Last updated: 2025-04-09

Checks: 6 1

Knit directory: HairCort-Evaluation-Nist2020/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20241016) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 77c2ab5. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .RData
    Ignored:    .Rhistory
    Ignored:    analysis/.DS_Store
    Ignored:    analysis/.Rhistory
    Ignored:    data/.DS_Store
    Ignored:    data/Test3/.DS_Store
    Ignored:    data/Test4/.DS_Store

Untracked files:
    Untracked:  Data_Cortisol_Processed.csv
    Untracked:  data/Test3/Data_Cortisol_Processed.csv
    Untracked:  data/Test3/Data_cort_values_methodC.csv
    Untracked:  data/Test3/Data_cort_values_methodD.csv
    Untracked:  data/Test4/Data_Cortisol_Processed.csv
    Untracked:  temp.html

Unstaged changes:
    Modified:   analysis/ELISA_Analysis_RawVals_test4.Rmd
    Modified:   analysis/ELISA_Calc_FinalVals_test3.Rmd
    Modified:   analysis/ELISA_Calc_FinalVals_test4.Rmd
    Deleted:    analysis/ELISA_QC_Finalvals_test3.Rmd
    Modified:   analysis/ELISA_QC_test3.Rmd
    Modified:   analysis/ELISA_QC_test4.Rmd
    Modified:   data/Test3/Data_QC_filtered.csv
    Modified:   data/Test3/Data_QC_flagged.csv
    Modified:   data/Test3/Data_cort_values_methodA.csv
    Modified:   data/Test3/Data_cort_values_methodB.csv
    Modified:   data/Test3/failed_samples.csv
    Modified:   data/Test4/Data_QC_filtered.csv
    Modified:   data/Test4/Data_QC_flagged.csv
    Modified:   data/Test4/Data_cort_values_methodA.csv
    Modified:   data/Test4/Data_cort_values_methodB.csv
    Modified:   data/Test4/Data_cort_values_methodC.csv
    Modified:   data/Test4/Data_cort_values_methodD.csv
    Modified:   data/Test4/failed_samples.csv
    Modified:   data/Test4/layout_wells_test4_021925.csv
    Modified:   temp.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/ELISA_Calc_FinalVals_test4.Rmd) and HTML (docs/ELISA_Calc_FinalVals_test4.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 77c2ab5 Paloma 2025-04-08 cleaning test3
Rmd ced6eed Paloma 2025-04-03 upd
html ced6eed Paloma 2025-04-03 upd
Rmd ca6c804 Paloma 2025-04-03 new calc final vals
html ca6c804 Paloma 2025-04-03 new calc final vals
Rmd 528855b Paloma 2025-04-03 new_calc
html 528855b Paloma 2025-04-03 new_calc

Summary

Cortisol value calculations

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s
A) Standard Method 0.4142 1.9653 7.5533 14.1906 28.0667 50.933 3
B) Spike-Corrected Method -45.870 -31.922 -1.929 -9.444 7.553 30.780 3
C) Standard, but simplified equation 0.4142 1.9653 7.5533 14.1906 28.0667 50.9333 3
D) Spike-Corrected (divided by two) 0.2335 1.5067 6.7184 9.7699 17.3683 32.2815 3

I calculated final cortisol values in pg/mg using the following key variables:

  • Ave_Conc_pg/ml: average ELISA reading per sample in pg/mL

  • Weight_mg: hair weight in mg

  • Buffer_nl: assay buffer volume in nL → we convert to mL

  • Spike: binary indicator (1 = spiked sample)

  • SpikeVol_uL: volume of spike added in µL

  • Dilution: dilution factor (already present)

  • Vol_in_well.tube_uL: total volume in well/tube in µL (for spike correction)

  • std: standard reading value

  • extraction: methanol volume ratio = vol added / vol recovered (1/0.75 ml)

Results:

  • Intra-assay CV: 14.5%

  • Intra-assay CV after removing low quality samples: 10%

  • Inter-assay CV: 21%

(Bindings for 20mg sample diluted in 250 uL, no spike: 64.8% and 48% in test3 and test4, respectively)

Conclusions:

Concerns: Overall quality of the plate is not great, but serial dilusions show clear parallelism and standards have values within the expected

Cortisol concentration calculations

# set reading value of spike (std1, 0.333 ug/dL), 
# and transforming to ug.dL

std <- (3191+3228)/2
std.r <- (std/10000)
std
[1] 3209.5
std.r
[1] 0.32095
# according to chatgpt, the spike's contribution is
# 1600 pg/mL, which is very similar to half of the reading for std 1 :]

Loading files and transforming units, including low quality data

df <- read.csv(file.path(data_path,"Data_QC_flagged.csv"))
kable(tail(df))
Wells Sample Category Weight_mg Buffer_nl Spike SpikeVol_uL Dilution_sample Dilution_spike Vol_in_well.tube_uL Raw.OD Extraction_ratio Binding.Perc Conc_pg.ml Ave_Conc_pg.ml CV.Perc SD SEM CV_categ Binding.Perc_categ Failed_samples
77 G11 TP3A P 12 220 1 25 1 1 50 1.351351 0.258 23.2 2800 2792 0.391 10.9 7.71 NA NA NA
78 H11 TP3A P 12 220 1 25 1 1 50 1.351351 0.259 NA 2785 NA NA NA NA NA NA NA
79 A12 TP3B P 12 60 1 25 1 1 50 1.333333 0.195 15.5 4084 4210 4.230 178.0 126.00 NA UNDER 20% binding UNDER 20% binding
80 B12 TP3B P 12 60 1 25 1 1 50 1.333333 0.186 NA 4336 NA NA NA NA NA NA NA
81 C12 TP3C P 12 60 1 25 1 1 50 1.333333 0.186 13.9 4336 4661 9.870 460.0 325.00 NA UNDER 20% binding UNDER 20% binding
82 D12 TP3C P 12 60 1 25 1 1 50 1.333333 0.166 NA 4986 NA NA NA NA NA NA NA
# remove outlier
#df<- df[(df$Sample != "TP3A"),]

# Creating variables in indicated units
# dilution (buffer)
df$Buffer_ml <- c(df$Buffer_nl/1000)

# remove unnecessary information 
data <- df %>%
    dplyr::select(Wells, Sample, Category, Binding.Perc, Ave_Conc_pg.ml, Weight_mg, Buffer_ml, Spike, SpikeVol_uL, Dilution_sample, Dilution_spike, Extraction_ratio, Vol_in_well.tube_uL, Failed_samples) 

# remove duplicates
data <- data[!is.na(data$Binding.Perc), ]

kable(tail(data, 10))
Wells Sample Category Binding.Perc Ave_Conc_pg.ml Weight_mg Buffer_ml Spike SpikeVol_uL Dilution_sample Dilution_spike Extraction_ratio Vol_in_well.tube_uL Failed_samples
63 A10 TD7 D 99.0 86.73 20 0.11 1 110 64 64 0.934 220 ABOVE 80% binding
65 C10 TP1A P 21.8 2986.00 6 0.06 1 25 1 1 0.245 50 NA
67 E10 TP1B P 18.1 3820.00 6 0.06 1 25 1 1 0.254 50 HIGH CV;UNDER 20% binding
69 G10 TP1C*FAIL P 27.8 2242.00 6 0.06 1 25 1 1 0.305 50 NA
71 A11 TP2A P 17.3 3793.00 9 0.06 1 25 1 1 0.208 50 UNDER 20% binding
73 C11 TP2B P 21.1 3101.00 9 0.06 1 25 1 1 0.236 50 NA
75 E11 TP2C P 18.1 3634.00 9 0.06 1 25 1 1 0.219 50 UNDER 20% binding
77 G11 TP3A P 23.2 2792.00 12 0.22 1 25 1 1 0.258 50 NA
79 A12 TP3B P 15.5 4210.00 12 0.06 1 25 1 1 0.195 50 UNDER 20% binding
81 C12 TP3C P 13.9 4661.00 12 0.06 1 25 1 1 0.186 50 UNDER 20% binding
dim(data)
[1] 41 14

(A) Standard Calculation

Formula:

((A/B) * (C/D) * E * 10,000) = F

  • A = μg/dl from assay output;
  • B = weight (in mg) of hair subjected to extraction;
  • C = vol. (in ml) of methanol added to the powdered hair;
  • D = vol. (in ml) of methanol recovered from the extract and subsequently dried down;
  • E = vol. (in ml) of assay buffer used to reconstitute the dried extract;
  • F = final value of hair CORT Concentration in pg/mg.
##################################
##### Calculate final values #####
##################################

# Transform to μg/dl from assay output
data$Ave_Conc_ug.dL <- c(data$Ave_Conc_pg.ml/10000)

data$Final_conc_pg.mg <- c(
    ((data$Ave_Conc_ug.dL) / data$Weight_mg) * # A/B *
      data$Extraction_ratio *                                  # C/D  *     
      data$Buffer_ml * 10000 * data$Dilution_sample)                 # E * 10000
data <- data[order(data$Sample),]
write.csv(data, file.path(data_path, "Data_cort_values_methodA.csv"), row.names = F)

# summary for all samples
summary(data$Final_conc_pg.mg)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  3.441   6.122   9.825  12.826  16.137  48.522       3 
kable(tail(data, 7))
Wells Sample Category Binding.Perc Ave_Conc_pg.ml Weight_mg Buffer_ml Spike SpikeVol_uL Dilution_sample Dilution_spike Extraction_ratio Vol_in_well.tube_uL Failed_samples Ave_Conc_ug.dL Final_conc_pg.mg
69 G10 TP1C*FAIL P 27.8 2242 6 0.06 1 25 1 1 0.305 50 NA 0.2242 6.838100
71 A11 TP2A P 17.3 3793 9 0.06 1 25 1 1 0.208 50 UNDER 20% binding 0.3793 5.259627
73 C11 TP2B P 21.1 3101 9 0.06 1 25 1 1 0.236 50 NA 0.3101 4.878907
75 E11 TP2C P 18.1 3634 9 0.06 1 25 1 1 0.219 50 UNDER 20% binding 0.3634 5.305640
77 G11 TP3A P 23.2 2792 12 0.22 1 25 1 1 0.258 50 NA 0.2792 13.206160
79 A12 TP3B P 15.5 4210 12 0.06 1 25 1 1 0.195 50 UNDER 20% binding 0.4210 4.104750
81 C12 TP3C P 13.9 4661 12 0.06 1 25 1 1 0.186 50 UNDER 20% binding 0.4661 4.334730
dim(data)
[1] 41 16

(B) Accounting for Spike

We followed the procedure described in Nist et al. 2020:

“Thus, after pipetting 25μL of standards and samples into the appropriate wells of the 96-well assay plate, we added 25μL of the 0.333ug/dL standard to all samples, resulting in a 1:2 dilution of samples. The remainder of the manufacturer’s protocol was unchanged. We analyzed the assay plate in a Powerwave plate reader (BioTek, Winooski, VT) at 450nm and subtracted background values from all assay wells. In the calculations, we subtracted the 0.333ug/dL standard reading from the sample readings. Samples that resulted in a negative number were considered nondetectable. We converted cortisol levels from ug/dL, as measured by the assay, to pg/mg—based on the mass of hair collected and analyzed using the following formula:

A/B * C/D * E * 10,000 * 2 = F

where - A = μg/dl from assay output; - B = weight (in mg) of collected hair; - C = vol. (in ml) of methanol added to the powdered hair; - D = vol. (in ml) of methanol recovered from the extract and subsequently dried down; - E = vol. (in ml) of assay buffer used to reconstitute the dried extract; 10,000 accounts for changes in metrics; 2 accounts for the dilution factor after addition of the spike; and - F = final value of hair cortisol concentration in pg/mg”

dSpike <- data

##################################
##### Calculate final values #####
##################################

dSpike$Final_conc_pg.mg <- 
  ifelse(
    dSpike$Spike == 1,    ## Only spiked samples
      ((dSpike$Ave_Conc_ug.dL - (std.r)) / # (A-spike) / B
        dSpike$Weight_mg) 
        * data$Extraction_ratio *                  # C / D
        dSpike$Buffer_ml * 10000 * 2 * dSpike$Dilution_sample,    # E * 10000 * 2
        dSpike$Final_conc_pg.mg  
    )


write.csv(dSpike, file.path(data_path, "Data_cort_values_methodB.csv"), row.names = F)

# summary for all samples
summary(dSpike$Final_conc_pg.mg)
      Min.    1st Qu.     Median       Mean    3rd Qu.       Max.       NA's 
-2053.3337   -43.5050    -0.7183  -171.2293     5.4869    32.3016          3 
dSpikeSub <- data[c(data$Spike == 0), ]
summary(dSpikeSub$Final_conc_pg.mg)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  3.948   8.839  13.992  15.577  19.936  32.302       3 
kable(tail(dSpike, 10))
Wells Sample Category Binding.Perc Ave_Conc_pg.ml Weight_mg Buffer_ml Spike SpikeVol_uL Dilution_sample Dilution_spike Extraction_ratio Vol_in_well.tube_uL Failed_samples Ave_Conc_ug.dL Final_conc_pg.mg
63 A10 TD7 D 99.0 86.73 20 0.11 1 110 64 64 0.934 220 ABOVE 80% binding 0.008673 -2053.3336947
65 C10 TP1A P 21.8 2986.00 6 0.06 1 25 1 1 0.245 50 NA 0.298600 -1.0951500
67 E10 TP1B P 18.1 3820.00 6 0.06 1 25 1 1 0.254 50 HIGH CV;UNDER 20% binding 0.382000 3.1013400
69 G10 TP1C*FAIL P 27.8 2242.00 6 0.06 1 25 1 1 0.305 50 NA 0.224200 -5.9017500
71 A11 TP2A P 17.3 3793.00 9 0.06 1 25 1 1 0.208 50 UNDER 20% binding 0.379300 1.6182400
73 C11 TP2B P 21.1 3101.00 9 0.06 1 25 1 1 0.236 50 NA 0.310100 -0.3414133
75 E11 TP2C P 18.1 3634.00 9 0.06 1 25 1 1 0.219 50 UNDER 20% binding 0.363400 1.2395400
77 G11 TP3A P 23.2 2792.00 12 0.22 1 25 1 1 0.258 50 NA 0.279200 -3.9495500
79 A12 TP3B P 15.5 4210.00 12 0.06 1 25 1 1 0.195 50 UNDER 20% binding 0.421000 1.9509750
81 C12 TP3C P 13.9 4661.00 12 0.06 1 25 1 1 0.186 50 UNDER 20% binding 0.466100 2.6997900

(C) Skip unit transformation

##################################
##### Calculate final values #####
################################## 
datac <- data
datac$Final_conc_pg.mg <- c(
    (datac$Ave_Conc_pg.ml / datac$Weight_mg) * # A/B *
     data$Extraction_ratio *                                  # C/D  *     
      datac$Buffer_ml * datac$Dilution_sample)                 # E 
datac <- datac[order(datac$Sample),]
write.csv(datac, file.path(data_path, "Data_cort_values_methodC.csv"), row.names = F)

# summary for all samples
summary(datac$Final_conc_pg.mg)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  3.441   6.122   9.825  12.826  16.137  48.522       3 

(D) Account for Spike contribution (uses vol. of spike, conc. of spike, and total reconstit. vol.)

Spike contribution (pg/mL) = (Vol. spike (mL) x Conc. spike (pg/mL) ) / Vol. reconstitution (mL) or total vol. in well (50uL) (depending on where the spike was added)

# Calculate contribution of spike according to the different volumes in which it was added
# Consider that contribution of spike in serial dilutions gets smaller 

# Vol. of spike transformed to mL
data$SpikeVol_ml <- data$SpikeVol_uL/1000
# Concentration of the spike:
std
[1] 3209.5
# Vol. reconstitution (mL) is the total volume in tube or well (sample + spike), after adding spike.
# transform to mL
data$Vol_in_well.tube_ml <- data$Vol_in_well.tube_uL/1000


  ##( Spike vol. x Spike Conc.)
  ## ------------------------  / dilution = Spike contribution
  ##      Total vol. 
  
# Cortisol added by spike in wells: 0.0025 mL x 3200 pg/mL = 80 pg
# Calculate cort contribution of spike to each sample
data$Spike.cont_pg.mL <- (((data$SpikeVol_ml * std ) / # Volume of spike * Spike concentration
                            data$Vol_in_well.tube_ml) / # divided by the total volume (spike + sample)
                              data$Dilution_spike) # resulting number changes depending on the dilution

dSpiked <- data
                          
##################################
##### Calculate final values #####
##################################


dSpiked$Final_conc_pg.mg <- 
  ifelse(
    dSpiked$Spike == 1,           ## Only spiked samples
      ((dSpiked$Ave_Conc_pg.ml - dSpiked$Spike.cont_pg.mL) / # (A - spike) / B
      dSpiked$Weight_mg) 
    * data$Extraction_ratio *      # C / D
      dSpiked$Buffer_ml * dSpiked$Dilution_sample,    # E * 
    dSpiked$Final_conc_pg.mg  
)

write.csv(dSpiked, file.path(data_path, "Data_cort_values_methodD.csv"), row.names = F)

# summary for all samples
summary(dSpiked$Final_conc_pg.mg)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  1.944   3.804   7.125  10.586  13.478  47.271       3 
kable(tail(dSpiked[!is.na(dSpiked$Final_conc_pg.mg) , c("Sample", "Final_conc_pg.mg", "Ave_Conc_pg.ml", "Spike.cont_pg.mL", "Binding.Perc", "Weight_mg", "Buffer_ml", "SpikeVol_uL", "Dilution_sample", "Dilution_spike", "Vol_in_well.tube_uL")],20))
Sample Final_conc_pg.mg Ave_Conc_pg.ml Spike.cont_pg.mL Binding.Perc Weight_mg Buffer_ml SpikeVol_uL Dilution_sample Dilution_spike Vol_in_well.tube_uL
43 TC4 7.503227 618.00 291.77273 60.2 50 0.25 25 8 1 275
45 TC5 9.733520 144.50 0.00000 92.0 50 0.25 0 16 1 250
47 TC6 13.991765 97.49 0.00000 97.7 50 0.25 0 32 1 250
49 TC7 32.301600 107.50 0.00000 96.4 50 0.25 0 64 1 250
51 TD1 2.650400 4168.00 1604.75000 15.7 20 0.11 110 1 1 220
53 TD2 3.772350 1814.00 802.37500 32.7 20 0.11 110 2 2 220
55 TD3 6.449542 1033.00 401.18750 46.7 20 0.11 110 4 4 220
57 TD4 8.852531 525.10 200.59375 64.3 20 0.11 110 8 8 220
59 TD5 11.171711 268.00 100.29688 80.2 20 0.11 110 16 16 220
61 TD6 5.262264 81.99 50.14844 99.7 20 0.11 110 32 32 220
63 TD7 20.270448 86.73 25.07422 99.0 20 0.11 110 64 64 220
65 TP1A 3.384063 2986.00 1604.75000 21.8 6 0.06 25 1 1 50
67 TP1B 5.626735 3820.00 1604.75000 18.1 6 0.06 25 1 1 50
69 TP1C*FAIL 1.943612 2242.00 1604.75000 27.8 6 0.06 25 1 1 50
71 TP2A 3.034373 3793.00 1604.75000 17.3 9 0.06 25 1 1 50
73 TP2B 2.354100 3101.00 1604.75000 21.1 9 0.06 25 1 1 50
75 TP2C 2.962705 3634.00 1604.75000 18.1 9 0.06 25 1 1 50
77 TP3A 5.615692 2792.00 1604.75000 23.2 12 0.22 25 1 1 50
79 TP3B 2.540119 4210.00 1604.75000 15.5 12 0.06 25 1 1 50
81 TP3C 2.842312 4661.00 1604.75000 13.9 12 0.06 25 1 1 50

Plots

(A) Standard Calculation

Version Author Date
ced6eed Paloma 2025-04-03

(B) Accounting for Spike

Version Author Date
ced6eed Paloma 2025-04-03

(C) Simplified Standard Calculation

Version Author Date
ced6eed Paloma 2025-04-03

(D) New calculation (substract half of the spike from A)

Version Author Date
ced6eed Paloma 2025-04-03

Evaluation

Since all spiked samples produce negative values, we will continue our analyses using only non-spiked samples.

ggplot(dSpiked, aes(y = Final_conc_pg.mg, 
                  x = Sample, 
                  color = (Failed_samples))) + 
              #    fill = factor(Spike.cont_pg.mL))) +
  geom_point(size = 2.5) +  
  geom_text(label = c(dSpiked$Sample), nudge_y = 0.95, nudge_x = -1.2) +
  geom_smooth(method = "lm", 
              color = "gold3", 
              se = TRUE,
              alpha = 0.1) + 
 # geom_hline(yintercept = mean(data$Final_conc_pg.mg), 
  #           color = "gray80",
   #          linetype = "dashed") +
  theme_minimal() +  
  labs(
    title = "Final Cort Concentration and Dilution",
    y = "Final Concentration (pg/mg)",
    x = "Contribution of spike (pg/ml)"  
  ) +
  theme(
    plot.title = element_text(hjust = 0.5, size = 16, face = "bold"),  
    axis.title = element_text(size = 14),  
    axis.text = element_text(size = 12) 
  ) 
`geom_smooth()` using formula = 'y ~ x'
Warning: Removed 3 rows containing non-finite outside the scale range
(`stat_smooth()`).
Warning: Removed 3 rows containing missing values or values outside the scale range
(`geom_point()`).
Warning: Removed 3 rows containing missing values or values outside the scale range
(`geom_text()`).

Version Author Date
ced6eed Paloma 2025-04-03
528855b Paloma 2025-04-03

sessionInfo()
R version 4.4.3 (2025-02-28)
Platform: aarch64-apple-darwin20
Running under: macOS Sequoia 15.4

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib;  LAPACK version 3.12.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: America/Detroit
tzcode source: internal

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] dplyr_1.1.4     paletteer_1.6.0 broom_1.0.7     ggplot2_3.5.1  
[5] knitr_1.49     

loaded via a namespace (and not attached):
 [1] sass_0.4.9        utf8_1.2.4        generics_0.1.3    tidyr_1.3.1      
 [5] prismatic_1.1.2   stringi_1.8.4     digest_0.6.37     magrittr_2.0.3   
 [9] evaluate_1.0.1    grid_4.4.3        fastmap_1.2.0     rprojroot_2.0.4  
[13] workflowr_1.7.1   jsonlite_1.8.9    whisker_0.4.1     backports_1.5.0  
[17] rematch2_2.1.2    promises_1.3.0    purrr_1.0.2       fansi_1.0.6      
[21] scales_1.3.0      jquerylib_0.1.4   cli_3.6.3         rlang_1.1.4      
[25] munsell_0.5.1     withr_3.0.2       cachem_1.1.0      yaml_2.3.10      
[29] tools_4.4.3       colorspace_2.1-1  httpuv_1.6.15     vctrs_0.6.5      
[33] R6_2.5.1          lifecycle_1.0.4   git2r_0.35.0      stringr_1.5.1    
[37] fs_1.6.5          pkgconfig_2.0.3   pillar_1.9.0      bslib_0.8.0      
[41] later_1.3.2       gtable_0.3.6      glue_1.8.0        Rcpp_1.0.13-1    
[45] xfun_0.49         tibble_3.2.1      tidyselect_1.2.1  rstudioapi_0.17.1
[49] farver_2.1.2      htmltools_0.5.8.1 rmarkdown_2.29    labeling_0.4.3   
[53] compiler_4.4.3