Last updated: 2019-05-22

Checks: 6 0

Knit directory: MSTPsummerstatistics/

This reproducible R Markdown analysis was created with workflowr (version 1.3.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20180927) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.RData
    Ignored:    analysis/.Rhistory

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd dd1e411 Anthony Hung 2019-05-22 before republishing syllabus
html dd1e411 Anthony Hung 2019-05-22 before republishing syllabus
Rmd 4ce8e85 Anthony Hung 2019-05-21 bandersnatch add
html 4ce8e85 Anthony Hung 2019-05-21 bandersnatch add
html 096760a Anthony Hung 2019-05-18 Build site.
html da98ae8 Anthony Hung 2019-05-17 Build site.
html bb90220 Anthony Hung 2019-05-17 commit before publishing
Rmd 239723e Anthony Hung 2019-05-08 Update learning objectives
html 239723e Anthony Hung 2019-05-08 Update learning objectives
html 2ec7944 Anthony Hung 2019-05-06 Build site.
html 536085f Anthony Hung 2019-05-06 Build site.
html ee75486 Anthony Hung 2019-05-04 Build site.
html 5ea5f30 Anthony Hung 2019-04-29 Build site.
html e0e8156 Anthony Hung 2019-04-29 Build site.
html e746cf5 Anthony Hung 2019-04-28 Build site.
Rmd 133df4a Anthony Hung 2019-04-28 introR
html 133df4a Anthony Hung 2019-04-28 introR
html 22b3720 Anthony Hung 2019-04-26 Build site.
html ddb3114 Anthony Hung 2019-04-26 Build site.
html 413d065 Anthony Hung 2019-04-26 Build site.
html 6b98d6c Anthony Hung 2019-04-26 Build site.
Rmd 9f13e70 Anthony Hung 2019-04-25 finish CLT
html 9f13e70 Anthony Hung 2019-04-25 finish CLT

Introduction

Here, we introduce R, a statistical programming language. Doing statistics within a programming language brings many advantages, including allowing one to organize all analyses into program files that can be rerun to replicate analyses. In addition to using R, we will be using RStudio, an integrated development environment (IDE), which assists us in working with R and outputs of our code as we develop it. Our objective today is to get everyone up to speed with working knowledge of R and programming to be able to do exercises as a part of the rest of the course.

Both R and RStudio are freely available online.

Downloading/Installing R and RStudio

R Basics

Follow along in your R console with the code in each of the code chunks as we explore the different aspects of R! Clicking on the github logo on the top right corner of the webpage will take you to the repository for this website, where you can download the R markdown file for this page to load into RStudio to follow along.

Mathematical operations in R

Many familiar operators work in R, allowing you to work with numbers like you would in a calculator. Operators such as inequalities also work, returning “TRUE” if the proposed logical expression is true and “FALSE” otherwise.

2+4 #addition
[1] 6
2-4 #subtraction
[1] -2
2*4 #multiplication
[1] 8
2/4 #division
[1] 0.5
2^4 #exponentiation
[1] 16
log(2) #the default log base is the natural log
[1] 0.6931472
2 < 4
[1] TRUE
2 > 4
[1] FALSE
2 >= 4 #greater than or equal to 
[1] FALSE
2 == 2 #is equal to (notice that there are two equal signs, as a single equal sign denotes assignment)
[1] TRUE
2 != 4 #is not equal to 
[1] TRUE
2 != 4 | 2 + 2 == 4 #OR
[1] TRUE
2 != 4 & 2 + 2 == 4 #AND
[1] TRUE
"Red" == "Red"
[1] TRUE

Objects

In addition to being able to work with actual numbers, R works in objects, which can represent anything from numbers to strings to vectors to matrices. Everything in R is an object. The best practice for assigning variable names to objects is the “<-” operator. After objects are created, they are stored in in the “Environment” tab in your RStudio console and can be called upon to perform different operations.

R has many data structures, including:

  • atomic vector
  • list
  • matrix
  • data frame
  • factors

R has 6 atomic vector types, or classes. Atomic means that a vector only contains elements of one class (i.e. the elements inside the vector do not come from mutliple classes).

  • character
  • numeric (real or decimal)
  • integer
  • logical (TRUE or FALSE)
  • complex (containing i)
a <- 2
b <- 3
a + b
[1] 5
class(a) #the "class" function tells you what class of object a is
[1] "numeric"
d <- c(1,2,3,4,5) #the "c" function concatenates the arguments contained within it into a vector
d
[1] 1 2 3 4 5
d <- c(d, 1) #The "c" function also allows you to append items to an existing vector
d
[1] 1 2 3 4 5 1
class(d)
[1] "numeric"
d[3] #brackets allow you index vectors or matrices. Here, we call the third value from our d vector.
[1] 3
#Matrices are just like vectors, but with two dimensions
my_matrix <- matrix(seq(1:9), ncol = 3)
my_matrix
     [,1] [,2] [,3]
[1,]    1    4    7
[2,]    2    5    8
[3,]    3    6    9
#vectors and matrices can only contain objects of one class. If you include objects of multiple types into the same vector, R will perform coersion to force all the objects contained in the vector into a shared class
x <- c(1.7, "a")
x
[1] "1.7" "a"  
class("a")
[1] "character"
class(1.7)
[1] "numeric"
class(x)
[1] "character"
y <- c(TRUE, 2)
y
[1] 1 2
z <- c("a", TRUE)
z
[1] "a"    "TRUE"
#If you would like to store objects of multiple classes into one object, a list can accomodate such a task.
x_y_z_list <- list(x,y,z)
x_y_z_list
[[1]]
[1] "1.7" "a"  

[[2]]
[1] 1 2

[[3]]
[1] "a"    "TRUE"
#to index an element in a list, use double brackets [[]]. You can further index elements within an element of a list.
x_y_z_list[[1]]
[1] "1.7" "a"  
x_y_z_list[[1]][2]
[1] "a"
#elements in a list can be assigned names
x_y_z_list <- list(a=x, b=y, c=z)
x_y_z_list
$a
[1] "1.7" "a"  

$b
[1] 1 2

$c
[1] "a"    "TRUE"
#Dataframes are a very commonly used type of object in R. You can think of a dataframe as a rectangular combination of lists.
#The below code stores the stated values in a dataframe which contains employee ids, names, salaries, and start dates for 5 employees
emp.data <- data.frame(
   emp_id = c (1:5), 
   emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
   salary = c(623.3,515.2,611.0,729.0,843.25), 
   
   start_date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11",
      "2015-03-27")),
   stringsAsFactors = FALSE
)

emp.data
  emp_id emp_name salary start_date
1      1     Rick 623.30 2012-01-01
2      2      Dan 515.20 2013-09-23
3      3 Michelle 611.00 2014-11-15
4      4     Ryan 729.00 2014-05-11
5      5     Gary 843.25 2015-03-27
emp.data$emp_id #the $ operator calls on a certain column of a dataframe
[1] 1 2 3 4 5
class(emp.data$emp_id) #As noted earlier, a dataframe can be thought of as a rectangular list, combining different data classes together, each in a different column.
[1] "integer"
class(emp.data$salary)
[1] "numeric"
emp.data$emp_name[emp.data$salary > 620] #You can combine logical operators, brackets, and the $ sign to subset your dataframe in any way you choose! Here, we print out all the employee names for employees who have a salary greater than 620.
[1] "Rick" "Ryan" "Gary"
ls() #ls lists all the variable names that have been assigned to objects in your workspace
[1] "a"          "b"          "d"          "emp.data"   "my_matrix" 
[6] "x"          "x_y_z_list" "y"          "z"         

Using Packages in R

In addition to the basic functions provided in R, oftentimes we will be working with packages that contain functions written by other people to perform common tasks or specific analyses. Packages can also contain datasets. We can load these packages into our R environment after installing them in R.

usePackage <- function(p) 
{
  if (!is.element(p, installed.packages()[,1]))
    install.packages(p, dep = TRUE)
  require(p, character.only = TRUE)
}

usePackage("gapminder")#This code installs the gapminder packages, which contains vital statistics data from multiple countries. install.packages() is the function that will install a package for you if you know it's name.
Loading required package: gapminder
library("gapminder") #After installing the package, we need to tell R to load it into our current environment with this function.
head(gapminder) #The package gapminder contains a dataset called gapminder. We can use the "head" function to print out the first 6 rows of this dataset.
# A tibble: 6 x 6
  country     continent  year lifeExp      pop gdpPercap
  <fct>       <fct>     <int>   <dbl>    <int>     <dbl>
1 Afghanistan Asia       1952    28.8  8425333      779.
2 Afghanistan Asia       1957    30.3  9240934      821.
3 Afghanistan Asia       1962    32.0 10267083      853.
4 Afghanistan Asia       1967    34.0 11537966      836.
5 Afghanistan Asia       1972    36.1 13079460      740.
6 Afghanistan Asia       1977    38.4 14880372      786.
?gapminder #the ? operator lauches a help page to describe a particular function, including the arguments it takes. Whenever using a new function, it is good practice to first explore it through ?.

Loops

Oftentimes, we may want to perform the same operation or function many many times. Rather than having to explicitly write out each individual operation, we can make use of loops. For example, let’s say that we want to raise the number 2 to the power of each integer from 0 to 20. We could either write out 2^0, 2^1, 2^2 …, or make use of a for loop to condense our code while getting the same result.

2^0
[1] 1
2^1
[1] 2
2^2
[1] 4
2^3
[1] 8
# ...

#This is a for loop. in the parentheses after the for function, we specify over what range of values we want to loop over, and assign a dummy variable name to take on each of those values in sequence. Within the curly braces, we state what operation we want to perform over all the values taken on by the dummy variable.
for(i in 0:20){
  print(2^i)
}
[1] 1
[1] 2
[1] 4
[1] 8
[1] 16
[1] 32
[1] 64
[1] 128
[1] 256
[1] 512
[1] 1024
[1] 2048
[1] 4096
[1] 8192
[1] 16384
[1] 32768
[1] 65536
[1] 131072
[1] 262144
[1] 524288
[1] 1048576

User-defined Functions (UDF)

Another way to avoid writing out or copy-pasting the same exact thing over and over again when working with data is to write a function to contain a certain combination of operations you find yourself running mutliple times. For example, you may find yourself needing to calculate the Hardy-Weinberg Equillibrium genotype frequencies of a population given the allele frequencies. We can wrap up all the code that you would need to calculate this in a function that we can call upon again and again.

calc_HWE_geno <- function(p = 0.5){ 
  q <- 1-p
  
  pp <- p^2
  pq <- 2*p*q
  qq <- q^2
  
  return(c(pp, pq, qq))
}

calc_HWE_geno(p = 0.1)
[1] 0.01 0.18 0.81
#note that in our UDF we assigned a default value to p (p = 0.5). This means that if we do not specify a value for our argument of p, it will default to using that value.

calc_HWE_geno()
[1] 0.25 0.50 0.25

Plots

In addition to mathematical operations, R can help with data visualization. Base R has a few useful plotting functions, but popular packages such as ggplot2 give more customization and control to the user.

hist(gapminder$lifeExp)

Version Author Date
133df4a Anthony Hung 2019-04-28
boxplot(lifeExp ~ continent, data = gapminder) #box plot for the life expectancies of all years per continent

Version Author Date
133df4a Anthony Hung 2019-04-28

Setting a random seed

R has many functions that use a random number generator to generate an output. For example, the r____ functions (e.g. rbinom, runif) pull numbers from a probability distribution of your choice. In order to create reproducible analyses, it is often advantageous to be able to reliably obtain the same “random” number after running the same function over again. In order to do so, we can set a seed for the random number generator.

runif(1,0,1) #runif pulls a number from the uniform distribution with a set of given parameters
[1] 0.1944457
runif(1,0,1) #we can see that running runif twice gives you differnt results
[1] 0.205278
set.seed(1234) #setting a seed allows us to obtain reproducible results from functions that use the random number generator
runif(1,0,1)
[1] 0.1137034
set.seed(1234)
runif(1,0,1)
[1] 0.1137034

Reading and writing data in R

Finally, let us address probably one of the most important points when working with statistics in science: how to get the data you have collected into your R environment. For this part of the lesson, we will be working with the bandersnatch.csv file (created by Katie Long) located here: https://raw.githubusercontent.com/anthonyhung/MSTPsummerstatistics/master/data/bandersnatch.csv. If you would like to have your own copy of this dataset, you can open up a terminal window and run the commands.

cd ~/Desktop
mkdir data
cd data
wget https://raw.githubusercontent.com/anthonyhung/MSTPsummerstatistics/master/data/bandersnatch.csv
mkdir: data: File exists
--2019-05-22 07:32:42--  https://raw.githubusercontent.com/anthonyhung/MSTPsummerstatistics/master/data/bandersnatch.csv
Resolving raw.githubusercontent.com... 151.101.184.133
Connecting to raw.githubusercontent.com|151.101.184.133|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 13511471 (13M) [text/plain]
Saving to: ‘bandersnatch.csv.4’

     0K .......... .......... .......... .......... ..........  0%  357K 37s
    50K .......... .......... .......... .......... ..........  0% 5.00M 20s
   100K .......... .......... .......... .......... ..........  1% 10.9M 13s
   150K .......... .......... .......... .......... ..........  1% 3.97M 11s
   200K .......... .......... .......... .......... ..........  1%  378K 15s
   250K .......... .......... .......... .......... ..........  2% 9.65M 13s
   300K .......... .......... .......... .......... ..........  2% 27.6M 11s
   350K .......... .......... .......... .......... ..........  3% 5.18M 10s
   400K .......... .......... .......... .......... ..........  3% 4.39M 9s
   450K .......... .......... .......... .......... ..........  3% 4.12M 9s
   500K .......... .......... .......... .......... ..........  4% 5.07M 8s
   550K .......... .......... .......... .......... ..........  4% 10.9M 7s
   600K .......... .......... .......... .......... ..........  4% 3.22M 7s
   650K .......... .......... .......... .......... ..........  5% 4.72M 7s
   700K .......... .......... .......... .......... ..........  5% 3.50M 6s
   750K .......... .......... .......... .......... ..........  6% 2.87M 6s
   800K .......... .......... .......... .......... ..........  6% 3.37M 6s
   850K .......... .......... .......... .......... ..........  6% 4.16M 6s
   900K .......... .......... .......... .......... ..........  7% 3.69M 6s
   950K .......... .......... .......... .......... ..........  7% 3.54M 6s
  1000K .......... .......... .......... .......... ..........  7% 3.70M 5s
  1050K .......... .......... .......... .......... ..........  8% 3.59M 5s
  1100K .......... .......... .......... .......... ..........  8% 3.78M 5s
  1150K .......... .......... .......... .......... ..........  9% 2.83M 5s
  1200K .......... .......... .......... .......... ..........  9% 3.68M 5s
  1250K .......... .......... .......... .......... ..........  9% 3.51M 5s
  1300K .......... .......... .......... .......... .......... 10% 3.85M 5s
  1350K .......... .......... .......... .......... .......... 10% 3.58M 5s
  1400K .......... .......... .......... .......... .......... 10% 3.30M 5s
  1450K .......... .......... .......... .......... .......... 11% 4.23M 5s
  1500K .......... .......... .......... .......... .......... 11% 3.60M 5s
  1550K .......... .......... .......... .......... .......... 12% 2.84M 5s
  1600K .......... .......... .......... .......... .......... 12% 3.70M 4s
  1650K .......... .......... .......... .......... .......... 12% 3.75M 4s
  1700K .......... .......... .......... .......... .......... 13% 3.58M 4s
  1750K .......... .......... .......... .......... .......... 13% 3.71M 4s
  1800K .......... .......... .......... .......... .......... 14% 3.60M 4s
  1850K .......... .......... .......... .......... .......... 14% 3.63M 4s
  1900K .......... .......... .......... .......... .......... 14% 3.73M 4s
  1950K .......... .......... .......... .......... .......... 15% 2.49M 4s
  2000K .......... .......... .......... .......... .......... 15% 3.94M 4s
  2050K .......... .......... .......... .......... .......... 15% 3.98M 4s
  2100K .......... .......... .......... .......... .......... 16% 3.78M 4s
  2150K .......... .......... .......... .......... .......... 16% 3.57M 4s
  2200K .......... .......... .......... .......... .......... 17% 3.84M 4s
  2250K .......... .......... .......... .......... .......... 17% 3.43M 4s
  2300K .......... .......... .......... .......... .......... 17% 3.92M 4s
  2350K .......... .......... .......... .......... .......... 18% 2.75M 4s
  2400K .......... .......... .......... .......... .......... 18% 3.86M 4s
  2450K .......... .......... .......... .......... .......... 18% 3.51M 4s
  2500K .......... .......... .......... .......... .......... 19% 3.64M 4s
  2550K .......... .......... .......... .......... .......... 19% 3.69M 4s
  2600K .......... .......... .......... .......... .......... 20% 3.53M 4s
  2650K .......... .......... .......... .......... .......... 20% 3.90M 4s
  2700K .......... .......... .......... .......... .......... 20% 3.65M 4s
  2750K .......... .......... .......... .......... .......... 21% 2.76M 4s
  2800K .......... .......... .......... .......... .......... 21% 3.70M 4s
  2850K .......... .......... .......... .......... .......... 21% 3.70M 4s
  2900K .......... .......... .......... .......... .......... 22% 3.77M 3s
  2950K .......... .......... .......... .......... .......... 22% 3.55M 3s
  3000K .......... .......... .......... .......... .......... 23% 3.85M 3s
  3050K .......... .......... .......... .......... .......... 23% 3.57M 3s
  3100K .......... .......... .......... .......... .......... 23% 3.71M 3s
  3150K .......... .......... .......... .......... .......... 24%  464K 4s
  3200K .......... .......... .......... .......... .......... 24% 32.5M 4s
  3250K .......... .......... .......... .......... .......... 25% 26.0M 3s
  3300K .......... .......... .......... .......... .......... 25% 30.1M 3s
  3350K .......... .......... .......... .......... .......... 25% 18.1M 3s
  3400K .......... .......... .......... .......... .......... 26% 77.3M 3s
  3450K .......... .......... .......... .......... .......... 26% 83.5M 3s
  3500K .......... .......... .......... .......... .......... 26% 59.4M 3s
  3550K .......... .......... .......... .......... .......... 27% 1.48M 3s
  3600K .......... .......... .......... .......... .......... 27% 3.25M 3s
  3650K .......... .......... .......... .......... .......... 28% 16.0M 3s
  3700K .......... .......... .......... .......... .......... 28% 43.5M 3s
  3750K .......... .......... .......... .......... .......... 28% 1.78M 3s
  3800K .......... .......... .......... .......... .......... 29% 32.4M 3s
  3850K .......... .......... .......... .......... .......... 29% 5.33M 3s
  3900K .......... .......... .......... .......... .......... 29% 3.64M 3s
  3950K .......... .......... .......... .......... .......... 30% 2.85M 3s
  4000K .......... .......... .......... .......... .......... 30% 3.69M 3s
  4050K .......... .......... .......... .......... .......... 31% 3.73M 3s
  4100K .......... .......... .......... .......... .......... 31% 3.57M 3s
  4150K .......... .......... .......... .......... .......... 31% 3.65M 3s
  4200K .......... .......... .......... .......... .......... 32% 3.67M 3s
  4250K .......... .......... .......... .......... .......... 32% 3.67M 3s
  4300K .......... .......... .......... .......... .......... 32% 3.64M 3s
  4350K .......... .......... .......... .......... .......... 33% 2.94M 3s
  4400K .......... .......... .......... .......... .......... 33% 3.64M 3s
  4450K .......... .......... .......... .......... .......... 34% 3.63M 3s
  4500K .......... .......... .......... .......... .......... 34% 3.75M 3s
  4550K .......... .......... .......... .......... .......... 34% 3.59M 3s
  4600K .......... .......... .......... .......... .......... 35% 3.63M 3s
  4650K .......... .......... .......... .......... .......... 35% 3.73M 3s
  4700K .......... .......... .......... .......... .......... 35% 3.73M 3s
  4750K .......... .......... .......... .......... .......... 36% 2.76M 3s
  4800K .......... .......... .......... .......... .......... 36% 3.51M 3s
  4850K .......... .......... .......... .......... .......... 37% 3.93M 3s
  4900K .......... .......... .......... .......... .......... 37% 3.56M 3s
  4950K .......... .......... .......... .......... .......... 37% 3.23M 3s
  5000K .......... .......... .......... .......... .......... 38% 4.24M 3s
  5050K .......... .......... .......... .......... .......... 38% 3.80M 3s
  5100K .......... .......... .......... .......... .......... 39% 3.54M 3s
  5150K .......... .......... .......... .......... .......... 39% 2.68M 2s
  5200K .......... .......... .......... .......... .......... 39% 3.72M 2s
  5250K .......... .......... .......... .......... .......... 40% 1.69M 2s
  5300K .......... .......... .......... .......... .......... 40% 35.2M 2s
  5350K .......... .......... .......... .......... .......... 40% 4.48M 2s
  5400K .......... .......... .......... .......... .......... 41% 3.95M 2s
  5450K .......... .......... .......... .......... .......... 41% 3.67M 2s
  5500K .......... .......... .......... .......... .......... 42% 3.79M 2s
  5550K .......... .......... .......... .......... .......... 42% 2.74M 2s
  5600K .......... .......... .......... .......... .......... 42% 3.66M 2s
  5650K .......... .......... .......... .......... .......... 43% 3.67M 2s
  5700K .......... .......... .......... .......... .......... 43% 3.81M 2s
  5750K .......... .......... .......... .......... .......... 43% 3.60M 2s
  5800K .......... .......... .......... .......... .......... 44% 3.63M 2s
  5850K .......... .......... .......... .......... .......... 44% 2.02M 2s
  5900K .......... .......... .......... .......... .......... 45% 16.8M 2s
  5950K .......... .......... .......... .......... .......... 45% 2.63M 2s
  6000K .......... .......... .......... .......... .......... 45% 4.16M 2s
  6050K .......... .......... .......... .......... .......... 46% 3.61M 2s
  6100K .......... .......... .......... .......... .......... 46% 3.83M 2s
  6150K .......... .......... .......... .......... .......... 46% 3.20M 2s
  6200K .......... .......... .......... .......... .......... 47% 4.12M 2s
  6250K .......... .......... .......... .......... .......... 47% 3.59M 2s
  6300K .......... .......... .......... .......... .......... 48% 3.86M 2s
  6350K .......... .......... .......... .......... .......... 48% 2.73M 2s
  6400K .......... .......... .......... .......... .......... 48% 3.76M 2s
  6450K .......... .......... .......... .......... .......... 49% 3.40M 2s
  6500K .......... .......... .......... .......... .......... 49% 4.01M 2s
  6550K .......... .......... .......... .......... .......... 50% 3.56M 2s
  6600K .......... .......... .......... .......... .......... 50% 3.63M 2s
  6650K .......... .......... .......... .......... .......... 50% 3.57M 2s
  6700K .......... .......... .......... .......... .......... 51% 3.06M 2s
  6750K .......... .......... .......... .......... .......... 51% 2.81M 2s
  6800K .......... .......... .......... .......... .......... 51% 2.97M 2s
  6850K .......... .......... .......... .......... .......... 52% 2.61M 2s
  6900K .......... .......... .......... .......... .......... 52% 2.75M 2s
  6950K .......... .......... .......... .......... .......... 53% 3.59M 2s
  7000K .......... .......... .......... .......... .......... 53% 3.18M 2s
  7050K .......... .......... .......... .......... .......... 53% 3.83M 2s
  7100K .......... .......... .......... .......... .......... 54% 3.97M 2s
  7150K .......... .......... .......... .......... .......... 54% 2.73M 2s
  7200K .......... .......... .......... .......... .......... 54% 3.74M 2s
  7250K .......... .......... .......... .......... .......... 55% 3.55M 2s
  7300K .......... .......... .......... .......... .......... 55% 3.63M 2s
  7350K .......... .......... .......... .......... .......... 56% 3.37M 2s
  7400K .......... .......... .......... .......... .......... 56% 3.93M 2s
  7450K .......... .......... .......... .......... .......... 56% 3.56M 2s
  7500K .......... .......... .......... .......... .......... 57% 3.73M 2s
  7550K .......... .......... .......... .......... .......... 57% 2.77M 2s
  7600K .......... .......... .......... .......... .......... 57% 3.36M 2s
  7650K .......... .......... .......... .......... .......... 58% 2.06M 2s
  7700K .......... .......... .......... .......... .......... 58% 6.46M 2s
  7750K .......... .......... .......... .......... .......... 59% 1.73M 2s
  7800K .......... .......... .......... .......... .......... 59% 2.76M 2s
  7850K .......... .......... .......... .......... .......... 59% 3.66M 2s
  7900K .......... .......... .......... .......... .......... 60% 3.78M 2s
  7950K .......... .......... .......... .......... .......... 60% 2.67M 2s
  8000K .......... .......... .......... .......... .......... 61% 3.88M 2s
  8050K .......... .......... .......... .......... .......... 61% 3.32M 2s
  8100K .......... .......... .......... .......... .......... 61% 2.22M 2s
  8150K .......... .......... .......... .......... .......... 62% 13.8M 2s
  8200K .......... .......... .......... .......... .......... 62% 3.61M 2s
  8250K .......... .......... .......... .......... .......... 62% 3.23M 1s
  8300K .......... .......... .......... .......... .......... 63% 4.23M 1s
  8350K .......... .......... .......... .......... .......... 63% 2.71M 1s
  8400K .......... .......... .......... .......... .......... 64% 3.70M 1s
  8450K .......... .......... .......... .......... .......... 64% 3.68M 1s
  8500K .......... .......... .......... .......... .......... 64% 3.74M 1s
  8550K .......... .......... .......... .......... .......... 65% 3.50M 1s
  8600K .......... .......... .......... .......... .......... 65% 3.72M 1s
  8650K .......... .......... .......... .......... .......... 65% 2.50M 1s
  8700K .......... .......... .......... .......... .......... 66% 1.83M 1s
  8750K .......... .......... .......... .......... .......... 66% 2.06M 1s
  8800K .......... .......... .......... .......... .......... 67% 3.74M 1s
  8850K .......... .......... .......... .......... .......... 67% 3.48M 1s
  8900K .......... .......... .......... .......... .......... 67% 3.85M 1s
  8950K .......... .......... .......... .......... .......... 68% 3.45M 1s
  9000K .......... .......... .......... .......... .......... 68% 3.76M 1s
  9050K .......... .......... .......... .......... .......... 68% 3.36M 1s
  9100K .......... .......... .......... .......... .......... 69% 4.01M 1s
  9150K .......... .......... .......... .......... .......... 69% 2.76M 1s
  9200K .......... .......... .......... .......... .......... 70% 3.72M 1s
  9250K .......... .......... .......... .......... .......... 70% 3.73M 1s
  9300K .......... .......... .......... .......... .......... 70% 3.13M 1s
  9350K .......... .......... .......... .......... .......... 71% 4.44M 1s
  9400K .......... .......... .......... .......... .......... 71% 3.66M 1s
  9450K .......... .......... .......... .......... .......... 71% 3.72M 1s
  9500K .......... .......... .......... .......... .......... 72% 3.34M 1s
  9550K .......... .......... .......... .......... .......... 72% 2.90M 1s
  9600K .......... .......... .......... .......... .......... 73% 3.56M 1s
  9650K .......... .......... .......... .......... .......... 73% 3.60M 1s
  9700K .......... .......... .......... .......... .......... 73% 3.46M 1s
  9750K .......... .......... .......... .......... .......... 74% 3.77M 1s
  9800K .......... .......... .......... .......... .......... 74% 3.04M 1s
  9850K .......... .......... .......... .......... .......... 75% 4.36M 1s
  9900K .......... .......... .......... .......... .......... 75% 3.27M 1s
  9950K .......... .......... .......... .......... .......... 75% 2.95M 1s
 10000K .......... .......... .......... .......... .......... 76% 3.81M 1s
 10050K .......... .......... .......... .......... .......... 76% 3.68M 1s
 10100K .......... .......... .......... .......... .......... 76% 3.58M 1s
 10150K .......... .......... .......... .......... .......... 77% 3.75M 1s
 10200K .......... .......... .......... .......... .......... 77% 2.81M 1s
 10250K .......... .......... .......... .......... .......... 78% 4.42M 1s
 10300K .......... .......... .......... .......... .......... 78% 4.40M 1s
 10350K .......... .......... .......... .......... .......... 78% 2.81M 1s
 10400K .......... .......... .......... .......... .......... 79% 3.50M 1s
 10450K .......... .......... .......... .......... .......... 79% 3.59M 1s
 10500K .......... .......... .......... .......... .......... 79% 2.55M 1s
 10550K .......... .......... .......... .......... .......... 80% 4.88M 1s
 10600K .......... .......... .......... .......... .......... 80% 3.89M 1s
 10650K .......... .......... .......... .......... .......... 81% 1.04M 1s
 10700K .......... .......... .......... .......... .......... 81% 26.1M 1s
 10750K .......... .......... .......... .......... .......... 81% 24.6M 1s
 10800K .......... .......... .......... .......... .......... 82% 3.31M 1s
 10850K .......... .......... .......... .......... .......... 82% 1.68M 1s
 10900K .......... .......... .......... .......... .......... 82% 3.79M 1s
 10950K .......... .......... .......... .......... .......... 83% 3.67M 1s
 11000K .......... .......... .......... .......... .......... 83% 1.89M 1s
 11050K .......... .......... .......... .......... .......... 84% 3.63M 1s
 11100K .......... .......... .......... .......... .......... 84% 3.55M 1s
 11150K .......... .......... .......... .......... .......... 84% 2.80M 1s
 11200K .......... .......... .......... .......... .......... 85% 3.53M 1s
 11250K .......... .......... .......... .......... .......... 85% 3.51M 1s
 11300K .......... .......... .......... .......... .......... 86% 3.96M 1s
 11350K .......... .......... .......... .......... .......... 86% 3.45M 1s
 11400K .......... .......... .......... .......... .......... 86% 3.93M 1s
 11450K .......... .......... .......... .......... .......... 87% 3.60M 1s
 11500K .......... .......... .......... .......... .......... 87% 3.64M 0s
 11550K .......... .......... .......... .......... .......... 87% 2.77M 0s
 11600K .......... .......... .......... .......... .......... 88% 3.14M 0s
 11650K .......... .......... .......... .......... .......... 88% 2.41M 0s
 11700K .......... .......... .......... .......... .......... 89% 11.8M 0s
 11750K .......... .......... .......... .......... .......... 89% 3.74M 0s
 11800K .......... .......... .......... .......... .......... 89% 3.58M 0s
 11850K .......... .......... .......... .......... .......... 90% 3.78M 0s
 11900K .......... .......... .......... .......... .......... 90% 1.76M 0s
 11950K .......... .......... .......... .......... .......... 90% 1001K 0s
 12000K .......... .......... .......... .......... .......... 91% 2.46M 0s
 12050K .......... .......... .......... .......... .......... 91% 3.15M 0s
 12100K .......... .......... .......... .......... .......... 92% 3.52M 0s
 12150K .......... .......... .......... .......... .......... 92% 3.22M 0s
 12200K .......... .......... .......... .......... .......... 92% 3.17M 0s
 12250K .......... .......... .......... .......... .......... 93% 3.64M 0s
 12300K .......... .......... .......... .......... .......... 93% 3.28M 0s
 12350K .......... .......... .......... .......... .......... 93% 2.64M 0s
 12400K .......... .......... .......... .......... .......... 94% 3.81M 0s
 12450K .......... .......... .......... .......... .......... 94% 3.61M 0s
 12500K .......... .......... .......... .......... .......... 95% 3.67M 0s
 12550K .......... .......... .......... .......... .......... 95% 3.44M 0s
 12600K .......... .......... .......... .......... .......... 95% 3.80M 0s
 12650K .......... .......... .......... .......... .......... 96% 3.83M 0s
 12700K .......... .......... .......... .......... .......... 96% 3.71M 0s
 12750K .......... .......... .......... .......... .......... 97% 2.80M 0s
 12800K .......... .......... .......... .......... .......... 97% 3.48M 0s
 12850K .......... .......... .......... .......... .......... 97% 3.81M 0s
 12900K .......... .......... .......... .......... .......... 98% 3.59M 0s
 12950K .......... .......... .......... .......... .......... 98% 3.68M 0s
 13000K .......... .......... .......... .......... .......... 98% 3.70M 0s
 13050K .......... .......... .......... .......... .......... 99% 1.56M 0s
 13100K .......... .......... .......... .......... .......... 99% 1.45M 0s
 13150K .......... .......... .......... .......... ....      100% 3.67M=4.0s

2019-05-22 07:32:46 (3.19 MB/s) - ‘bandersnatch.csv.4’ saved [13511471/13511471]

Now that we have a copy of the data in a data directory on our desktop, we can load it into R using a relative or absolute directory path and the read.csv function.

data <- read.csv("~/Desktop/data/bandersnatch.csv")
#let's take a look at the dataset we've just loaded
head(data)
  Color  Fur Baseline.Frumiosity Post.Frumiosity
1   Red Nude            4.477127        11.46590
2   Red Nude            4.113727        11.09354
3   Red Nude            4.806221        11.81268
4   Red Nude            5.357348        12.36704
5   Red Nude            5.951754        12.96135
6   Red Nude            3.593995        10.62375
summary(data)
  Color           Fur         Baseline.Frumiosity Post.Frumiosity 
 Blue:200000   Furry:200000   Min.   :-1.108      Min.   : 1.887  
 Red :200000   Nude :200000   1st Qu.: 4.001      1st Qu.: 4.044  
                              Median : 6.980      Median : 8.976  
                              Mean   : 6.001      Mean   : 9.001  
                              3rd Qu.: 8.961      3rd Qu.:13.956  
                              Max.   : 9.174      Max.   :16.192  
#what is the difference between these two function calls?
head(read.csv("~/Desktop/data/bandersnatch.csv", header = T))
  Color  Fur Baseline.Frumiosity Post.Frumiosity
1   Red Nude            4.477127        11.46590
2   Red Nude            4.113727        11.09354
3   Red Nude            4.806221        11.81268
4   Red Nude            5.357348        12.36704
5   Red Nude            5.951754        12.96135
6   Red Nude            3.593995        10.62375
head(read.csv("~/Desktop/data/bandersnatch.csv", header = F))
     V1   V2                  V3              V4
1 Color  Fur Baseline Frumiosity Post-Frumiosity
2   Red Nude         4.477127244     11.46590322
3   Red Nude         4.113726932     11.09353649
4   Red Nude         4.806220524     11.81268077
5   Red Nude         5.357347878     12.36703951
6   Red Nude         5.951754455     12.96134984
#let's look at the structure of the data
class(data)
[1] "data.frame"
class(data$Color)
[1] "factor"
class(data$Baseline.Frumiosity)
[1] "numeric"
#let's make some plots with the data
hist(data$Baseline.Frumiosity)

Version Author Date
dd1e411 Anthony Hung 2019-05-22
hist(data$Post.Frumiosity)

Version Author Date
dd1e411 Anthony Hung 2019-05-22
plot(data$Baseline.Frumiosity, data$Post.Frumiosity)

Version Author Date
dd1e411 Anthony Hung 2019-05-22
#we can also write data files and export them using R
data$Size <- rnorm(nrow(data))
write.csv(data, "~/Desktop/data/new_bandersnatch.csv")

Exercises:

  1. Write a function called calc_KE that takes as arguments the mass (in kg) and velocity (in m/s) of an object and returns the kinetic energy (in Joules) of an object. Use it to find the KE of a 0.5 kg rock moving at 1.2 m/s. 0.36 Joules

  2. Working with the gapminder dataset, find the country with the highest life expectancy in 1962. Iceland

  3. Based on the plots we made of the bandersnatch data, there seems to be something going on that could potentially be interesting. Find out what might explain the structure in the data we see.


sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS  10.14.4

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] gapminder_0.3.0

loaded via a namespace (and not attached):
 [1] Rcpp_0.12.18     knitr_1.20       whisker_0.3-2    magrittr_1.5    
 [5] workflowr_1.3.0  rlang_0.2.2      fansi_0.3.0      stringr_1.3.1   
 [9] tools_3.5.1      utf8_1.1.4       cli_1.0.0        git2r_0.23.0    
[13] htmltools_0.3.6  yaml_2.2.0       rprojroot_1.3-2  digest_0.6.16   
[17] assertthat_0.2.1 tibble_1.4.2     crayon_1.3.4     fs_1.2.7        
[21] glue_1.3.0       evaluate_0.11    rmarkdown_1.10   stringi_1.2.4   
[25] compiler_3.5.1   pillar_1.3.0     backports_1.1.2