_1.7.0

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.10      compiler_4.2.2   pillar_1.9.0     bslib_0.4.2     
 [5] later_1.3.1      git2r_0.32.0     jquerylib_0.1.4  tools_4.2.2     
 [9] getPass_0.2-2    digest_0.6.31    jsonlite_1.8.4   evaluate_0.21   
[13] lifecycle_1.0.3  tibble_3.2.1     pkgconfig_2.0.3  rlang_1.1.1     
[17] cli_3.6.1        rstudioapi_0.14  yaml_2.3.7       xfun_0.39       
[21] fastmap_1.1.1    httr_1.4.6       stringr_1.5.0    knitr_1.42      
[25] fs_1.6.2         vctrs_0.6.2      sass_0.4.6       rprojroot_2.0.3 
[29] glue_1.6.2       R6_2.5.1         processx_3.8.1   fansi_1.0.4     
[33] rmarkdown_2.21   callr_3.7.3      magrittr_2.0.3   whisker_0.4.1   
[37] ps_1.7.5         promises_1.2.0.1 htmltools_0.5.5  httpuv_1.6.11   
[41] utf8_1.2.3       stringi_1.7.12   cachem_1.0.8