Last updated: 2025-07-09

Checks: 6 1

Knit directory: Machine-learning-e-redes-neurais-artificiais-no-melhoramento-genetico-do-cafeeiro/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has staged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20250709) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 2f5fdb9. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/

Staged changes:
    Modified:   analysis/index.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/index.Rmd) and HTML (docs/index.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd be23fb6 WevertonGomesCosta 2025-07-09 Start workflowr project.

Machine Learning e Redes Neurais no Melhoramento Genético do Cafeeiro

Bem-vindo! Este repositório reúne código, dados e relatórios associados ao estudo de seleção genômica ampla (GWS) em Coffea arabica, empregando métodos de machine learning e redes neurais artificiais para seleção de genótipos e detecção de SNPs informativos.

Pipeline de Análise
Pipeline de Análise

Publicação Associada

Este trabalho faz parte do Projeto de Pesquisa:

  • Processo: BPD-00922-22
  • Chamada: Edital 017/2022 – Programa de Apoio à Fixação de Jovens Doutores
  • Período: 01/04/2023 a 28/02/2025

Sobre o LICAE

Desenvolvido no Laboratório de Inteligência Computacional e Aprendizado Estatístico (LICAE) da UFV, especialista em aplicações de IA em genômica vegetal.

Recursos Disponíveis

  1. Código de Análise: Scripts R/Python para pré-processamento, modelagem e avaliação.
  2. Dados: Genótipos reais (195 indivíduos, 21 211 SNPs) e simulados (1 000 indivíduos, 4 010 SNPs).
  3. Notebooks: Exemplos interativos de EDA, GWS e GWAS.
  4. Visualizações: Gráficos de acurácia (R²), RMSE e ranking de genótipos.
Arquitetura do Modelo
Arquitetura do Modelo

Como Utilizar

git clone https://github.com/wevertongomescosta/Machine-learning-e-redes-neurais-no-melhoramento-genetico-do-cafeeiro.git
cd Machine-learning-e-redes-neurais-no-melhoramento-genetico-do-cafeeiro
# R
Rscript -e "install.packages('renv'); renv::restore()"
Rscript scripts/main_analysis.R
# Python (se houver)
pip install -r requirements.txt
python src/train.py

Contribuição

Contribuições são bem-vindas via:
- Issues para discussão de bugs e novas funcionalidades
- Pull requests com correções ou extensões
- Sugestões de metodologias ou visualizações

Consulte o CONTRIBUTING.md para detalhes.

Licença

Este projeto está sob a licença MIT. Veja LICENSE para detalhes.

Contato

Coordenador
Moyses Nascimento

Bolsista
Weverton Gomes da Costa


Machine Learning and Neural Networks for Genomic Selection in Coffee

Welcome! This repository contains all code, data, and documentation for a genomic selection (GWS) study in Coffea arabica, applying machine learning and artificial neural networks to select superior genotypes and discover informative SNPs.

Associated Publication

This work is part of the research project:

  • Processo: BPD-00922-22
  • Chamada: Edital 017/2022 – Programa de Apoio à Fixação de Jovens Doutores
  • Período: 01/04/2023 a 28/02/2025

About LICAE

Developed at the Computational Intelligence and Statistical Learning Laboratory (LICAE) at UFV, specializing in AI applications for plant genomics.

Available Resources

  1. Analysis Code: R/Python scripts for preprocessing, modeling and evaluation.
  2. Datasets: Real genotypes (195 samples, 21,211 SNPs) and simulated population (1,000 samples, 4,010 SNPs).
  3. Notebooks: Interactive EDA, GWS and GWAS tutorials.
  4. Visualizations: Plots of predictive accuracy (R²), RMSE and genotype rankings.

How to Use

git clone https://github.com/wevertongomescosta/Machine-learning-e-redes-neurais-no-melhoramento-genetico-do-cafeeiro.git
cd Machine-learning-e-redes-neurais-no-melhoramento-genetico-do-cafeeiro
# R
Rscript -e "install.packages('renv'); renv::restore()"
Rscript scripts/main_analysis.R
# Python (if applicable)
pip install -r requirements.txt
python src/train.py

Contribution

Contributions welcome via issues and pull requests—see CONTRIBUTING.md for guidelines.

License

This project is licensed under the MIT License. See LICENSE for details.

Contact

Project Coordinator
Moyses Nascimento

Research Fellow
Weverton Gomes da Costa


sessionInfo()
R version 4.4.3 (2025-02-28 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows 11 x64 (build 26100)

Matrix products: default


locale:
[1] LC_COLLATE=Portuguese_Brazil.utf8  LC_CTYPE=Portuguese_Brazil.utf8   
[3] LC_MONETARY=Portuguese_Brazil.utf8 LC_NUMERIC=C                      
[5] LC_TIME=Portuguese_Brazil.utf8    

time zone: America/Sao_Paulo
tzcode source: internal

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

loaded via a namespace (and not attached):
 [1] vctrs_0.6.5       cli_3.6.5         knitr_1.50        rlang_1.1.6      
 [5] xfun_0.52         stringi_1.8.7     promises_1.3.3    jsonlite_2.0.0   
 [9] workflowr_1.7.1   glue_1.8.0        rprojroot_2.0.4   git2r_0.36.2     
[13] htmltools_0.5.8.1 httpuv_1.6.16     sass_0.4.10       rmarkdown_2.29   
[17] evaluate_1.0.3    jquerylib_0.1.4   tibble_3.3.0      fastmap_1.2.0    
[21] yaml_2.3.10       lifecycle_1.0.4   whisker_0.4.1     stringr_1.5.1    
[25] compiler_4.4.3    fs_1.6.6          Rcpp_1.0.14       pkgconfig_2.0.3  
[29] rstudioapi_0.17.1 later_1.4.2       digest_0.6.37     R6_2.6.1         
[33] pillar_1.10.2     magrittr_2.0.3    bslib_0.9.0       tools_4.4.3      
[37] cachem_1.1.0