Last updated: 2025-03-25

Checks: 6 1

Knit directory: Importance-of-markers-for-QTL-detection-by-machine-learning-methods/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20221222) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 450b544. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/

Untracked files:
    Untracked:  data/imp/
    Untracked:  data/simulated_data/
    Untracked:  data/snpsOfInterest.RData

Unstaged changes:
    Modified:   analysis/index.Rmd
    Deleted:    data/res.imp.ad.RData
    Deleted:    data/res.imp.ad.xlsx
    Deleted:    data/res.imp.bag.RData
    Deleted:    data/res.imp.bag.xlsx
    Deleted:    data/res.imp.boost.RData
    Deleted:    data/res.imp.boost.xlsx
    Deleted:    data/res.imp.gblup.RData
    Deleted:    data/res.imp.gblup.xlsx
    Deleted:    data/res.imp.mars.update1.RData
    Deleted:    data/res.imp.mars.update2.RData
    Deleted:    data/res.imp.mars.update3.RData
    Deleted:    data/res.imp.mlp.RData
    Deleted:    data/res.imp.rbf.RData
    Deleted:    data/res.imp.rf.RData
    Deleted:    data/res.imp.rf.xlsx

Staged changes:
    New:        data/GEN_T/genome_t1.txt
    New:        data/GEN_T/genome_t2.txt
    New:        data/GEN_T/genome_t3.txt
    New:        data/GEN_T/genome_t4.txt
    New:        data/GEN_T/genome_t5.txt
    New:        data/GEN_V/genome_v1.txt
    New:        data/GEN_V/genome_v2.txt
    New:        data/GEN_V/genome_v3.txt
    New:        data/GEN_V/genome_v4.txt
    New:        data/GEN_V/genome_v5.txt
    New:        data/PHEN_T/phenotype_t1.txt
    New:        data/PHEN_T/phenotype_t2.txt
    New:        data/PHEN_T/phenotype_t3.txt
    New:        data/PHEN_T/phenotype_t4.txt
    New:        data/PHEN_T/phenotype_t5.txt
    New:        data/PHEN_V/phenotype_v1.txt
    New:        data/PHEN_V/phenotype_v2.txt
    New:        data/PHEN_V/phenotype_v3.txt
    New:        data/PHEN_V/phenotype_v4.txt
    New:        data/PHEN_V/phenotype_v5.txt

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/index.Rmd) and HTML (docs/index.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 081eb18 WevertonGomesCosta 2022-12-22 Start workflowr project.

Detecção de QTLs através de Métodos de Machine Learning

GWAS ML Framework
GWAS ML Framework

Bem-vindo ao repositório oficial do projeto de pesquisa sobre identificação de marcadores moleculares para detecção de QTLs utilizando métodos de aprendizado de máquina.

Objetivos Principais

  1. Desenvolver pipeline computacional para análise GWAS com ML
  2. Comparar desempenho de algoritmos na detecção de QTLs
  3. Propor métricas de importância de marcadores genômicos
  4. Criar ferramentas interativas de visualização genética

Recursos Chave

  • Análises Reprodutíveis: Fluxo completo de dados genômicos
  • Comparativo de Algoritmos: Random Forest, XGBoost, SVM
  • Mapas Genéticos Interativos: Visualização de ligação cromossômica
  • Benchmarking: Comparação com métodos estatísticos tradicionais

QTL Detection Through Machine Learning Methods

GWAS ML Framework
GWAS ML Framework

Welcome to the official repository for the research project on molecular marker identification for QTL detection using machine learning methods.

Main Objectives

  1. Develop computational pipeline for GWAS analysis with ML
  2. Compare algorithm performance in QTL detection
  3. Propose genomic marker importance metrics
  4. Create interactive genetic visualization tools

Key Features

  • Reproducible Analyses: Complete genomic data workflow
  • Algorithm Comparison: Random Forest, XGBoost, SVM
  • Interactive Genetic Maps: Chromosomal linkage visualization
  • Benchmarking: Comparison with traditional statistical methods

Sobre o LICAE

Este projeto foi desenvolvido no âmbito das pesquisas do Laboratório de Inteligência Computacional e Aprendizado Estatístico (LICAE) da Universidade Federal de Viçosa (UFV), especializado em aplicações avançadas de inteligência computacional em problemas genômicos complexos.

Recursos Disponíveis

Este repositório contém: 1. Código de Análise: Implementações completas dos algoritmos de ML 2. Fluxo de Trabalho Reprodutível: Pipeline completo de análise de dados genômicos 3. Dados Sintéticos: Conjuntos de dados para teste e validação 4. Visualizações Interativas: Gráficos e análises exploratórias dos resultados


About LICAE

This project was developed as part of the research activities at the Computational Intelligence and Statistical Learning Laboratory (LICAE) of the Federal University of Viçosa (UFV), specialized in advanced applications of computational intelligence to complex genomic problems.

Available Resources

This repository contains: 1. Analysis Code: Complete implementations of ML algorithms 2. Reproducible Workflow: Complete genomic data analysis pipeline 3. Synthetic Datasets: Test and validation datasets 4. Interactive Visualizations: Exploratory analysis plots and results


Como Utilizar

  1. Clone o repositório: git clone https://github.com/WevertonGomesCosta/Importance-of-markers-for-QTL-detection-by-machine-learning-methods.git
  2. Instale as dependências: renv::restore()
  3. Execute o pipeline principal: Rscript scripts/analise_principal.R

How to Use

  1. Clone repository: git clone https://github.com/WevertonGomesCosta/Importance-of-markers-for-QTL-detection-by-machine-learning-methods.git
  2. Install dependencies: renv::restore()
  3. Run main pipeline: Rscript scripts/main_analysis.R

Contribuição

Contribuições são bem-vindas mediante: - Abertura de issues para discussão de melhorias - Submissão de pull requests para correções críticas - Sugestões de extensões metodológicas

Contribution

Contributions are welcome through: - Issue opening for improvement discussions - Pull request submission for critical fixes - Suggestions for methodological extensions


Licença

Este trabalho está licenciado sob CC BY-NC-SA 4.0. Para uso comercial ou modificações significativas, por favor contate os autores.

License

This work is licensed under CC BY-NC-SA 4.0. For commercial use or significant modifications, please contact the authors.


Contato

Coordenador do Projeto:
Weverton Gomes da Costa
Pós-Doutorando - Departamento de Estatística - UFV
weverton.costa@ufv.br

Laboratório LICAE:
licae@ufv.br | https://www.licae.ufv.br/

Contact

Project Coordinator:
Weverton Gomes da Costa
Post-Doctoral Researcher - Statistics Department - UFV
weverton.costa@ufv.br

LICAE Laboratory:
licae@ufv.br | https://www.licae.ufv.br/


sessionInfo()
R version 4.4.3 (2025-02-28 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows 11 x64 (build 26100)

Matrix products: default


locale:
[1] LC_COLLATE=Portuguese_Brazil.utf8  LC_CTYPE=Portuguese_Brazil.utf8   
[3] LC_MONETARY=Portuguese_Brazil.utf8 LC_NUMERIC=C                      
[5] LC_TIME=Portuguese_Brazil.utf8    

time zone: America/Sao_Paulo
tzcode source: internal

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

loaded via a namespace (and not attached):
 [1] vctrs_0.6.5       cli_3.6.4         knitr_1.49        rlang_1.1.5      
 [5] xfun_0.51         stringi_1.8.4     promises_1.3.2    jsonlite_1.9.1   
 [9] workflowr_1.7.1   glue_1.8.0        rprojroot_2.0.4   git2r_0.35.0     
[13] htmltools_0.5.8.1 httpuv_1.6.15     sass_0.4.9        rmarkdown_2.29   
[17] evaluate_1.0.3    jquerylib_0.1.4   tibble_3.2.1      fastmap_1.2.0    
[21] yaml_2.3.10       lifecycle_1.0.4   whisker_0.4.1     stringr_1.5.1    
[25] compiler_4.4.3    fs_1.6.5          Rcpp_1.0.14       pkgconfig_2.0.3  
[29] rstudioapi_0.17.1 later_1.4.1       digest_0.6.37     R6_2.6.1         
[33] pillar_1.10.1     magrittr_2.0.3    bslib_0.9.0       tools_4.4.3      
[37] cachem_1.1.0