Last updated: 2021-05-18
Checks: 2 0
Knit directory: booksn_ppm/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 2e8acb8. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: data/.DS_Store
Ignored: data/data_raw/
Untracked files:
Untracked: analysis/dataNAO.Rmd
Unstaged changes:
Modified: analysis/references.bib
Modified: data/coplas2019.csv
Modified: data/coplas2019sn.csv
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/index.Rmd
) and HTML (docs/index.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 2e8acb8 | Antonio J Perez-Luque | 2021-05-18 | update index and add new analysis, diparity |
html | 95422ea | Antonio J Perez-Luque | 2021-05-18 | Build site. |
Rmd | e061f4e | Antonio J Perez-Luque | 2021-05-18 | update index |
html | afdfe93 | Antonio J Perez-Luque | 2021-05-18 | Build site. |
Rmd | 54923d4 | Antonio J Perez-Luque | 2021-05-18 | include link to temporal pattern |
html | 3c695d9 | Antonio J Perez-Luque | 2021-05-17 | Build site. |
html | 6e7b510 | Antonio J Perez-Luque | 2021-05-17 | Build site. |
Rmd | b29af0a | Antonio J Perez-Luque | 2021-05-17 | fix links |
html | 09743fc | Antonio J Perez-Luque | 2021-05-17 | Build site. |
Rmd | f6f2948 | Antonio J Perez-Luque | 2021-05-17 | select data for SN |
html | c73db62 | Antonio J Perez-Luque | 2021-05-17 | Build site. |
Rmd | fd92f89 | Antonio J Perez-Luque | 2021-05-17 | add preparacion de datos |
html | dbfdfa7 | Antonio J Perez-Luque | 2021-05-17 | Build site. |
Rmd | a022266 | Antonio J Perez-Luque | 2021-05-17 | Start workflowr project. |
En este script partimos de los datos originales de COPLAS desde 1992-2019 y generamos un data.frame “limpio” (corrección de errores), con la elevación y la especie de pino. Este dataset se guarda en /data/coplas2019.csv
.
Para el análisis de los datos de Sierra Nevada, vamos a generar un buffer de diferentes distancias para ver que parcelas elegimos. El proceso puede verse aquí. Hemos cogido un buffer de 20 km y hemos añadido algunas parcelas (de Motril), y hemos eliminado algunas de Sierra Alhamilla. Los datos están en: /data/coplas2019sn.csv
.