Last updated: 2021-04-30

Checks: 7 0

Knit directory: booksn_dispersantes/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210428) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 8feb234. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/.DS_Store

Untracked files:
    Untracked:  analysis/explore-trends.Rmd
    Untracked:  analysis/temporal-beta-diveristy.Rmd

Unstaged changes:
    Modified:   data/birds.csv
    Modified:   data/passerine.csv

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/prepare-data.Rmd) and HTML (docs/prepare-data.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 8feb234 Antonio J Perez-Luque 2021-04-30 fix taxonomic error Cuculus
html 1cb0658 Antonio J Perez-Luque 2021-04-29 Build site.
Rmd bf02c97 Antonio J Perez-Luque 2021-04-29 fix taxonomic erros
html ec67c0c Antonio J Perez-Luque 2021-04-29 Build site.
Rmd 03e8fc6 Antonio J Perez-Luque 2021-04-29 prepare and cleaning data; add exported data
html 5f6b690 Antonio J Perez-Luque 2021-04-29 Build site.
Rmd a6cd9dc Antonio J Perez-Luque 2021-04-29 cleaning old censuses
html 7281d42 Antonio J Perez-Luque 2021-04-28 Build site.
Rmd 1ed7427 Antonio J Perez-Luque 2021-04-28 Add my first analysis

knitr::opts_chunk$set(echo = TRUE, 
                      warning = FALSE, 
                      message = FALSE)

Data sources

Data coming from two sources:

  • Old bird censuses provided by R. Zamora, consists in bird censuses in three locations: oak population (1700 masl); juniper-scrubland (2230 masl) and summit environments (3200 masl). Range temporal cover from 1981 to 1985.

  • Obsnev bird censuses provided by OBSNEV, realized in several transects distributed along Sierra Nevada. Temporal range from 2008 to 2020. The data were downloaded from new information system of OBSNEV (i.e. PostgreSQL db01.obsnev.es)

All data are stored in the folder /data_raw

Prepare Old bird censuses

Notes for Old bird censuses

  • File RObledal año 1981 RZAves_SN_10ha.xls:

    • habitat: oak woodlands (Q. pyrenaica)
    • elevation: 1700 masl
    • year: 1981
    • variable: bird abundance monthly aggregated (ind / 10 ha)
    • sample size: n = 3 (may, june, july)
    • notes: The data aren’t the original bird censuses but are monthly aggregated
  • File Enebral año 1985 RZAves_SN_10ha.xls

    • habitat: juniper-scrubland
    • elevation: 2300 masl
    • year: 1985
    • variable: bird abundance monthly aggregated (ind / 10 ha)
    • sample size: n = 3 (may, june, july)
    • notes: The data aren’t the original bird censuses but are monthly aggregated
  • File Aves_SN_meses_reproduccion.xls

    • habitat: jseveral habitats. We selected juniper-scrubland and summit environments
    • elevation: 2300 and 3200 masl
    • year: 1984 (juniper); 1982 (summit environment)
    • variable: raw bird abundance. For juniper ind / 10.2 ha; and for summit ind / 20 ha.
    • sample size: n = 9 transects (juniper) and 6 transects (juniper) during may-july
    • notes: Original bird censuses
library("tidyverse")
library("here")
library("readxl")
library("DT")
robledal1981 <- read_excel(here::here("data/data_raw/RObledal año 1981 RZAves_SN_10ha.xls")) %>% 
  pivot_longer(cols= mayo_1981:julio_1981, names_to="fecha") %>% 
  separate(fecha, into = c("mes", "year"), sep="_", remove = FALSE) %>% 
  rename("especie" = Aves, "den" = value) %>% 
  mutate(year = as.numeric(year), 
         habitat = "robledal", 
         cota = 1700,
         mes = case_when(
           mes == "mayo" ~ as.numeric(5), 
           mes == "junio" ~ as.numeric(6),
           mes == "julio" ~ as.numeric(7)), 
         fecha = format(as.Date(paste(year, mes, "01", sep="-")), format="%Y-%m-%d")) 

head(robledal1981)
# A tibble: 6 x 7
  especie              fecha        mes  year   den habitat   cota
  <chr>                <chr>      <dbl> <dbl> <dbl> <chr>    <dbl>
1 Phylloscopus bonelli 1981-05-01     5  1981   8   robledal  1700
2 Phylloscopus bonelli 1981-06-01     6  1981  13.8 robledal  1700
3 Phylloscopus bonelli 1981-07-01     7  1981  14.6 robledal  1700
4 Sylvia atricapilla   1981-05-01     5  1981   4.4 robledal  1700
5 Sylvia atricapilla   1981-06-01     6  1981   4.6 robledal  1700
6 Sylvia atricapilla   1981-07-01     7  1981   6.8 robledal  1700
enebral1985 <- read_excel(here::here("data/data_raw/Enebral año 1985 RZAves_SN_10ha.xls")) %>%   pivot_longer(cols= mayo_1985:julio_1985, names_to="fecha") %>% 
  separate(fecha, into = c("mes", "year"), sep="_") %>% 
  rename("especie" = Aves, "den" = value) %>% 
  mutate(year = as.numeric(year), 
         habitat = "enebral", 
         cota = 2230, 
         mes = case_when(
           mes == "mayo" ~ as.numeric(5), 
           mes == "junio" ~ as.numeric(6),
           mes == "julio" ~ as.numeric(7)),
         fecha = format(as.Date(paste(year, mes, "01", sep="-")), format="%Y-%m-%d")) 

head(enebral1985)
# A tibble: 6 x 7
  especie               mes  year   den habitat  cota fecha     
  <chr>               <dbl> <dbl> <dbl> <chr>   <dbl> <chr>     
1 Carduelis carduelis     5  1985   0   enebral  2230 1985-05-01
2 Carduelis carduelis     6  1985   0   enebral  2230 1985-06-01
3 Carduelis carduelis     7  1985   0.1 enebral  2230 1985-07-01
4 Alauda arvensis         5  1985   5.1 enebral  2230 1985-05-01
5 Alauda arvensis         6  1985   5.4 enebral  2230 1985-06-01
6 Alauda arvensis         7  1985   5.7 enebral  2230 1985-07-01
enebral1984 <- read_excel(here::here("data/data_raw/Aves_SN_meses_reproduccion.xlsx"),
                           sheet = "2230") %>% 
  rename("especie" = Ave, "den" = `Número`) %>% 
  mutate(den = round(den*(10/10.2),2),
         habitat = "enebral", 
         cota = 2230, 
         mes = lubridate::month(Fecha), 
         year = lubridate::year(Fecha), 
         Fecha = strftime(Fecha, format="%Y-%m-%d")) %>% 
  rename(fecha = Fecha)

head(enebral1984)  
# A tibble: 6 x 7
  especie             fecha        den habitat  cota   mes  year
  <chr>               <chr>      <dbl> <chr>   <dbl> <dbl> <dbl>
1 Oenanthe oenanthe   1984-05-05 15.7  enebral  2230     5  1984
2 Alauda arvensis     1984-05-05  3.92 enebral  2230     5  1984
3 Emberiza cia        1984-05-05 15.7  enebral  2230     5  1984
4 Phoenicurus ochuros 1984-05-05  0.98 enebral  2230     5  1984
5 Anthus campestris   1984-05-05  0.98 enebral  2230     5  1984
6 Alectoris rufa      1984-05-05  0.98 enebral  2230     5  1984
cumbres1982 <- read_excel(here::here("data/data_raw/Aves_SN_meses_reproduccion.xlsx"),
                           sheet = "3200") %>% 
  rename("especie" = Ave, "den" = `Número`) %>% 
  mutate(den = round(den*(10/20),2),
         habitat = "cumbres", 
         cota = 3200, 
         mes = lubridate::month(Fecha), 
         year = lubridate::year(Fecha),
        Fecha = strftime(Fecha, format="%Y-%m-%d")) %>% 
  rename(fecha = Fecha)

head(cumbres1982)
# A tibble: 6 x 7
  especie             fecha        den habitat  cota   mes  year
  <chr>               <chr>      <dbl> <chr>   <dbl> <dbl> <dbl>
1 Oenanthe oenanthe   1982-06-06   0.5 cumbres  3200     6  1982
2 Phoenicurus ochuros 1982-06-06   3   cumbres  3200     6  1982
3 Prunella collaris   1982-06-06   2.5 cumbres  3200     6  1982
4 Oenanthe oenanthe   1982-06-07   0.5 cumbres  3200     6  1982
5 Phoenicurus ochuros 1982-06-07   1   cumbres  3200     6  1982
6 Prunella collaris   1982-06-07   4   cumbres  3200     6  1982
  • Bind old data
old_census <- bind_rows(cumbres1982, enebral1984, enebral1985, robledal1981)
datatable(old_census)

Prepare OBSNEV bird censuses

  • Raw data were downloaded from OBSNEV information system. The downloaded tables were: contactos_paseriformes.csv; dicc_especies.csv; geo.csv; visitas.csv.

  • The protocol sampling number for passerine in the database is 5.

  • Select the three locations: “Cortijo del Hornillo” (oak), “Campos de Otero” (juniper), and “Aguas Verdes” (summits).

  • Filter data only for may, june, july

  • Filter out data contacted over 30 m

  • Select only the taxonomic level = species (level > 6)

contactos <- read_csv(here::here("data/data_raw/contactos_paseriformes.csv")) %>% 
  dplyr::select(-fcreacion, -fmodificacion)

dicc_sp <- read_csv(here::here("data/data_raw/dicc_especies.csv")) %>% 
  dplyr::select(idesp, nombre_cientifico, nivel)

# El protocolo de paseriformes es el 5
dicc_visita <- read_csv(here::here("data/data_raw/visitas.csv"), 
                        col_types = 
                          cols(.default ="?", 
                               idgeo = col_character(), 
                               fvisita = col_datetime(format="%Y-%m-%d %H:%M:%S"))) %>%
  filter(protocolo == 5) 
  
dicc_geo <- read_csv(here::here("data/data_raw/geo.csv"), 
                     col_types = cols(.default ="?", 
                               longitud_m = col_double()))

visita_geo <- 
  dicc_visita %>% inner_join(dicc_geo, by = "idgeo") %>% 
  dplyr::select(idvisitas, fvisita, nombre, longitud_m) 

dfraw <- contactos %>% 
  inner_join(visita_geo, by = "idvisitas") %>% 
  inner_join(dicc_sp, by = "idesp") %>% 
  mutate(year = lubridate::year(fvisita), 
         mes = lubridate::month(fvisita))

df <- dfraw %>% 
  filter(nombre %in% c("Cortijo del Hornillo", "Campos de Otero", "Aguas Verdes")) %>% 
  mutate(habitat = recode(nombre, 
                          "Campos de Otero" = "enebral",
                          "Cortijo del Hornillo" = "robledal",
                          "Aguas Verdes" = "cumbres")) %>%
  mutate(cota = case_when(
    habitat == "enebral" ~ 2230, 
    habitat == "robledal" ~ 1700,
    habitat == "cumbres" ~ 3200
  )) %>% 
  mutate(year = lubridate::year(fvisita), 
         mes = lubridate::month(fvisita),
         fecha = strftime(fvisita, format="%Y-%m-%d")) %>% 
  filter(mes %in% c(5,6,7)) %>% 
  filter(desplazamiento < 31) %>% 
  filter(nivel > 6) 

head(df)
# A tibble: 6 x 17
     id idvisitas idesp numero distancia desplazamiento observaciones
  <dbl>     <dbl> <dbl>  <dbl>     <dbl>          <dbl> <chr>        
1  2010      1823 24641      1       260             15 NULL         
2  2011      1823 24592      1       255             15 NULL         
3  2012      1823 24587      1       280              5 NULL         
4  2013      1823 24587      1       295              5 NULL         
5  2014      1823 24587      2       370              5 NULL         
6  2015      1823 24587      1       411              5 NULL         
# … with 10 more variables: fvisita <dttm>, nombre <chr>, longitud_m <dbl>,
#   nombre_cientifico <chr>, nivel <dbl>, year <dbl>, mes <dbl>, habitat <chr>,
#   cota <dbl>, fecha <chr>
  • Aggregated data to get the sum of all contacts for a specie recorded in the same visit of the same transect

  • Remove an error “Prunus avium” in species codification

dfab <- df %>% 
  filter(nombre_cientifico != "Prunus avium") %>% 
  group_by(nombre_cientifico, fecha, year, mes, longitud_m, nombre, habitat, nivel, cota) %>%
  summarise(total_ind = sum(numero)) %>%  
  mutate(den = round((total_ind * 10000 * 10 / (longitud_m * 60)),2)) %>% 
  ungroup() %>% 
  rename(especie = nombre_cientifico) %>% 
  dplyr::select(-nivel, -longitud_m, -nombre, -total_ind)
  • Join old and new data, and export data. Be caution with this data, since it includes some species that specialists indicated to remove them.

  • Export data as birds.csv

  • Recode especies according to:

    • Acanthis cannabina to Carduelis cannabina;
    • Parus caeruleus to Cyanistes caeruleus;
    • Parus ater to Periparus ater;
    • Phoenicurus ochuros to Phoenicurus ochruros;
    • Cuculos canorus to Cuculus canorus
birds <- bind_rows(old_census, dfab) %>% 
  mutate(especie = case_when(
    especie == "Acanthis cannabina" ~ "Carduelis cannabina",
    especie == "Parus caeruleus" ~ "Cyanistes caeruleus",
    especie == "Parus ater" ~ "Periparus ater", 
    especie == "Phoenicurus ochuros" ~ "Phoenicurus ochruros", 
    especie == "Cuculos canorus" ~ "Cuculus canorus",
    TRUE ~ especie
  ))
datatable(birds)
write_csv(birds, here::here("data/birds.csv"))
  • Filter out species. After consultation of specialist we’ll remove the following species:
remove_sp<- c("Acrocephalus dumetorum", "Alectoris rufa", "Columba palumbus", "Corvus corax", "Ficedula albicollis", "Himantopus himantopus", "Ixobrychus sturmii", "Luscinia svecica", "Monticola solitarius","Oceanodroma leucorhoa", "Prunus avium", "Puffinus yelkouan", "Pyrrhocorax pyrrhocorax")

passerine  <- birds %>% 
  filter(!especie %in% remove_sp) 

datatable(passerine)
write_csv(passerine, here::here("data/passerine.csv"))

sessionInfo()
R version 4.0.2 (2020-06-22)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Catalina 10.15.3

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] DT_0.17         readxl_1.3.1    here_1.0.1      forcats_0.5.1  
 [5] stringr_1.4.0   dplyr_1.0.4     purrr_0.3.4     readr_1.4.0    
 [9] tidyr_1.1.2     tibble_3.0.6    ggplot2_3.3.3   tidyverse_1.3.0
[13] workflowr_1.6.2

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.6        lubridate_1.7.10  assertthat_0.2.1  rprojroot_2.0.2  
 [5] digest_0.6.27     utf8_1.1.4        R6_2.5.0          cellranger_1.1.0 
 [9] backports_1.2.1   reprex_1.0.0      evaluate_0.14     httr_1.4.2       
[13] pillar_1.4.7      rlang_0.4.10      rstudioapi_0.13   whisker_0.4      
[17] jquerylib_0.1.3   rmarkdown_2.6.6   htmlwidgets_1.5.3 munsell_0.5.0    
[21] broom_0.7.4       compiler_4.0.2    httpuv_1.5.5      modelr_0.1.8     
[25] xfun_0.20         pkgconfig_2.0.3   htmltools_0.5.1.1 tidyselect_1.1.0 
[29] fansi_0.4.2       crayon_1.4.1      dbplyr_2.1.0      withr_2.4.1      
[33] later_1.1.0.1     grid_4.0.2        jsonlite_1.7.2    gtable_0.3.0     
[37] lifecycle_1.0.0   DBI_1.1.1         git2r_0.28.0      magrittr_2.0.1   
[41] scales_1.1.1      cli_2.3.0         stringi_1.5.3     fs_1.5.0         
[45] promises_1.2.0.1  xml2_1.3.2        bslib_0.2.4       ellipsis_0.3.1   
[49] generics_0.1.0    vctrs_0.3.6       tools_4.0.2       glue_1.4.2       
[53] hms_1.0.0         crosstalk_1.1.1   yaml_2.2.1        colorspace_2.0-0 
[57] rvest_0.3.6       knitr_1.31        haven_2.3.1       sass_0.3.1