Last updated: 2020-01-25
Checks: 6 1
Knit directory: 20170327_Psen2S4Ter_RNASeq/
This reproducible R Markdown analysis was created with workflowr (version 1.6.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish
to commit the R Markdown file and build the HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20200119)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Unstaged changes:
Modified: analysis/2_DifferentialExpression.Rmd
Modified: analysis/2a_NoCQN.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view them.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | f04bb47 | Steve Ped | 2020-01-25 | Minor typos |
Rmd | 7251bd2 | Steve Ped | 2020-01-25 | Tweaks |
Rmd | 7fea156 | Steve Ped | 2020-01-25 | Added rRNA checks & heatmaps |
html | 9bff516 | Steve Ped | 2020-01-24 | Added analysis without CQN |
Rmd | 7b680b2 | Steve Ped | 2020-01-24 | Added analysis without CQN |
html | 95ccc90 | Steve Ped | 2020-01-22 | Compiled DE so far |
Rmd | 1858f49 | Steve Ped | 2020-01-22 | Started presenting actual DE genes |
html | 1858f49 | Steve Ped | 2020-01-22 | Started presenting actual DE genes |
Rmd | 10a285b | Steve Ped | 2020-01-22 | Expanded description in index and tried reusing an image |
html | 10a285b | Steve Ped | 2020-01-22 | Expanded description in index and tried reusing an image |
html | aabb570 | Steve Ped | 2020-01-21 | Rebuilt to get rid of warnings |
Rmd | 71b8832 | Steve Ped | 2020-01-21 | Added DE QC for GC bias |
html | 71b8832 | Steve Ped | 2020-01-21 | Added DE QC for GC bias |
Rmd | e825637 | Steve Ped | 2020-01-21 | Minor updates to DE plots |
html | 01512da | Steve Ped | 2020-01-21 | Added initial DE analysis to index |
Rmd | fbb6242 | Steve Ped | 2020-01-21 | Paused DE analysis |
Rmd | c560637 | Steve Ped | 2020-01-20 | Started DE analysis |
library(ngsReports)
library(tidyverse)
library(magrittr)
library(edgeR)
library(AnnotationHub)
library(ensembldb)
library(scales)
library(pander)
library(cowplot)
library(cqn)
library(ggrepel)
# library(UpSetR)
library(pheatmap)
library(RColorBrewer)
if (interactive()) setwd(here::here())
theme_set(theme_bw())
panderOptions("big.mark", ",")
panderOptions("table.split.table", Inf)
panderOptions("table.style", "rmarkdown")
ah <- AnnotationHub() %>%
subset(species == "Danio rerio") %>%
subset(rdataclass == "EnsDb")
ensDb <- ah[["AH74989"]]
grTrans <- transcripts(ensDb)
trLengths <- exonsBy(ensDb, "tx") %>%
width() %>%
vapply(sum, integer(1))
mcols(grTrans)$length <- trLengths[names(grTrans)]
gcGene <- grTrans %>%
mcols() %>%
as.data.frame() %>%
dplyr::select(gene_id, tx_id, gc_content, length) %>%
as_tibble() %>%
group_by(gene_id) %>%
summarise(
gc_content = sum(gc_content*length) / sum(length),
length = ceiling(median(length))
)
grGenes <- genes(ensDb)
mcols(grGenes) %<>%
as.data.frame() %>%
left_join(gcGene) %>%
as.data.frame() %>%
DataFrame()
Similarly to the Quality Assessment steps, GRanges
objects were formed at the gene and transcript levels, to enable estimation of GC content and length for each transcript and gene. GC content and transcript length are available for each transcript, and for gene-level estimates, GC content was taken as the sum of all GC bases divided by the sum of all transcript lengths, effectively averaging across all transcripts. Gene length was defined as the median transcript length.
samples <- read_csv("data/samples.csv") %>%
distinct(sampleName, .keep_all = TRUE) %>%
dplyr::select(sample = sampleName, sampleID, genotype) %>%
mutate(
genotype = factor(genotype, levels = c("WT", "Het", "Hom")),
mutant = genotype %in% c("Het", "Hom"),
homozygous = genotype == "Hom"
)
genoCols <- samples$genotype %>%
levels() %>%
length() %>%
brewer.pal("Set1") %>%
setNames(levels(samples$genotype))
Sample metadata was also loaded, with only the sampleID and genotype being retained. All other fields were considered irrelevant.
minCPM <- 1.5
minSamples <- 4
dgeList <- file.path("data", "2_alignedData", "featureCounts", "genes.out") %>%
read_delim(delim = "\t") %>%
set_names(basename(names(.))) %>%
as.data.frame() %>%
column_to_rownames("Geneid") %>%
as.matrix() %>%
set_colnames(str_remove(colnames(.), "Aligned.sortedByCoord.out.bam")) %>%
.[rowSums(cpm(.) >= minCPM) >= minCPM,] %>%
DGEList(
samples = tibble(sample = colnames(.)) %>%
left_join(samples),
genes = grGenes[rownames(.)] %>%
as.data.frame() %>%
dplyr::select(
chromosome = seqnames, start, end,
gene_id, gene_name, gene_biotype, description,
entrezid, gc_content, length
)
) %>%
.[!grepl("rRNA", .$genes$gene_biotype),] %>%
calcNormFactors()
Gene-level count data as output by featureCounts
, was loaded and formed into a DGEList
object. During this process, genes were removed if:
gene_biotype
was any type of rRNA
.These filtering steps returned gene-level counts for 16,640 genes, with total library sizes between 11,852,141 and 16,997,219 reads assigned to genes. It was noted that these library sizes were about 1.5-fold larger than the transcript-level counts used for the QA steps.
cpm(dgeList, log = TRUE) %>%
as.data.frame() %>%
pivot_longer(
cols = everything(),
names_to = "sample",
values_to = "logCPM"
) %>%
split(f = .$sample) %>%
lapply(function(x){
d <- density(x$logCPM)
tibble(
sample = unique(x$sample),
x = d$x,
y = d$y
)
}) %>%
bind_rows() %>%
left_join(samples) %>%
ggplot(aes(x, y, colour = genotype, group = sample)) +
geom_line() +
scale_colour_manual(
values = genoCols
) +
labs(
x = "logCPM",
y = "Density",
colour = "Genotype"
)
contLabeller <- as_labeller(
c(
HetVsWT = "S4Ter/+ Vs +/+",
HomVsWT = "S4Ter/S4Ter Vs +/+",
HomVsHet = "S4Ter/S4Ter Vs S4Ter/+",
Hom = "S4Ter/S4Ter",
Het = "S4Ter/+",
WT = "+/+",
mutant = "Mutant Vs Wild-type",
homozygous = "Difference between mutants"
)
)
geneLabeller <- structure(grGenes$gene_name, names = grGenes$gene_id) %>%
as_labeller()
Labeller functions for genotypes, contrasts and gene names were additionally defined for simpler plotting using ggplot2
.
pca <- dgeList %>%
cpm(log = TRUE) %>%
t() %>%
prcomp()
pcaVars <- percent_format(0.1)(summary(pca)$importance["Proportion of Variance",])
pca$x %>%
as.data.frame() %>%
rownames_to_column("sample") %>%
left_join(samples) %>%
as_tibble() %>%
ggplot(aes(PC1, PC2, colour = genotype, fill = genotype)) +
geom_point() +
geom_text_repel(aes(label = sampleID), show.legend = FALSE) +
stat_ellipse(geom = "polygon", alpha = 0.05, show.legend = FALSE) +
guides(fill = FALSE) +
scale_colour_manual(
values = genoCols
) +
labs(
x = paste0("PC1 (", pcaVars[["PC1"]], ")"),
y = paste0("PC2 (", pcaVars[["PC2"]], ")"),
colour = "Genotype"
)
A Principal Component Analysis (PCA) was also performed using logCPM values from each sample. Both mutant genotypes appear to cluster together, however it has previously been noted that GC content appears to track closely with PC1, as a result of variable rRNA removal.
Version | Author | Date |
---|---|---|
10a285b | Steve Ped | 2020-01-22 |
Given that there was a strong similarity between mutants, the model matrix was defined as containing an intercept, with additional columns defining presence of any mutant alleles, and the final column capturing the difference between mutants.
d <- model.matrix(~mutant + homozygous, data = dgeList$samples) %>%
set_colnames(str_remove(colnames(.), "TRUE"))
pheatmap(
d,
cluster_cols = FALSE,
cluster_rows = FALSE,
color = c("white", "grey50"),
annotation_row = dgeList$samples["genotype"],
annotation_colors = list(genotype = genoCols),
legend = FALSE
)
Version | Author | Date |
---|---|---|
7251bd2 | Steve Ped | 2020-01-25 |
As GC content and length was noted as being of concern for this dataset, conditional-quantile normalisation was performed using the cqn
package. This adds a gene and sample-level offset for each count which takes into account any systemic bias, such as that identified previously as an artefact of variable rRNA removal. The resultant glm.offset
values were added to the original DGEList
object, and all dispersion estimates were calculated.
gcCqn <- cqn(
counts = dgeList$counts,
x = dgeList$genes$gc_content,
lengths = dgeList$genes$length,
sizeFactors = dgeList$samples$lib.size
)
par(mfrow = c(1, 2))
cqnplot(gcCqn, n = 1, xlab = "GC Content", col = genoCols)
cqnplot(gcCqn, n = 2, xlab = "Length", col = genoCols)
legend("bottomright", legend = levels(samples$genotype), col = genoCols, lty = 1)
par(mfrow = c(1, 1))
dgeList$offset <- gcCqn$glm.offset
dgeList %<>% estimateDisp(design = d)
minLfc <- log2(2)
alpha <- 0.01
fit <- glmFit(dgeList)
topTables <- colnames(d)[2:3] %>%
sapply(function(x){
glmLRT(fit, coef = x) %>%
topTags(n = Inf) %>%
.[["table"]] %>%
as_tibble() %>%
arrange(PValue) %>%
dplyr::select(
gene_id, gene_name, logFC, logCPM, PValue, FDR, everything()
) %>%
mutate(
coef = x,
bonfP = p.adjust(PValue, "bonf"),
DE = case_when(
bonfP < alpha ~ TRUE,
FDR < alpha & abs(logFC) > minLfc ~ TRUE
),
DE = ifelse(is.na(DE), FALSE, DE)
)
}, simplify = FALSE)
Models were fit using the negative-binomial approaches of glmFit()
. Top Tables were then obtained using likelihood-ratio tests in glmLRT()
. These test the standard \(H_0\) that the true value of the estimated model coefficient is zero. These model coefficients effectively estimate:
For enrichment testing, genes were initially considered to be DE using:
As fewer genes were detected in the comparisons between mutants, a simple FDR of 0.05 was subsequently chosen.
topTables$homozygous %<>%
mutate(DE = FDR < 0.05)
Using these criteria, the following initial DE gene-sets were defined:
topTables %>%
lapply(dplyr::filter, DE) %>%
vapply(nrow, integer(1)) %>%
set_names(
case_when(
names(.) == "mutant" ~ "psen2 mutant",
names(.) == "homozygous" ~ "HomVsHet"
)
) %>%
pander()
psen2 mutant | HomVsHet |
---|---|
615 | 7 |
deCols <- c(
`FALSE` = rgb(0.5, 0.5, 0.5, 0.4),
`TRUE` = rgb(1, 0, 0, 0.7)
)
topTables %>%
bind_rows() %>%
mutate(stat = -sign(logFC)*log10(PValue)) %>%
ggplot(aes(gc_content, stat)) +
geom_point(aes(colour = DE), alpha = 0.4) +
geom_smooth(se = FALSE) +
facet_wrap(~coef, labeller = contLabeller) +
labs(
x = "GC content (%)",
y = "Ranking Statistic"
) +
coord_cartesian(ylim = c(-10, 10)) +
scale_colour_manual(values = deCols) +
theme(legend.position = "none")
topTables %>%
bind_rows() %>%
mutate(stat = -sign(logFC)*log10(PValue)) %>%
ggplot(aes(length, stat)) +
geom_point(aes(colour = DE), alpha = 0.4) +
geom_smooth(se = FALSE) +
facet_wrap(~coef, labeller = contLabeller) +
labs(
x = "Gene Length (bp)",
y = "Ranking Statistic"
) +
coord_cartesian(ylim = c(-10, 10)) +
scale_x_log10(labels = comma) +
scale_colour_manual(values = deCols) +
theme(legend.position = "none")
Checks for both GC and length bias on differential expression showed that a small bias remained evident, despite using conditional-quantile normalisation. However, an alternative analysis on the same dataset excluding the CQN steps revealed vastly different and exaggerated bias. As such, the impact of CQN normalisation was considered to be appropriate.
rawFqc <- list.files(
path = "data/0_rawData/FastQC/",
pattern = "zip",
full.names = TRUE
) %>%
FastqcDataList()
rawGC <- getModule(rawFqc, "Per_sequence_GC") %>%
group_by(Filename) %>%
mutate(Freq = Count / sum(Count)) %>%
dplyr::filter(GC_Content > 70) %>%
summarise(Freq = sum(Freq)) %>%
arrange(desc(Freq)) %>%
mutate(sample = str_remove(Filename, "_R[12].fastq.gz")) %>%
group_by(sample) %>%
summarise(Freq = mean(Freq)) %>%
left_join(samples)
riboVec <- structure(rawGC$Freq, names = rawGC$sample)
riboCors <- cpm(dgeList, log = TRUE)%>%
apply(1, function(x){
cor(x, riboVec[names(x)])
})
Given the previously identified concerns about variable rRNA removal, correlations were calculated between each gene’s expression values and the proportion of the raw libraries with > 70% GC. Those with the strongest correlation, and which the FDR is < 0.01 are shown below.
topTables$mutant %>%
mutate(riboCors = riboCors[gene_id]) %>%
dplyr::filter(
FDR < alpha
) %>%
dplyr::select(gene_id, gene_name, logFC, logCPM, FDR, riboCors, DE) %>%
arrange(desc(riboCors)) %>%
mutate(FDR = case_when(
FDR >= 0.0001 ~ sprintf("%.4f", FDR),
FDR < 0.0001 ~ sprintf("%.2e", FDR)
)
) %>%
dplyr::slice(1:40) %>%
pander(
justify = "llrrrrl",
style = "rmarkdown",
caption = paste(
"The", nrow(.), "genes most correlated with the original high GC content.",
"Many failed the selection criteria for differential expression,",
"primarily due to the stringent logFC filter.",
"However the unusually high number of ribosomal protein coding genes",
"is currently inexplicable, but notable."
)
)
gene_id | gene_name | logFC | logCPM | FDR | riboCors | DE |
---|---|---|---|---|---|---|
ENSDARG00000012688 | eif1b | 0.5229 | 7.482 | 0.0024 | 0.9906 | FALSE |
ENSDARG00000012871 | npepl1 | 0.6049 | 4.485 | 0.0028 | 0.9823 | FALSE |
ENSDARG00000103994 | ppiab | 0.8891 | 7.372 | 6.18e-05 | 0.9814 | FALSE |
ENSDARG00000034897 | rps10 | 0.8809 | 5.898 | 0.0001 | 0.9795 | FALSE |
ENSDARG00000068995 | h2afx1 | 0.644 | 6.605 | 0.0025 | 0.9734 | FALSE |
ENSDARG00000077291 | rps2 | 1.305 | 7.52 | 1.58e-07 | 0.9733 | TRUE |
ENSDARG00000002240 | psmb6 | 0.6407 | 4.702 | 0.0056 | 0.9733 | FALSE |
ENSDARG00000036298 | rps13 | 0.6762 | 6.076 | 8.26e-05 | 0.9707 | FALSE |
ENSDARG00000037071 | rps26 | 0.651 | 5.323 | 0.0045 | 0.97 | FALSE |
ENSDARG00000057026 | ran | 0.6265 | 7.071 | 0.0002 | 0.9689 | FALSE |
ENSDARG00000111753 | hist1h4l | 0.9775 | 2.015 | 0.0061 | 0.9685 | FALSE |
ENSDARG00000038028 | ndufa6 | 1.051 | 4.693 | 2.57e-05 | 0.9667 | TRUE |
ENSDARG00000046157 | RPS17 | 0.7725 | 6.74 | 0.0002 | 0.9667 | FALSE |
ENSDARG00000078929 | abhd16a | 0.5358 | 4.906 | 0.0013 | 0.9664 | FALSE |
ENSDARG00000099226 | CABZ01076667.1 | 0.5407 | 3.973 | 0.0008 | 0.9652 | FALSE |
ENSDARG00000014690 | rps4x | 0.6511 | 7.368 | 0.0003 | 0.9649 | FALSE |
ENSDARG00000092553 | slc25a5 | 0.9012 | 8.952 | 2.64e-05 | 0.9648 | TRUE |
ENSDARG00000011665 | aldoaa | 0.6082 | 7.763 | 0.0029 | 0.9639 | FALSE |
ENSDARG00000045447 | slc35g2b | 0.766 | 4.873 | 0.0002 | 0.9627 | FALSE |
ENSDARG00000034534 | atp6v1aa | 0.6212 | 7.049 | 0.0003 | 0.9618 | FALSE |
ENSDARG00000099766 | myl12.1 | 0.3841 | 6.468 | 0.0058 | 0.9595 | FALSE |
ENSDARG00000037962 | psmb7 | 0.7979 | 4.104 | 3.30e-05 | 0.9592 | FALSE |
ENSDARG00000019230 | rpl7a | 0.9036 | 7.71 | 5.34e-05 | 0.9591 | FALSE |
ENSDARG00000099104 | rpl24 | 0.662 | 6.729 | 0.0004 | 0.9571 | FALSE |
ENSDARG00000055475 | rps27.2 | 0.6175 | 6.719 | 0.0019 | 0.9566 | FALSE |
ENSDARG00000026322 | dhrs13a.1 | 0.7388 | 2.804 | 0.0032 | 0.9563 | FALSE |
ENSDARG00000025581 | rpl10 | 1.096 | 6.381 | 0.0003 | 0.9562 | TRUE |
ENSDARG00000092807 | si:dkey-151g10.6 | 0.8303 | 6.491 | 9.37e-07 | 0.9551 | TRUE |
ENSDARG00000053365 | rpl31 | 1.215 | 6.638 | 8.99e-06 | 0.9549 | TRUE |
ENSDARG00000075445 | psmb5 | 0.8405 | 5.59 | 5.33e-05 | 0.9544 | FALSE |
ENSDARG00000030237 | pgrmc2 | 0.3734 | 6.21 | 0.0046 | 0.9538 | FALSE |
ENSDARG00000011405 | rps9 | 0.823 | 6.209 | 0.0006 | 0.9537 | FALSE |
ENSDARG00000035808 | clcn4 | 0.6887 | 5.678 | 0.0014 | 0.9528 | FALSE |
ENSDARG00000043561 | psmc1b | 0.6844 | 4.673 | 0.0004 | 0.9517 | FALSE |
ENSDARG00000017235 | eif5a | 0.7003 | 7.388 | 5.54e-06 | 0.9514 | TRUE |
ENSDARG00000034291 | rpl37 | 1.085 | 5.662 | 5.03e-06 | 0.9513 | TRUE |
ENSDARG00000104173 | tufm | 0.7123 | 5.051 | 0.0013 | 0.9511 | FALSE |
ENSDARG00000058451 | rpl6 | 0.7848 | 7.877 | 0.0004 | 0.9497 | FALSE |
ENSDARG00000014867 | rpl8 | 0.9139 | 6.716 | 1.50e-06 | 0.9493 | TRUE |
ENSDARG00000089976 | spcs3 | 0.7379 | 3.54 | 0.0034 | 0.949 | FALSE |
topTables %>%
bind_rows() %>%
arrange(DE) %>%
ggplot(aes(logCPM, logFC)) +
geom_point(aes(colour = DE)) +
geom_text_repel(
aes(label = gene_name, colour = DE),
data = . %>% dplyr::filter(DE & abs(logFC) > 2.9)
) +
geom_text_repel(
aes(label = gene_name, colour = DE),
data = . %>% dplyr::filter(FDR < 0.05 & coef == "homozygous")
) +
geom_smooth(se = FALSE) +
geom_hline(
yintercept = c(-1, 1)*minLfc,
linetype = 2,
colour = "red"
) +
facet_wrap(~coef, nrow = 2, labeller = contLabeller) +
scale_y_continuous(breaks = seq(-8, 8, by = 2)) +
scale_colour_manual(values = deCols) +
theme(legend.position = "none")
topTables %>%
bind_rows() %>%
ggplot(aes(PValue)) +
geom_histogram(
binwidth = 0.02,
colour = "black", fill = "grey90"
) +
facet_wrap(~coef, labeller = contLabeller)
Version | Author | Date |
---|---|---|
7251bd2 | Steve Ped | 2020-01-25 |
topTables %>%
bind_rows() %>%
ggplot(aes(logFC, -log10(PValue), colour = DE)) +
geom_point(alpha = 0.4) +
geom_text_repel(
aes(label = gene_name),
data = . %>% dplyr::filter(PValue < 1e-12 | abs(logFC) > 4)
) +
geom_text_repel(
aes(label = gene_name),
data = . %>% dplyr::filter(FDR < 0.05 & coef == "homozygous")
) +
geom_vline(
xintercept = c(-1, 1)*minLfc,
linetype = 2,
colour = "red"
) +
facet_wrap(~coef, nrow = 1, labeller = contLabeller) +
scale_colour_manual(values = deCols) +
scale_x_continuous(breaks = seq(-8, 8, by = 2)) +
theme(legend.position = "none")
deGenes <- topTables %>%
lapply(dplyr::filter, DE) %>%
lapply(magrittr::extract2, "gene_id")
n <- 40
A set of 615 genes was identified as DE in the presence of the mutant psen2S4Ter transcript. The most highly ranked 40 genes are shown in the following heatmap.
genoCols <- RColorBrewer::brewer.pal(3, "Set1") %>%
setNames(levels(dgeList$samples$genotype))
dgeList %>%
cpm(log = TRUE) %>%
extract(deGenes$mutant[seq_len(n)],) %>%
as.data.frame() %>%
set_rownames(unlist(geneLabeller(rownames(.)))) %>%
pheatmap::pheatmap(
color = viridis_pal(option = "magma")(100),
labels_col = colnames(.) %>%
str_replace_all(".+(Het|Hom|WT).+F3(_[0-9]{2}).+", "\\1\\2"),
legend_breaks = c(seq(-2, 8, by = 2), max(.)),
legend_labels = c(seq(-2, 8, by = 2), "logCPM\n"),
annotation_col = dgeList$samples %>%
dplyr::select(Genotype = genotype),
annotation_names_col = FALSE,
annotation_colors = list(Genotype = genoCols),
cutree_cols = 2,
cutree_rows = 6
)
When inspecting the genes showing differences between mutants, it was noted that the WT and Homozygous mutant samples clustered together, implying that there was a unique effect on these genes which was specific to the heterozygous condition.
dgeList %>%
cpm(log = TRUE) %>%
extract(deGenes$homozygous,) %>%
as.data.frame() %>%
set_rownames(unlist(geneLabeller(rownames(.)))) %>%
pheatmap::pheatmap(
color = viridis_pal(option = "magma")(100),
labels_col = colnames(.) %>%
str_replace_all(".+(Het|Hom|WT).+F3(_[0-9]{2}).+", "\\1\\2"),
legend_breaks = c(seq(-2, 8, by = 2), max(.)),
legend_labels = c(seq(-2, 8, by = 2), "logCPM\n"),
annotation_col = dgeList$samples %>%
dplyr::select(Genotype = genotype),
annotation_names_col = FALSE,
annotation_colors = list(Genotype = genoCols),
cutree_cols = 2
)
Version | Author | Date |
---|---|---|
7251bd2 | Steve Ped | 2020-01-25 |
devtools::session_info()
─ Session info ───────────────────────────────────────────────────────────────
setting value
version R version 3.6.2 (2019-12-12)
os Ubuntu 18.04.3 LTS
system x86_64, linux-gnu
ui X11
language en_AU:en
collate en_AU.UTF-8
ctype en_AU.UTF-8
tz Australia/Adelaide
date 2020-01-25
─ Packages ───────────────────────────────────────────────────────────────────
package * version date lib source
AnnotationDbi * 1.48.0 2019-10-29 [2] Bioconductor
AnnotationFilter * 1.10.0 2019-10-29 [2] Bioconductor
AnnotationHub * 2.18.0 2019-10-29 [2] Bioconductor
askpass 1.1 2019-01-13 [2] CRAN (R 3.6.0)
assertthat 0.2.1 2019-03-21 [2] CRAN (R 3.6.0)
backports 1.1.5 2019-10-02 [2] CRAN (R 3.6.1)
Biobase * 2.46.0 2019-10-29 [2] Bioconductor
BiocFileCache * 1.10.2 2019-11-08 [2] Bioconductor
BiocGenerics * 0.32.0 2019-10-29 [2] Bioconductor
BiocManager 1.30.10 2019-11-16 [2] CRAN (R 3.6.1)
BiocParallel 1.20.1 2019-12-21 [2] Bioconductor
BiocVersion 3.10.1 2019-06-06 [2] Bioconductor
biomaRt 2.42.0 2019-10-29 [2] Bioconductor
Biostrings 2.54.0 2019-10-29 [2] Bioconductor
bit 1.1-15.1 2020-01-14 [2] CRAN (R 3.6.2)
bit64 0.9-7 2017-05-08 [2] CRAN (R 3.6.0)
bitops 1.0-6 2013-08-17 [2] CRAN (R 3.6.0)
blob 1.2.1 2020-01-20 [2] CRAN (R 3.6.2)
broom 0.5.3 2019-12-14 [2] CRAN (R 3.6.2)
callr 3.4.0 2019-12-09 [2] CRAN (R 3.6.2)
cellranger 1.1.0 2016-07-27 [2] CRAN (R 3.6.0)
cli 2.0.1 2020-01-08 [2] CRAN (R 3.6.2)
cluster 2.1.0 2019-06-19 [2] CRAN (R 3.6.1)
colorspace 1.4-1 2019-03-18 [2] CRAN (R 3.6.0)
cowplot * 1.0.0 2019-07-11 [2] CRAN (R 3.6.1)
cqn * 1.32.0 2019-10-29 [2] Bioconductor
crayon 1.3.4 2017-09-16 [2] CRAN (R 3.6.0)
curl 4.3 2019-12-02 [2] CRAN (R 3.6.2)
data.table 1.12.8 2019-12-09 [2] CRAN (R 3.6.2)
DBI 1.1.0 2019-12-15 [2] CRAN (R 3.6.2)
dbplyr * 1.4.2 2019-06-17 [2] CRAN (R 3.6.0)
DelayedArray 0.12.2 2020-01-06 [2] Bioconductor
desc 1.2.0 2018-05-01 [2] CRAN (R 3.6.0)
devtools 2.2.1 2019-09-24 [2] CRAN (R 3.6.1)
digest 0.6.23 2019-11-23 [2] CRAN (R 3.6.1)
dplyr * 0.8.3 2019-07-04 [2] CRAN (R 3.6.1)
edgeR * 3.28.0 2019-10-29 [2] Bioconductor
ellipsis 0.3.0 2019-09-20 [2] CRAN (R 3.6.1)
ensembldb * 2.10.2 2019-11-20 [2] Bioconductor
evaluate 0.14 2019-05-28 [2] CRAN (R 3.6.0)
FactoMineR 2.1 2020-01-17 [2] CRAN (R 3.6.2)
fansi 0.4.1 2020-01-08 [2] CRAN (R 3.6.2)
farver 2.0.3 2020-01-16 [2] CRAN (R 3.6.2)
fastmap 1.0.1 2019-10-08 [2] CRAN (R 3.6.1)
flashClust 1.01-2 2012-08-21 [2] CRAN (R 3.6.1)
forcats * 0.4.0 2019-02-17 [2] CRAN (R 3.6.0)
fs 1.3.1 2019-05-06 [2] CRAN (R 3.6.0)
generics 0.0.2 2018-11-29 [2] CRAN (R 3.6.0)
GenomeInfoDb * 1.22.0 2019-10-29 [2] Bioconductor
GenomeInfoDbData 1.2.2 2019-11-21 [2] Bioconductor
GenomicAlignments 1.22.1 2019-11-12 [2] Bioconductor
GenomicFeatures * 1.38.1 2020-01-22 [2] Bioconductor
GenomicRanges * 1.38.0 2019-10-29 [2] Bioconductor
ggdendro 0.1-20 2016-04-27 [2] CRAN (R 3.6.0)
ggplot2 * 3.2.1 2019-08-10 [2] CRAN (R 3.6.1)
ggrepel * 0.8.1 2019-05-07 [2] CRAN (R 3.6.0)
git2r 0.26.1 2019-06-29 [2] CRAN (R 3.6.1)
glue 1.3.1 2019-03-12 [2] CRAN (R 3.6.0)
gtable 0.3.0 2019-03-25 [2] CRAN (R 3.6.0)
haven 2.2.0 2019-11-08 [2] CRAN (R 3.6.1)
highr 0.8 2019-03-20 [2] CRAN (R 3.6.0)
hms 0.5.3 2020-01-08 [2] CRAN (R 3.6.2)
htmltools 0.4.0 2019-10-04 [2] CRAN (R 3.6.1)
htmlwidgets 1.5.1 2019-10-08 [2] CRAN (R 3.6.1)
httpuv 1.5.2 2019-09-11 [2] CRAN (R 3.6.1)
httr 1.4.1 2019-08-05 [2] CRAN (R 3.6.1)
hwriter 1.3.2 2014-09-10 [2] CRAN (R 3.6.0)
interactiveDisplayBase 1.24.0 2019-10-29 [2] Bioconductor
IRanges * 2.20.2 2020-01-13 [2] Bioconductor
jpeg 0.1-8.1 2019-10-24 [2] CRAN (R 3.6.1)
jsonlite 1.6 2018-12-07 [2] CRAN (R 3.6.0)
kableExtra 1.1.0 2019-03-16 [2] CRAN (R 3.6.1)
knitr 1.27 2020-01-16 [2] CRAN (R 3.6.2)
labeling 0.3 2014-08-23 [2] CRAN (R 3.6.0)
later 1.0.0 2019-10-04 [2] CRAN (R 3.6.1)
lattice 0.20-38 2018-11-04 [4] CRAN (R 3.6.0)
latticeExtra 0.6-29 2019-12-19 [2] CRAN (R 3.6.2)
lazyeval 0.2.2 2019-03-15 [2] CRAN (R 3.6.0)
leaps 3.1 2020-01-16 [2] CRAN (R 3.6.2)
lifecycle 0.1.0 2019-08-01 [2] CRAN (R 3.6.1)
limma * 3.42.0 2019-10-29 [2] Bioconductor
locfit 1.5-9.1 2013-04-20 [2] CRAN (R 3.6.0)
lubridate 1.7.4 2018-04-11 [2] CRAN (R 3.6.0)
magrittr * 1.5 2014-11-22 [2] CRAN (R 3.6.0)
MASS 7.3-51.5 2019-12-20 [4] CRAN (R 3.6.2)
Matrix 1.2-18 2019-11-27 [2] CRAN (R 3.6.1)
MatrixModels 0.4-1 2015-08-22 [2] CRAN (R 3.6.1)
matrixStats 0.55.0 2019-09-07 [2] CRAN (R 3.6.1)
mclust * 5.4.5 2019-07-08 [2] CRAN (R 3.6.1)
memoise 1.1.0 2017-04-21 [2] CRAN (R 3.6.0)
mgcv 1.8-31 2019-11-09 [4] CRAN (R 3.6.1)
mime 0.8 2019-12-19 [2] CRAN (R 3.6.2)
modelr 0.1.5 2019-08-08 [2] CRAN (R 3.6.1)
munsell 0.5.0 2018-06-12 [2] CRAN (R 3.6.0)
ngsReports * 1.1.2 2019-10-16 [1] Bioconductor
nlme 3.1-143 2019-12-10 [4] CRAN (R 3.6.2)
nor1mix * 1.3-0 2019-06-13 [2] CRAN (R 3.6.1)
openssl 1.4.1 2019-07-18 [2] CRAN (R 3.6.1)
pander * 0.6.3 2018-11-06 [2] CRAN (R 3.6.0)
pheatmap * 1.0.12 2019-01-04 [2] CRAN (R 3.6.0)
pillar 1.4.3 2019-12-20 [2] CRAN (R 3.6.2)
pkgbuild 1.0.6 2019-10-09 [2] CRAN (R 3.6.1)
pkgconfig 2.0.3 2019-09-22 [2] CRAN (R 3.6.1)
pkgload 1.0.2 2018-10-29 [2] CRAN (R 3.6.0)
plotly 4.9.1 2019-11-07 [2] CRAN (R 3.6.1)
plyr 1.8.5 2019-12-10 [2] CRAN (R 3.6.2)
png 0.1-7 2013-12-03 [2] CRAN (R 3.6.0)
preprocessCore * 1.48.0 2019-10-29 [2] Bioconductor
prettyunits 1.1.1 2020-01-24 [2] CRAN (R 3.6.2)
processx 3.4.1 2019-07-18 [2] CRAN (R 3.6.1)
progress 1.2.2 2019-05-16 [2] CRAN (R 3.6.0)
promises 1.1.0 2019-10-04 [2] CRAN (R 3.6.1)
ProtGenerics 1.18.0 2019-10-29 [2] Bioconductor
ps 1.3.0 2018-12-21 [2] CRAN (R 3.6.0)
purrr * 0.3.3 2019-10-18 [2] CRAN (R 3.6.1)
quantreg * 5.54 2019-12-13 [2] CRAN (R 3.6.2)
R6 2.4.1 2019-11-12 [2] CRAN (R 3.6.1)
rappdirs 0.3.1 2016-03-28 [2] CRAN (R 3.6.0)
RColorBrewer * 1.1-2 2014-12-07 [2] CRAN (R 3.6.0)
Rcpp 1.0.3 2019-11-08 [2] CRAN (R 3.6.1)
RCurl 1.98-1.1 2020-01-19 [2] CRAN (R 3.6.2)
readr * 1.3.1 2018-12-21 [2] CRAN (R 3.6.0)
readxl 1.3.1 2019-03-13 [2] CRAN (R 3.6.0)
remotes 2.1.0 2019-06-24 [2] CRAN (R 3.6.0)
reprex 0.3.0 2019-05-16 [2] CRAN (R 3.6.0)
reshape2 1.4.3 2017-12-11 [2] CRAN (R 3.6.0)
rlang 0.4.2 2019-11-23 [2] CRAN (R 3.6.1)
rmarkdown 2.1 2020-01-20 [2] CRAN (R 3.6.2)
rprojroot 1.3-2 2018-01-03 [2] CRAN (R 3.6.0)
Rsamtools 2.2.1 2019-11-06 [2] Bioconductor
RSQLite 2.2.0 2020-01-07 [2] CRAN (R 3.6.2)
rstudioapi 0.10 2019-03-19 [2] CRAN (R 3.6.0)
rtracklayer 1.46.0 2019-10-29 [2] Bioconductor
rvest 0.3.5 2019-11-08 [2] CRAN (R 3.6.1)
S4Vectors * 0.24.3 2020-01-18 [2] Bioconductor
scales * 1.1.0 2019-11-18 [2] CRAN (R 3.6.1)
scatterplot3d 0.3-41 2018-03-14 [2] CRAN (R 3.6.1)
sessioninfo 1.1.1 2018-11-05 [2] CRAN (R 3.6.0)
shiny 1.4.0 2019-10-10 [2] CRAN (R 3.6.1)
ShortRead 1.44.1 2019-12-19 [2] Bioconductor
SparseM * 1.78 2019-12-13 [2] CRAN (R 3.6.2)
stringi 1.4.5 2020-01-11 [2] CRAN (R 3.6.2)
stringr * 1.4.0 2019-02-10 [2] CRAN (R 3.6.0)
SummarizedExperiment 1.16.1 2019-12-19 [2] Bioconductor
testthat 2.3.1 2019-12-01 [2] CRAN (R 3.6.1)
tibble * 2.1.3 2019-06-06 [2] CRAN (R 3.6.0)
tidyr * 1.0.0 2019-09-11 [2] CRAN (R 3.6.1)
tidyselect 0.2.5 2018-10-11 [2] CRAN (R 3.6.0)
tidyverse * 1.3.0 2019-11-21 [2] CRAN (R 3.6.1)
truncnorm 1.0-8 2018-02-27 [2] CRAN (R 3.6.0)
usethis 1.5.1 2019-07-04 [2] CRAN (R 3.6.1)
vctrs 0.2.1 2019-12-17 [2] CRAN (R 3.6.2)
viridisLite 0.3.0 2018-02-01 [2] CRAN (R 3.6.0)
webshot 0.5.2 2019-11-22 [2] CRAN (R 3.6.1)
whisker 0.4 2019-08-28 [2] CRAN (R 3.6.1)
withr 2.1.2 2018-03-15 [2] CRAN (R 3.6.0)
workflowr * 1.6.0 2019-12-19 [2] CRAN (R 3.6.2)
xfun 0.12 2020-01-13 [2] CRAN (R 3.6.2)
XML 3.99-0.3 2020-01-20 [2] CRAN (R 3.6.2)
xml2 1.2.2 2019-08-09 [2] CRAN (R 3.6.1)
xtable 1.8-4 2019-04-21 [2] CRAN (R 3.6.0)
XVector 0.26.0 2019-10-29 [2] Bioconductor
yaml 2.2.0 2018-07-25 [2] CRAN (R 3.6.0)
zeallot 0.1.0 2018-01-28 [2] CRAN (R 3.6.0)
zlibbioc 1.32.0 2019-10-29 [2] Bioconductor
zoo 1.8-7 2020-01-10 [2] CRAN (R 3.6.2)
[1] /home/steveped/R/x86_64-pc-linux-gnu-library/3.6
[2] /usr/local/lib/R/site-library
[3] /usr/lib/R/site-library
[4] /usr/lib/R/library