Last updated: 2025-01-10

Checks: 6 1

Knit directory: Genomic-Selection-for-Drought-Tolerance-Using-Genome-Wide-SNPs-in-Casava/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20221020) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version b198bd8. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    Artigo GS tolerancia a seca_revised.rar
    Ignored:    Seleção Genômica deficit hidrico.pptx
    Ignored:    data/allchrAR08.txt

Untracked files:
    Untracked:  Artigo GS tolerancia a seca_revised/
    Untracked:  ETA_1_ScaleBayesA.dat
    Untracked:  ETA_1_parBayesB.dat
    Untracked:  analysis/figure/
    Untracked:  analysis/mixed_models.Rmd
    Untracked:  data/Article.docx
    Untracked:  data/Article2.docx
    Untracked:  data/Articles/
    Untracked:  data/Costa et al_FPS_2024 manuscript eng.docx
    Untracked:  data/Costa et al_FPS_2024 manuscript eng_v1.docx
    Untracked:  data/Costa et al_FPS_2024 manuscript eng_v2.docx
    Untracked:  data/Costa et al_FPS_2024 manuscript eng_v3.docx
    Untracked:  data/Costa et al_FPS_2024 manuscript.docx
    Untracked:  data/Costa et al_FPS_2024 supplement.docx
    Untracked:  data/Frontiers_Template.docx
    Untracked:  data/Phenotyping2.xlsx
    Untracked:  data/Supplementary_Material.docx
    Untracked:  data/Tabela auxiliar.xlsx
    Untracked:  data/data.rar
    Untracked:  mu.dat
    Untracked:  output/BLUPS2.csv
    Untracked:  output/BLUPS_GEBV_GETG_all clones.csv
    Untracked:  output/BLUPS_density_med.png
    Untracked:  output/BLUPS_density_med_row_col.png
    Untracked:  output/BLUPS_drgBLUPs__boxplot_med.png
    Untracked:  output/BLUPS_drgBLUPs__boxplot_med_row_col.png
    Untracked:  output/BLUPS_drgBLUPs_density_med.png
    Untracked:  output/BLUPS_drgBLUPs_med.png
    Untracked:  output/BLUPS_par_mmer.Rdata
    Untracked:  output/BLUPS_row_col.csv
    Untracked:  output/BLUPS_row_col_random.csv
    Untracked:  output/BLUPS_x_BLUPS_row_col_boxplot_med.png
    Untracked:  output/Density_residual_row_col.tiff
    Untracked:  output/Figuras_article.rar
    Untracked:  output/GEBVS_BayesA.RDS
    Untracked:  output/GEBVS_BayesB.RDS
    Untracked:  output/GEBVS_DOM.RDS
    Untracked:  output/GEBVS_G_BLUP.RDS
    Untracked:  output/GEBVS_G_BLUP_row_col.RDS
    Untracked:  output/GEBVS_G_BLUP_row_col_random.RDS
    Untracked:  output/GEBVS_RF.RDS
    Untracked:  output/GEBVS_RKHS.RDS
    Untracked:  output/GEBVS_RR_BLUP.RDS
    Untracked:  output/GEBV_BLUP.csv
    Untracked:  output/GEBV_DOMxBLUPS.tiff
    Untracked:  output/GEBV_GBLUPxBLUPS.tiff
    Untracked:  output/GEBVxGETGV.tiff
    Untracked:  output/GETGVxBLUPS.tiff
    Untracked:  output/G_matrix.rds
    Untracked:  output/H2.csv
    Untracked:  output/H2_row_col.csv
    Untracked:  output/H2_row_col_random.csv
    Untracked:  output/Heatmap.tiff
    Untracked:  output/MSPE_all_methods.tiff
    Untracked:  output/Residuals_vs_fitted_row_col.tiff
    Untracked:  output/accuracy_all_methods.tiff
    Untracked:  output/accuracy_all_methods_points.tiff
    Untracked:  output/cor_GEBVxBLUPS.tiff
    Untracked:  output/cor_GEBVxBLUPS_all_methods.tiff
    Untracked:  output/correlation_blups.tiff
    Untracked:  output/density_blups.tiff
    Untracked:  output/dierencial_selecao.csv
    Untracked:  output/dierencial_selecao.xlsx
    Untracked:  output/drgBLUP.csv
    Untracked:  output/fitted_residual_data_row_col_random.csv
    Untracked:  output/fitted_values_row_col_random.csv
    Untracked:  output/indice_selection.tiff
    Untracked:  output/indice_selection3.tiff
    Untracked:  output/indice_selection_GEBV.tiff
    Untracked:  output/indice_selection_GEBV_GETGV.tiff
    Untracked:  output/indice_selection_GETGV.tiff
    Untracked:  output/kappa.tiff
    Untracked:  output/kappa2.tiff
    Untracked:  output/mean_pheno.csv
    Untracked:  output/medias_semestre.xlsx
    Untracked:  output/pesos_BLUPS_all clones.csv
    Untracked:  output/pesos_GEBVS_all clones.csv
    Untracked:  output/pesos_GETGVS_all clones.csv
    Untracked:  output/pheno_mean_sd.csv
    Untracked:  output/residuos_row_col_random.csv
    Untracked:  output/result_sommer.RData
    Untracked:  output/result_sommer_row_col.RData
    Untracked:  output/result_sommer_row_col_random.RDS
    Untracked:  output/results_MSPE.csv
    Untracked:  output/results_accuracy.csv
    Untracked:  output/results_cv_BayesA.RDS
    Untracked:  output/results_cv_BayesB.RDS
    Untracked:  output/results_cv_DOM.RDS
    Untracked:  output/results_cv_G_BLUP.RDS
    Untracked:  output/results_cv_G_BLUP_row_col.RDS
    Untracked:  output/results_cv_G_BLUP_row_col_random.RDS
    Untracked:  output/results_cv_RF.RDS
    Untracked:  output/results_cv_RKHS.RDS
    Untracked:  output/results_cv_RR_BLUP.RDS
    Untracked:  output/results_h2_GBLUP (1).rds
    Untracked:  output/results_h2_GBLUP.csv
    Untracked:  output/results_h2_GBLUP.rds
    Untracked:  output/results_h2_GBLUP_D.rds
    Untracked:  output/results_kappa.csv
    Untracked:  output/results_kappa2.csv
    Untracked:  output/results_values-selection.csv
    Untracked:  output/results_values_kappa.csv
    Untracked:  output/results_values_rescale_selection.csv
    Untracked:  output/results_values_selection.csv
    Untracked:  output/rstudio-export.zip
    Untracked:  output/teste_LRT.csv
    Untracked:  output/teste_LRT_row_col.csv
    Untracked:  output/teste_LRT_row_col_random.csv
    Untracked:  output/varcomp.tiff
    Untracked:  output/varcomp2.csv
    Untracked:  output/varcomp_row_col.csv
    Untracked:  output/varcomp_row_col.tiff
    Untracked:  output/varcomp_row_col_random.csv
    Untracked:  output/varcomp_row_col_random.tiff
    Untracked:  varE.dat

Unstaged changes:
    Modified:   .gitignore
    Modified:   analysis/GWS.Rmd
    Modified:   analysis/index.Rmd
    Modified:   data/SNPs.rds
    Modified:   data/pheno_clean.csv
    Modified:   output/BLUPS.csv
    Modified:   output/BLUPS_par.Rdata
    Modified:   output/media_pheno.csv
    Modified:   output/varcomp.csv

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/index.Rmd) and HTML (docs/index.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 54c6e28 Weverton Gomes 2025-01-07 update site, index.rmd, license.rmd, phenotype.rmd
html 02143bc Weverton Gomes 2023-10-27 add about, index and license html
Rmd 286b492 Weverton Gomes 2023-10-27 Update Scripts and README
html 90dc112 WevertonGomesCosta 2022-11-17 Update
html d930880 WevertonGomesCosta 2022-11-11 Update
Rmd 5988c27 WevertonGomesCosta 2022-11-11 Update
html 5988c27 WevertonGomesCosta 2022-11-11 Update
Rmd bf7b1d3 WevertonGomesCosta 2022-11-11 Update
html bf7b1d3 WevertonGomesCosta 2022-11-11 Update
Rmd b78c842 WevertonGomesCosta 2022-10-20 Start workflowr project.

Genomic Selection for Drought Tolerance

Welcome to the Genomic Selection for Drought Tolerance project website! This initiative by EMBRAPA Mandioca focuses on utilizing Genome Wide GBS and/or DART in Cassava to achieve drought tolerance through genomic selection.

About the Project

This project aims to analyze the phenotypic data of Brazilian drought trials to evaluate the performance of various genotypes under drought conditions. The goal is to identify the genotypes that exhibit superior performance and resilience. The analysis follows a structured workflow, including data import and manipulation, exploratory data analysis, and genotype-environment analysis using mixed-effect models. This project details the estimation of Best Linear Unbiased Predictions (BLUPs) using mixed models, along with extensive Exploratory Data Analysis (EDA) and necessary manipulations to accurately estimate the BLUPs.

Project Structure

1. Exploratory Data Analysis (EDA)

We used packages such as DataExplorer, metan, and data.table to perform extensive exploratory data analysis on our dataset. The goal was to understand the data structure, identify missing values, and detect patterns that might influence the subsequent analyses.

2. Genotype x Environment Interaction Analysis (GxE)

The GxE analysis aims to evaluate the performance of genotypes across different environments to identify those with stable performance and high resilience. We used mixed-effect models to estimate the variance components and calculate BLUPs for each genotype.

3. Genomic Wide Selection (GWS))

For GWS, we employed the original marker matrix, followed by necessary data manipulations to organize and prepare the matrix for model input. We used various models, including:

(Note: Some models might be computationally intensive.)

Study Highlights


sessionInfo()
R version 4.3.1 (2023-06-16 ucrt)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19045)

Matrix products: default


locale:
[1] LC_COLLATE=Portuguese_Brazil.utf8  LC_CTYPE=Portuguese_Brazil.utf8   
[3] LC_MONETARY=Portuguese_Brazil.utf8 LC_NUMERIC=C                      
[5] LC_TIME=Portuguese_Brazil.utf8    

time zone: America/Sao_Paulo
tzcode source: internal

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

loaded via a namespace (and not attached):
 [1] vctrs_0.6.3       cli_3.6.1         knitr_1.43        rlang_1.1.1      
 [5] xfun_0.40         stringi_1.7.12    promises_1.2.1    jsonlite_1.8.7   
 [9] workflowr_1.7.1   glue_1.6.2        rprojroot_2.0.3   git2r_0.32.0     
[13] htmltools_0.5.6   httpuv_1.6.11     sass_0.4.7        fansi_1.0.4      
[17] rmarkdown_2.24    tibble_3.2.1      evaluate_0.22     jquerylib_0.1.4  
[21] fastmap_1.1.1     yaml_2.3.7        lifecycle_1.0.3   whisker_0.4.1    
[25] stringr_1.5.0     compiler_4.3.1    fs_1.6.3          pkgconfig_2.0.3  
[29] Rcpp_1.0.11       rstudioapi_0.15.0 later_1.3.1       digest_0.6.33    
[33] R6_2.5.1          utf8_1.2.3        pillar_1.9.0      magrittr_2.0.3   
[37] bslib_0.5.1       tools_4.3.1       cachem_1.0.8     

  1. Pós-Doutorando, Embrapa Mandioca e Fruticultura, ↩︎