Last updated: 2022-07-06
Checks: 6 1
Knit directory:
20180328_Atkins_RatFracture/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown file has unstaged changes. To know which version of
the R Markdown file created these results, you’ll want to first commit
it to the Git repo. If you’re still working on the analysis, you can
ignore this warning. When you’re finished, you can run
wflow_publish
to commit the R Markdown file and build the
HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20220705)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version dd28879. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Untracked files:
Untracked: data/gmt/
Untracked: output/dge.rds
Unstaged changes:
Modified: analysis/alnQC.Rmd
Modified: analysis/dge.Rmd
Modified: analysis/index.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown (analysis/alnQC.Rmd
) and HTML
(docs/alnQC.html
) files. If you’ve configured a remote Git
repository (see ?wflow_git_remote
), click on the hyperlinks
in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | dd28879 | Steve Pederson | 2022-07-06 | Setup initial DGE after restructure |
html | dd28879 | Steve Pederson | 2022-07-06 | Setup initial DGE after restructure |
library(ngsReports)
library(tidyverse)
library(yaml)
library(scales)
library(pander)
library(glue)
library(plotly)
library(edgeR)
library(ggfortify)
library(AnnotationHub)
library(ensembldb)
library(magrittr)
library(BSgenome.Rnorvegicus.UCSC.rn6)
library(broom)
library(ggrepel)
panderOptions("table.split.table", Inf)
panderOptions("big.mark", ",")
theme_set(theme_bw())
suffix <- "_L001"
pattern <- paste0("_CB2YGANXX_.+fastq.gz")
sp <- "Rnorvegicus"
rn6 <- BSgenome.Rnorvegicus.UCSC.rn6
samples <- "data/targets.csv" %>%
here::here() %>%
read_csv() %>%
mutate(
Filename = paste0(File, suffix)
)
group_cols <- hcl.colors(
n = length(unique(samples$group)),
palette = "Zissou 1"
) %>%
setNames(unique(samples$group))
ah <- AnnotationHub() %>%
subset(rdataclass == "EnsDb") %>%
subset(species == "Rattus norvegicus") %>%
subset(str_detect(description, "96"))
ensDb <- ah[[1]]
genesGR <- genes(ensDb) %>%
keepStandardChromosomes(species = "Rattus_norvegicus", pruning.mode = "coarse") %>%
sortSeqlevels()
transGR <- transcripts(ensDb) %>%
keepStandardChromosomes(species = "Rattus_norvegicus", pruning.mode = "coarse") %>%
sortSeqlevels()
exonGR <- exonsBy(ensDb, "tx") %>%
reduce() %>%
keepStandardChromosomes(species = "Rattus_norvegicus", pruning.mode = "coarse") %>%
sortSeqlevels()
exonGR_UCSC <- exonGR
seqlevels(exonGR_UCSC) <- paste0("chr", seqlevels(exonGR_UCSC)) %>%
str_replace("chrMT", "chrM")
genome(exonGR_UCSC) <- genome(rn6)
exonSeq <- getSeq(rn6, exonGR_UCSC) %>%
lapply(unlist) %>%
as("DNAStringSet")
transGC <- exonSeq %>%
letterFrequency("GC", as.prob = TRUE) %>%
.[,1] %>%
setNames(names(exonSeq))
transGR$gc_content <- transGC[names(transGR)]
mcols(transGR) <- mcols(transGR) %>%
cbind(
transcriptLengths(ensDb)[rownames(.), c("nexon", "tx_len")]
)
mcols(genesGR) <- mcols(genesGR) %>%
as.data.frame() %>%
dplyr::select(
gene_id, gene_name, gene_biotype, entrezid
) %>%
left_join(
mcols(transGR) %>%
as.data.frame() %>%
mutate(
tx_support_level = case_when(
is.na(tx_support_level) ~ 1L,
TRUE ~ tx_support_level
)
) %>%
group_by(gene_id) %>%
summarise(
n_tx = n(),
longest_tx = max(tx_len),
ave_tx_len = mean(tx_len),
gc_content = sum(tx_len*gc_content) / sum(tx_len)
) %>%
mutate(
bin_length = cut(
x = ave_tx_len,
labels = seq_len(10),
breaks = quantile(ave_tx_len, probs = seq(0, 1, length.out = 11)),
include.lowest = TRUE
),
bin_gc = cut(
x = gc_content,
labels = seq_len(10),
breaks = quantile(gc_content, probs = seq(0, 1, length.out = 11)),
include.lowest = TRUE
),
bin = paste(bin_gc, bin_length, sep = "_")
),
by = "gene_id"
) %>%
set_rownames(.$gene_id) %>%
as("DataFrame")
trans2Gene <- mcols(transGR) %>%
as.data.frame() %>%
dplyr::select(tx_id, gene_id) %>%
dplyr::filter(!is.na(tx_id), !is.na(gene_id)) %>%
as_tibble()
Annotation data was loaded as an EnsDb
object, using
Ensembl release 96. Transcript level gene lengths and GC content was
converted to gene level values using:
write_rds(genesGR, here::here("output/genesGR.rds"), compress = "gz")
counts <- list.files(here::here("data/3_kallisto"), full.names = TRUE) %>%
catchKallisto()
dge <- counts$counts %>%
as.data.frame() %>%
rownames_to_column("tx_id") %>%
as_tibble() %>%
set_colnames(basename(colnames(.))) %>%
set_colnames(str_remove(colnames(.),"_CB2Y.+")) %>%
mutate(tx_id = str_remove(tx_id, "\\.[0-9]+")) %>%
dplyr::filter(tx_id %in% trans2Gene$tx_id) %>%
pivot_longer(cols = all_of(samples$Rat), names_to = "Rat", values_to = "count") %>%
left_join(trans2Gene) %>%
group_by(Rat, gene_id) %>%
summarise(count = sum(count)) %>%
pivot_wider(names_from = "Rat", values_from = "count") %>%
dplyr::filter(grepl("ENSRNOG", gene_id)) %>%
as.data.frame() %>%
column_to_rownames("gene_id") %>%
DGEList()
dge$samples %<>%
mutate(Rat = rownames(.)) %>%
dplyr::select(-group) %>%
left_join(samples, by = "Rat") %>%
set_rownames(.$Rat)
dge$genes <- genesGR[rownames(dge)] %>%
mcols()
dge$samples %>%
mutate(lib.size = lib.size / 1e6) %>%
ggplot(aes(Rat, lib.size, fill = group)) +
geom_col() +
facet_wrap(~group, scales = "free_x") +
scale_y_continuous(expand = expansion(c(0, .05))) +
scale_fill_manual(values = group_cols) +
labs(
x = "Sample", y = "Library Size (millions)",
fill = "Group"
)
After assignment to genes, library sizes ranged between 6,934,169 and 14,552,053 reads, with a median library size of 10,208,651 reads.
trimFqc <- here::here("data/1_trimmedData/FastQC") %>%
list.files(pattern = "zip", full.names = TRUE) %>%
FastqcDataList()
trimFqc %>%
getModule("Basic") %>%
mutate(Filename = str_remove_all(Filename, "_R1.fastq.gz")) %>%
left_join(dge$samples, by = "Filename") %>%
mutate(`% Assigned To Genes` = lib.size / Total_Sequences) %>%
ggplot(aes(Rat, `% Assigned To Genes`, fill = group)) +
geom_col() +
facet_wrap(~group, scales = "free_x") +
scale_fill_manual(values = group_cols) +
scale_y_continuous(labels = percent, expand = expansion(c(0, 0.05))) +
labs(fill = "Group")
dge$counts %>%
as_tibble() %>%
mutate(
across(everything(), as.logical)
) %>%
summarise(
across(everything(), sum)
) %>%
pivot_longer(
everything(), names_to = "Rat", values_to = "Detected"
) %>%
left_join(samples)%>%
ggplot(aes(group, Detected, colour = group)) +
geom_point() +
geom_segment(
aes(xend = group, y = 0, yend = Detected),
data = . %>%
group_by(group) %>%
summarise(Detected = min(Detected)),
colour = "black", size = 1/4) +
scale_y_continuous(labels = comma, expand = expansion(c(0, 0.05))) +
scale_colour_manual(values = group_cols) +
labs(
x = "Group",
y = "Genes Detected",
colour = "Group"
)
Version | Author | Date |
---|---|---|
dd28879 | Steve Pederson | 2022-07-06 |
plotly::ggplotly(
dge$counts %>%
is_greater_than(0) %>%
rowSums() %>%
table() %>%
enframe(name = "n_samples", value = "n_genes") %>%
mutate(
n_samples = as.integer(n_samples),
n_genes = as.integer(n_genes),
) %>%
arrange(desc(n_samples)) %>%
mutate(
Detectable = cumsum(n_genes),
Undetectable = sum(n_genes) - Detectable
) %>%
pivot_longer(
cols = ends_with("table"),
names_to = "Status",
values_to = "Number of Genes"
) %>%
dplyr::rename(
`Number of Samples` = n_samples,
) %>%
ggplot(aes(`Number of Samples`, `Number of Genes`, colour = Status)) +
geom_line() +
geom_vline(
aes(xintercept = `Mean Sample Number`),
data = . %>%
summarise(`Mean Sample Number` = mean(`Number of Samples`)),
linetype = 2,
colour = "grey50"
) +
scale_x_continuous(expand = expansion(c(0.01, 0.01))) +
scale_y_continuous(labels = comma) +
scale_colour_manual(values = c(rgb(0.1, 0.7, 0.2), rgb(0.7, 0.1, 0.1))) +
labs(
x = "Samples > 0"
)
)
pca <- dge$counts %>%
.[rowSums(. == 0) < ncol(.)/2,] %>%
cpm(log = TRUE) %>%
t() %>%
prcomp()
A PCA was performed using logCPM values from the subset of 18,017 genes with at least one read in more than half of the samples.
showLabel <- nrow(samples) <= 20
pca %>%
tidy() %>%
dplyr::rename(Rat = row) %>%
left_join(dge$samples, by = "Rat") %>%
dplyr::filter(PC %in% 1:2) %>%
pivot_wider(names_from = "PC", names_prefix = "PC", values_from = "value") %>%
ggplot(
aes(PC1, PC2, colour = group, size = lib.size/1e6)
) +
geom_point() +
geom_text_repel(aes(label = Rat), show.legend = FALSE) +
scale_colour_manual(values = group_cols) +
scale_size_continuous(limits = c(5, 15), breaks = seq(5, 15, by = 5)) +
labs(
x = glue("PC1 ({percent(pca$sdev[[1]]^2 / sum(pca$sdev^2), 0.1)})"),
y = glue("PC2 ({percent(pca$sdev[[2]]^2 / sum(pca$sdev^2), 0.1)})"),
colour = "Group",
size = "Library Size\n(millions)"
)
Version | Author | Date |
---|---|---|
dd28879 | Steve Pederson | 2022-07-06 |
mcols(genesGR) %>%
as.data.frame() %>%
dplyr::filter(gene_id %in% rownames(pca$rotation)) %>%
as_tibble() %>%
mutate(
bin_length = cut(
x = ave_tx_len,
labels = seq_len(10),
breaks = quantile(ave_tx_len, probs = seq(0, 1, length.out = 11)),
include.lowest = TRUE
),
bin_gc = cut(
x = gc_content,
labels = seq_len(10),
breaks = quantile(gc_content, probs = seq(0, 1, length.out = 11)),
include.lowest = TRUE
),
bin = paste(bin_gc, bin_length, sep = "_")
) %>%
dplyr::select(gene_id, contains("bin")) %>%
mutate(
PC1 = pca$rotation[gene_id, "PC1"],
PC2 = pca$rotation[gene_id, "PC2"]
) %>%
pivot_longer(
cols = c("PC1", "PC2"),
names_to = "PC",
values_to = "value"
) %>%
group_by(PC, bin_gc, bin_length, bin) %>%
summarise(
Size = n(),
mean = mean(value),
sd = sd(value),
t = t.test(value)$statistic,
p = t.test(value)$p.value,
adjP = p.adjust(p, method = "bonf")
) %>%
ggplot(
aes(bin_length, bin_gc, colour = t, alpha = -log10(adjP), size = Size)
) +
geom_point() +
facet_wrap(~PC) +
scale_colour_gradient2() +
scale_size_continuous(range = c(1, 10)) +
labs(
x = "Average Transcript Length",
y = "GC Content",
alpha = expression(paste(-log[10], p[adj]))) +
theme(
panel.grid = element_blank(),
legend.position = "bottom"
)
Version | Author | Date |
---|---|---|
dd28879 | Steve Pederson | 2022-07-06 |
write_rds(dge, here::here("output/dge.rds"))
sessionInfo()
R version 4.2.0 (2022-04-22)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.4 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0
locale:
[1] LC_CTYPE=en_AU.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_AU.UTF-8 LC_COLLATE=en_AU.UTF-8
[5] LC_MONETARY=en_AU.UTF-8 LC_MESSAGES=en_AU.UTF-8
[7] LC_PAPER=en_AU.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_AU.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] ggrepel_0.9.1 broom_0.8.0
[3] BSgenome.Rnorvegicus.UCSC.rn6_1.4.1 BSgenome_1.64.0
[5] rtracklayer_1.56.0 Biostrings_2.64.0
[7] XVector_0.36.0 magrittr_2.0.3
[9] ensembldb_2.20.1 AnnotationFilter_1.20.0
[11] GenomicFeatures_1.48.0 AnnotationDbi_1.58.0
[13] Biobase_2.56.0 GenomicRanges_1.48.0
[15] GenomeInfoDb_1.32.1 IRanges_2.30.0
[17] S4Vectors_0.34.0 AnnotationHub_3.4.0
[19] BiocFileCache_2.4.0 dbplyr_2.1.1
[21] ggfortify_0.4.14 edgeR_3.38.0
[23] limma_3.52.0 plotly_4.10.0
[25] glue_1.6.2 pander_0.6.5
[27] scales_1.2.0 yaml_2.3.5
[29] forcats_0.5.1 stringr_1.4.0
[31] dplyr_1.0.9 purrr_0.3.4
[33] readr_2.1.2 tidyr_1.2.0
[35] tidyverse_1.3.1 ngsReports_1.13.0
[37] tibble_3.1.7 ggplot2_3.3.6
[39] BiocGenerics_0.42.0 workflowr_1.7.0
loaded via a namespace (and not attached):
[1] readxl_1.4.0 backports_1.4.1
[3] lazyeval_0.2.2 crosstalk_1.2.0
[5] BiocParallel_1.30.0 digest_0.6.29
[7] htmltools_0.5.2 fansi_1.0.3
[9] memoise_2.0.1 tzdb_0.3.0
[11] modelr_0.1.8 matrixStats_0.62.0
[13] vroom_1.5.7 prettyunits_1.1.1
[15] colorspace_2.0-3 blob_1.2.3
[17] rvest_1.0.2 rappdirs_0.3.3
[19] haven_2.5.0 xfun_0.30
[21] callr_3.7.0 crayon_1.5.1
[23] RCurl_1.98-1.6 jsonlite_1.8.0
[25] zoo_1.8-10 gtable_0.3.0
[27] zlibbioc_1.42.0 DelayedArray_0.22.0
[29] Rhdf5lib_1.18.0 DBI_1.1.2
[31] Rcpp_1.0.8.3 viridisLite_0.4.0
[33] xtable_1.8-4 progress_1.2.2
[35] bit_4.0.4 DT_0.22
[37] htmlwidgets_1.5.4 httr_1.4.3
[39] ellipsis_0.3.2 farver_2.1.0
[41] pkgconfig_2.0.3 XML_3.99-0.9
[43] sass_0.4.1 here_1.0.1
[45] locfit_1.5-9.5 utf8_1.2.2
[47] labeling_0.4.2 tidyselect_1.1.2
[49] rlang_1.0.2 later_1.3.0
[51] munsell_0.5.0 BiocVersion_3.15.2
[53] cellranger_1.1.0 tools_4.2.0
[55] cachem_1.0.6 cli_3.3.0
[57] generics_0.1.2 RSQLite_2.2.13
[59] evaluate_0.15 fastmap_1.1.0
[61] ggdendro_0.1.23 processx_3.5.3
[63] knitr_1.39 bit64_4.0.5
[65] fs_1.5.2 KEGGREST_1.36.0
[67] whisker_0.4 mime_0.12
[69] xml2_1.3.3 biomaRt_2.52.0
[71] compiler_4.2.0 rstudioapi_0.13
[73] filelock_1.0.2 curl_4.3.2
[75] png_0.1-7 interactiveDisplayBase_1.34.0
[77] reprex_2.0.1 bslib_0.3.1
[79] stringi_1.7.6 highr_0.9
[81] ps_1.7.0 lattice_0.20-45
[83] ProtGenerics_1.28.0 Matrix_1.4-1
[85] vctrs_0.4.1 rhdf5filters_1.8.0
[87] pillar_1.7.0 lifecycle_1.0.1
[89] BiocManager_1.30.17 jquerylib_0.1.4
[91] data.table_1.14.2 bitops_1.0-7
[93] httpuv_1.6.5 R6_2.5.1
[95] BiocIO_1.6.0 promises_1.2.0.1
[97] gridExtra_2.3 MASS_7.3-57
[99] assertthat_0.2.1 rhdf5_2.40.0
[101] SummarizedExperiment_1.26.1 rprojroot_2.0.3
[103] rjson_0.2.21 withr_2.5.0
[105] GenomicAlignments_1.32.0 Rsamtools_2.12.0
[107] GenomeInfoDbData_1.2.8 parallel_4.2.0
[109] hms_1.1.1 grid_4.2.0
[111] rmarkdown_2.14 MatrixGenerics_1.8.0
[113] git2r_0.30.1 getPass_0.2-2
[115] shiny_1.7.1 lubridate_1.8.0
[117] restfulr_0.0.13