Last updated: 2019-08-06
Checks: 5 2
Knit directory: Comparative_eQTL/analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.4.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish
to commit the R Markdown file and build the HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20190319)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
To ensure reproducibility of the results, delete the cache directory 20190521_eQTL_CrossSpeciesEnrichment_cache
and re-run the analysis. To have workflowr automatically delete the cache directory prior to building the file, set delete_cache = TRUE
when running wflow_build()
or wflow_publish()
.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/.DS_Store
Ignored: analysis/20190521_eQTL_CrossSpeciesEnrichment_cache/
Ignored: analysis/figure/
Ignored: analysis_temp/.DS_Store
Ignored: code/.DS_Store
Ignored: code/snakemake_workflow/.DS_Store
Ignored: code/snakemake_workflow/rules/.eQTL_analysis.smk.swp
Ignored: data/.DS_Store
Ignored: data/PastAnalysesDataToKeep/.DS_Store
Ignored: docs/.DS_Store
Ignored: docs/assets/.DS_Store
Unstaged changes:
Modified: analysis/20190521_eQTL_CrossSpeciesEnrichment.Rmd
Modified: analysis/20190627_DiffContactsEgenes.Rmd
Modified: analysis/20190708_DiffContactsEgenes_CisWindowControlled.Rmd
Modified: analysis/20190716_VarianceInsteadOfEgenes.Rmd
Modified: analysis/index.Rmd
Modified: code/snakemake_workflow/Session.vim
Modified: code/snakemake_workflow/rules/eQTL_analysis.smk
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view them.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | e9747fe | Benjmain Fair | 2019-07-24 | update site |
Rmd | f469d6a | Benjmain Fair | 2019-07-16 | new analyses |
html | c3dbe5a | Benjmain Fair | 2019-06-19 | update site |
Rmd | aa8067e | Benjmain Fair | 2019-06-15 | added power analysis rmd |
Rmd | 22eda3a | Benjmain Fair | 2019-06-12 | update site |
html | 22eda3a | Benjmain Fair | 2019-06-12 | update site |
Rmd | 7ef6fe2 | Benjmain Fair | 2019-06-11 | update site |
html | 7ef6fe2 | Benjmain Fair | 2019-06-11 | update site |
library(plyr)
library(tidyverse)
library(knitr)
library(data.table)
library(ggpmisc)
library("clusterProfiler")
library("org.Hs.eg.db")
library(gridExtra)
library(enrichplot)
Here the dataset is eQTLs called from a model with the following pre-testing filters/transformations/checks:
First, Read in the data…
eQTLs <- read.table(gzfile("../data/PastAnalysesDataToKeep/20190521_eQTLs_250kB_10MAF.txt.gz"), header=T)
kable(head(eQTLs))
snps | gene | beta | statistic | pvalue | FDR | qvalue |
---|---|---|---|---|---|---|
ID.1.126459696.ACCCTAGTAAG.A | ENSPTRG00000001061 | 3.570039 | 12.50828 | 0 | 3.5e-06 | 3.5e-06 |
ID.1.126465687.TTGT.A | ENSPTRG00000001061 | 3.570039 | 12.50828 | 0 | 3.5e-06 | 3.5e-06 |
ID.1.126465750.TG.CT | ENSPTRG00000001061 | 3.570039 | 12.50828 | 0 | 3.5e-06 | 3.5e-06 |
ID.1.126465756.T.C | ENSPTRG00000001061 | 3.570039 | 12.50828 | 0 | 3.5e-06 | 3.5e-06 |
ID.1.126465766.C.A | ENSPTRG00000001061 | 3.570039 | 12.50828 | 0 | 3.5e-06 | 3.5e-06 |
ID.1.126465774.G.A | ENSPTRG00000001061 | 3.570039 | 12.50828 | 0 | 3.5e-06 | 3.5e-06 |
# List of chimp tested genes
ChimpTestedGenes <- rownames(read.table('../output/ExpressionMatrix.un-normalized.txt.gz', header=T, check.names=FALSE, row.names = 1))
ChimpToHumanGeneMap <- read.table("../data/Biomart_export.Hsap.Ptro.orthologs.txt.gz", header=T, sep='\t', stringsAsFactors = F)
kable(head(ChimpToHumanGeneMap))
Gene.stable.ID | Transcript.stable.ID | Chimpanzee.gene.stable.ID | Chimpanzee.gene.name | Chimpanzee.protein.or.transcript.stable.ID | Chimpanzee.homology.type | X.id..target.Chimpanzee.gene.identical.to.query.gene | X.id..query.gene.identical.to.target.Chimpanzee.gene | dN.with.Chimpanzee | dS.with.Chimpanzee | Chimpanzee.orthology.confidence..0.low..1.high. |
---|---|---|---|---|---|---|---|---|---|---|
ENSG00000198888 | ENST00000361390 | ENSPTRG00000042641 | MT-ND1 | ENSPTRP00000061407 | ortholog_one2one | 94.6541 | 94.6541 | 0.0267 | 0.5455 | 1 |
ENSG00000198763 | ENST00000361453 | ENSPTRG00000042626 | MT-ND2 | ENSPTRP00000061406 | ortholog_one2one | 96.2536 | 96.2536 | 0.0185 | 0.7225 | 1 |
ENSG00000210127 | ENST00000387392 | ENSPTRG00000042642 | MT-TA | ENSPTRT00000076396 | ortholog_one2one | 100.0000 | 100.0000 | NA | NA | NA |
ENSG00000198804 | ENST00000361624 | ENSPTRG00000042657 | MT-CO1 | ENSPTRP00000061408 | ortholog_one2one | 98.8304 | 98.8304 | 0.0065 | 0.5486 | 1 |
ENSG00000198712 | ENST00000361739 | ENSPTRG00000042660 | MT-CO2 | ENSPTRP00000061402 | ortholog_one2one | 97.7974 | 97.7974 | 0.0106 | 0.5943 | 1 |
ENSG00000228253 | ENST00000361851 | ENSPTRG00000042653 | MT-ATP8 | ENSPTRP00000061400 | ortholog_one2one | 94.1176 | 94.1176 | 0.0325 | 0.3331 | 1 |
# Of this ortholog list, how many genes are one2one
table(ChimpToHumanGeneMap$Chimpanzee.homology.type)
ortholog_many2many ortholog_one2many ortholog_one2one
2278 19917 140351
OneToOneMap <- ChimpToHumanGeneMap %>%
filter(Chimpanzee.homology.type=="ortholog_one2one")
# Read gtex heart egene list
# Only consider those that were tested in both species and are one2one orthologs
GtexHeartEgenes <- read.table("../data/Heart_Left_Ventricle.v7.egenes.txt.gz", header=T, sep='\t', stringsAsFactors = F) %>%
mutate(gene_id_stable = gsub(".\\d+$","",gene_id)) %>%
filter(gene_id_stable %in% OneToOneMap$Gene.stable.ID) %>%
mutate(chimp_id = plyr::mapvalues(gene_id_stable, OneToOneMap$Gene.stable.ID, OneToOneMap$Chimpanzee.gene.stable.ID, warn_missing = F)) %>%
filter(chimp_id %in% ChimpTestedGenes)
ChimpToHuman.ID <- function(Chimp.ID){
#function to convert chimp ensembl to human ensembl gene ids
return(
plyr::mapvalues(Chimp.ID, OneToOneMap$Chimpanzee.gene.stable.ID, OneToOneMap$Gene.stable.ID, warn_missing = F)
)}
Now compare with GTEx by making 2x2 contigency table (eGene/not-eGene in Chimp/human). The odds ratio from this table is symetrical.
HumanFDR <- 0.1
ChimpFDR <- 0.1
#Get chimp eQTLs
Chimp_eQTLs <- eQTLs %>%
filter(qvalue<ChimpFDR)
# Count chimp eGenes
length(unique(Chimp_eQTLs$gene))
[1] 336
# Count human eGenes
length(GtexHeartEgenes %>% filter(qval< HumanFDR) %>% pull(chimp_id))
[1] 5410
# Count number genes tested in both species (already filtered for 1to1 orthologs)
length(GtexHeartEgenes$gene_id_stable)
[1] 11586
The number of human eGenes is huge (about half of all tested genes) and GTEx over-powered compared to chimp. With huge power, everything is an eGene and the eGene classification becomes devoid of meaningful information. So I will play with different ways to classify human eGenes.
#Change FDR thresholds or take top N eGenes by qvalue
HumanTopN <- 600
HumanFDR <- 0.1
ChimpFDR <- 0.1
# Filter human eGenes by qval threshold
HumanSigGenes <- GtexHeartEgenes %>% filter(qval<HumanFDR) %>% pull(chimp_id)
# Filter human eGenes by topN qval
# HumanSigGenes <- GtexHeartEgenes %>% top_n(-HumanTopN, qval) %>% pull(chimp_id)
# Filter human eGeness by qval threshold then topN betas
# HumanSigGenes <- GtexHeartEgenes %>% filter(qval<HumanFDR) %>% top_n(1000, abs(slope)) %>% pull(chimp_id)
HumanNonSigGenes <- GtexHeartEgenes %>%
filter(!chimp_id %in% HumanSigGenes) %>%
pull(chimp_id)
ChimpSigGenes <- GtexHeartEgenes %>%
filter(chimp_id %in% Chimp_eQTLs$gene) %>%
pull(chimp_id)
ChimpNonSigGenes <- GtexHeartEgenes %>%
filter(! chimp_id %in% Chimp_eQTLs$gene) %>%
pull(chimp_id)
ContigencyTable <- matrix( c( length(intersect(ChimpSigGenes,HumanSigGenes)),
length(intersect(HumanSigGenes,ChimpNonSigGenes)),
length(intersect(ChimpSigGenes,HumanNonSigGenes)),
length(intersect(ChimpNonSigGenes,HumanNonSigGenes))),
nrow = 2)
rownames(ContigencyTable) <- c("Chimp eGene", "Not Chimp eGene")
colnames(ContigencyTable) <- c("Human eGene", "Not human eGene")
#what is qval threshold for human eGene classification in this contigency table
print(GtexHeartEgenes %>% top_n(-HumanTopN, qval) %>% top_n(1, qval) %>% pull(qval))
[1] 5.83223e-12
#Contigency table of one to one orthologs tested in both chimps and humans of whether significant in humans, or chimps, or both, or neither
ContigencyTable
Human eGene Not human eGene
Chimp eGene 145 135
Not Chimp eGene 5265 6041
#One-sided Fisher test for greater overlap than expected by chance
fisher.test(ContigencyTable, alternative="greater")
Fisher's Exact Test for Count Data
data: ContigencyTable
p-value = 0.04779
alternative hypothesis: true odds ratio is greater than 1
95 percent confidence interval:
1.002643 Inf
sample estimates:
odds ratio
1.232354
The above contingency table and one-sided fisher test indicated a greater-than-chance overlap between the sets of eGenes in chimp and human.
A few plots might give me a better intuition for thinking about the data…
# Plot betas vs qval for GTEx for qval<0.1
GtexHeartEgenes %>%
filter(qval<0.1) %>%
ggplot(aes(x=slope, y=-log10(qval))) +
geom_point(alpha=0.05)
Version | Author | Date |
---|---|---|
7ef6fe2 | Benjmain Fair | 2019-06-11 |
HumanAndChimpEffectSizes <- Chimp_eQTLs %>%
group_by(gene) %>%
dplyr::slice(which.min(qvalue)) %>%
ungroup() %>%
left_join((GtexHeartEgenes %>% filter(qval<0.1)), by=c("gene"="chimp_id"))
Warning: Column `gene`/`chimp_id` joining factor and character vector,
coercing into character vector
# For shared eGenes, are scatter plot of absolute value of betas
ggplot(HumanAndChimpEffectSizes, aes(x=log10(abs(slope)), y=log10(abs(beta)))) +
geom_point() +
geom_smooth(method = "lm") +
theme_bw() +
xlim(c(-1,1)) +
ylim(c(-1,1)) +
xlab("Human |beta|") +
ylab("Chimp |beta|")
Warning: Removed 191 rows containing non-finite values (stat_smooth).
Warning: Removed 191 rows containing missing values (geom_point).
Version | Author | Date |
---|---|---|
7ef6fe2 | Benjmain Fair | 2019-06-11 |
cor.test(HumanAndChimpEffectSizes$slope, HumanAndChimpEffectSizes$beta,method='spearman')
Spearman's rank correlation rho
data: HumanAndChimpEffectSizes$slope and HumanAndChimpEffectSizes$beta
S = 476920, p-value = 0.4633
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.06132499
#Let's see how Pvalue correlate too
ggplot(HumanAndChimpEffectSizes, aes(x=-log10(pvalue), y=-log10(pval_nominal))) +
geom_point() +
geom_smooth(method = "lm") +
theme_bw()
Warning: Removed 191 rows containing non-finite values (stat_smooth).
Warning: Removed 191 rows containing missing values (geom_point).
cor.test(HumanAndChimpEffectSizes$pvalue, HumanAndChimpEffectSizes$pval_nominal,method='spearman')
Spearman's rank correlation rho
data: HumanAndChimpEffectSizes$pvalue and HumanAndChimpEffectSizes$pval_nominal
S = 489410, p-value = 0.6605
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.03673831
Effect sizes for cross-species eGenes appear uncorrelated. This might at first appear at odds with the greater-than-chance overlap for the same set of eGenes across sepecies. However, one explanation is that the above effect sizes analysis didn’t consider non eGenes for which the null of effect-size=0 could not be rejected. Let’s include all genes test and plot Pvalues.
EGenes.joined <- eQTLs %>%
group_by(gene) %>%
dplyr::slice(which.min(qvalue)) %>%
inner_join(GtexHeartEgenes, by=c("gene"="chimp_id"))
Warning: Column `gene`/`chimp_id` joining factor and character vector,
coercing into character vector
R<-cor(-log10(EGenes.joined$pvalue), -log10(EGenes.joined$pval_nominal), method="pearson")
lb1 <- paste("~R^2==~", round(R**2,2))
ggplot(EGenes.joined, aes(y=-log10(pvalue), x=-log10(pval_nominal)))+
geom_point() +
xlab('-log10(HumanHeart.Pvalue)') +
ylab('-log10(ChimpHeart.Pvalue)') +
annotate("text",x=Inf,y=-Inf, label=lb1, hjust=1, vjust=-1, parse=TRUE) +
theme_bw()
Version | Author | Date |
---|---|---|
7ef6fe2 | Benjmain Fair | 2019-06-11 |
OK, so now I will perform the same Odds ratio estimate and Fisher exact test for different thresholds/quantiles of the human data ordered by significance.
ChimpFDR <- 0.1
HumanFDR <- 0.1
Chimp_eQTLs <- eQTLs %>%
filter(qvalue<ChimpFDR)
ChimpSigGenes <- GtexHeartEgenes %>%
filter(chimp_id %in% Chimp_eQTLs$gene) %>%
pull(chimp_id)
ChimpNonSigGenes <- GtexHeartEgenes %>%
filter(! chimp_id %in% Chimp_eQTLs$gene) %>%
pull(chimp_id)
LengthOut=200
TopHumanEgeneCountList <- round(seq(100,5410, length.out=LengthOut))
OddsRatiosList <- rep(0,LengthOut)
CI.lower <- rep(0,LengthOut)
CI.upper <- rep(0,LengthOut)
for (i in seq_along(TopHumanEgeneCountList)){
HumanTopN <- TopHumanEgeneCountList[i]
# Filter human eGenes by qval threshold
# HumanSigGenes <- GtexHeartEgenes %>% filter(qval<HumanFDR) %>% pull(chimp_id)
# Filter human eGenes by topN qval
HumanSigGenes <- GtexHeartEgenes %>% top_n(-HumanTopN, qval) %>% pull(chimp_id)
# Filter human eGeness by qval threshold then topN betas
# HumanSigGenes <- GtexHeartEgenes %>% filter(qval<HumanFDR) %>% top_n(1000, abs(slope)) %>% pull(chimp_id)
HumanNonSigGenes <- GtexHeartEgenes %>%
filter(!chimp_id %in% HumanSigGenes) %>%
pull(chimp_id)
ContigencyTable <- matrix( c( length(intersect(ChimpSigGenes,HumanSigGenes)),
length(intersect(HumanSigGenes,ChimpNonSigGenes)),
length(intersect(ChimpSigGenes,HumanNonSigGenes)),
length(intersect(ChimpNonSigGenes,HumanNonSigGenes))),
nrow = 2)
#Contigency table of one to one orthologs tested in both chimps and humans of whether significant in humans, or chimps, or both, or neither
ContigencyTable
A<-fisher.test(ContigencyTable, conf.int=T)
OddsRatiosList[i]<- as.numeric(A$estimate)
CI.lower[i] <- as.numeric(A$conf.int[1])
CI.upper[i] <- as.numeric(A$conf.int[2])
}
HeartOddsRatios <- data.frame(TopHumanEgeneCountList=TopHumanEgeneCountList, OddsRatio=OddsRatiosList, GTEx.Tissue="Heart_LeftVentricle", CI.lower=CI.lower, CI.upper=CI.upper)
ggplot(HeartOddsRatios, aes(x=TopHumanEgeneCountList, y=OddsRatiosList)) +
geom_point() +
geom_ribbon(aes(ymin=CI.lower, ymax=CI.upper), alpha=0.2) +
theme_bw() +
ylab("Odds Ratio") +
xlab("Considering only top X human eGenes") +
geom_hline(yintercept=1, linetype="dashed")
Version | Author | Date |
---|---|---|
7ef6fe2 | Benjmain Fair | 2019-06-11 |
Now do the same for a couple of GTEx tissues
GTEx.eGene.Files <- c("../data/Heart_Left_Ventricle.v7.egenes.txt.gz",
"../data/Adipose_Subcutaneous.v7.egenes.txt.gz",
# "../data/Cells_EBV-transformed_lymphocytes.v7.egenes.txt.gz",
"../data/Thyroid.v7.egenes.txt.gz",
"../data/Lung.v7.egenes.txt.gz")
GTEx.tissue.labels <- c("Heart_Left_Ventricle",
"Adipose_Subcutaneous",
# "LCL",
"Thyroid",
"Lung")
OddsRatios.rbinded <- data.frame()
for (j in seq_along(GTEx.eGene.Files)){
paste0("processing")
GtexEgenes <- read.table(GTEx.eGene.Files[j], header=T, sep='\t', stringsAsFactors = F) %>%
mutate(gene_id_stable = gsub(".\\d+$","",gene_id)) %>%
filter(gene_id_stable %in% OneToOneMap$Gene.stable.ID) %>%
mutate(chimp_id = plyr::mapvalues(gene_id_stable, OneToOneMap$Gene.stable.ID, OneToOneMap$Chimpanzee.gene.stable.ID, warn_missing = F)) %>%
filter(chimp_id %in% ChimpTestedGenes)
LengthOut=200
TopHumanEgeneCountList <- round(seq(100,5410, length.out=LengthOut))
OddsRatiosList <- rep(0,LengthOut)
CI.lower <- rep(0,LengthOut)
CI.upper <- rep(0,LengthOut)
for (i in seq_along(TopHumanEgeneCountList)){
HumanTopN <- TopHumanEgeneCountList[i]
# Filter human eGenes by qval threshold
# HumanSigGenes <- GtexHeartEgenes %>% filter(qval<HumanFDR) %>% pull(chimp_id)
# Filter human eGenes by topN qval
HumanSigGenes <- GtexEgenes %>% top_n(-HumanTopN, qval) %>% pull(chimp_id)
HumanNonSigGenes <- GtexEgenes %>%
filter(!chimp_id %in% HumanSigGenes) %>%
pull(chimp_id)
ContigencyTable <- matrix( c( length(intersect(ChimpSigGenes,HumanSigGenes)),
length(intersect(HumanSigGenes,ChimpNonSigGenes)),
length(intersect(ChimpSigGenes,HumanNonSigGenes)),
length(intersect(ChimpNonSigGenes,HumanNonSigGenes))),
nrow = 2)
#Contigency table of one to one orthologs tested in both chimps and humans of whether significant in humans, or chimps, or both, or neither
A<-fisher.test(ContigencyTable, conf.int=T)
OddsRatiosList[i]<- as.numeric(A$estimate)
CI.lower[i] <- as.numeric(A$conf.int[1])
CI.upper[i] <- as.numeric(A$conf.int[2])
}
OddsRatios <- data.frame(HumanEgeneThreshold=TopHumanEgeneCountList, OR=OddsRatiosList, GTEx.Tissue=GTEx.tissue.labels[j], CI.lower=CI.lower, CI.upper=CI.upper)
OddsRatios.rbinded <- rbind(OddsRatios.rbinded, OddsRatios)
}
ggplot(OddsRatios.rbinded, aes(x=HumanEgeneThreshold, y=OR, color=GTEx.Tissue)) +
geom_line(size=2) +
geom_ribbon(aes(ymin=CI.lower, ymax=CI.upper, fill = GTEx.Tissue), alpha=0.1,linetype = 3) +
theme_bw() +
ylab("Odds Ratio") +
xlab("Considering only top X human eGenes") +
geom_hline(yintercept=1, linetype="dashed") +
ylim(c(0,4)) +
theme(legend.position="top")
Version | Author | Date |
---|---|---|
7ef6fe2 | Benjmain Fair | 2019-06-11 |
Try one alternative way to present these odds ratios as a function of eGene stringency:
# Get qval ordered ordered list of Chimp genes (that were tested in both)
Chimp_OrderedGenes <- eQTLs %>%
group_by(gene) %>%
dplyr::slice(which.min(qvalue)) %>%
filter(gene %in% GtexHeartEgenes$chimp_id) %>%
arrange(qvalue) %>%
as.data.frame()
# Get qval ordered list of human genes
Human_OrderedGenes <- GtexHeartEgenes %>%
arrange(qval)
LengthOut=60
ChimpEgeneCount <- Chimp_OrderedGenes %>% filter(qvalue<0.2) %>% pull(qvalue) %>% length()
HumanEgeneCount <- Human_OrderedGenes %>% filter(qval<0.2) %>% pull(qval) %>% length()
TopHumanEgeneCountList <- round(seq(1,HumanEgeneCount, by=50))[-1]
TopChimpEgeneCountList <- round(seq(1,ChimpEgeneCount, by=25))[-1]
OddsRatioMatrix <- matrix(nrow = length(TopHumanEgeneCountList), ncol = length(TopChimpEgeneCountList))
for (i in seq_along(TopHumanEgeneCountList)){
HumanTopN <- TopHumanEgeneCountList[i]
# Filter human eGenes by topN qval
HumanSigGenes <- Human_OrderedGenes %>% top_n(-HumanTopN, qval) %>% pull(chimp_id)
HumanNonSigGenes <- Human_OrderedGenes %>%
filter(!chimp_id %in% HumanSigGenes) %>%
pull(chimp_id)
for (j in seq_along(TopChimpEgeneCountList)){
TopChimpN <- TopChimpEgeneCountList[j]
ChimpSigGenes <- Chimp_OrderedGenes %>% top_n(-TopChimpN, qvalue) %>% pull(gene)
ChimpNonSigGenes <- GtexHeartEgenes %>%
filter(!chimp_id %in% ChimpSigGenes) %>%
pull(chimp_id)
ContigencyTable <- matrix( c( length(intersect(ChimpSigGenes,HumanSigGenes)),
length(intersect(HumanSigGenes,ChimpNonSigGenes)),
length(intersect(ChimpSigGenes,HumanNonSigGenes)),
length(intersect(ChimpNonSigGenes,HumanNonSigGenes))),
nrow = 2)
A<-fisher.test(ContigencyTable, conf.int=F)
OddsRatioMatrix[i,j] <- (as.numeric(A$estimate))
}
}
row.names(OddsRatioMatrix) <- TopHumanEgeneCountList
colnames(OddsRatioMatrix) <- TopChimpEgeneCountList
melt(OddsRatioMatrix) %>%
dplyr::rename(OddsRatio=value) %>%
ggplot(aes(x=as.numeric(Var1),y=as.numeric(Var2), fill=log2(OddsRatio))) +
geom_raster(interpolate=F) +
xlab("Top N human eGenes") +
ylab("Top N chimp eGenes") +
scale_y_continuous(expand = c(0,0)) +
scale_x_continuous(expand = c(0,0)) +
scale_fill_distiller(palette = "Spectral") +
# coord_fixed(ratio = 1, xlim = NULL, ylim = NULL, expand = F, clip = "on") +
geom_vline(xintercept=7555, colour="grey") +
geom_text(aes(x=7555, label="FDR=0.2", y=400), angle=90, vjust = 0, color="grey", size=4)+
geom_vline(xintercept=5410, colour="grey") +
geom_text(aes(x=5410, label="FDR=0.1", y=400), angle=90, vjust = 0, color="grey", size=4)+
geom_vline(xintercept=4240, colour="grey") +
geom_text(aes(x=4240, label="FDR=0.05", y=400), angle=90, vjust = 0, color="grey", size=4)+
geom_hline(yintercept=731, colour="grey") +
geom_text(aes(x=2000, label="FDR=0.2", y=731-50), vjust = 0, color="grey", size=4)+
geom_hline(yintercept=280, colour="grey") +
geom_text(aes(x=2000, label="FDR=0.1", y=280-50), vjust = 0, color="grey", size=4)+
geom_hline(yintercept=98, colour="grey") +
geom_text(aes(x=2000, label="FDR=0.05", y=98-50), vjust = 0, color="grey", size=4)+
theme_bw() +
theme(legend.position="bottom")
Version | Author | Date |
---|---|---|
7ef6fe2 | Benjmain Fair | 2019-06-11 |
## Same plot but as log2(OddsRatio)
melt(OddsRatioMatrix) %>%
dplyr::rename(OddsRatio=value) %>%
ggplot(aes(x=as.numeric(Var1),y=as.numeric(Var2), fill=log2(OddsRatio))) +
geom_raster(interpolate=F) +
xlab("Top N human eGenes") +
ylab("Top N chimp eGenes") +
scale_y_continuous(expand = c(0,0)) +
scale_x_continuous(expand = c(0,0)) +
scale_fill_distiller(palette = "Spectral", limits = c(-1,9)) +
theme_bw() +
theme(legend.position="bottom")
Version | Author | Date |
---|---|---|
7ef6fe2 | Benjmain Fair | 2019-06-11 |
As a comparison, it might be valuable to make the same plot for a couple pairs of GTEx tissues. Perhaps Heart and adipose tissue (two very different tissues), and heart and skeletal muscle (two very similar tissues).
# adipose ordered eGenes
Tissue.1.Orig <- read.table("../data/Heart_Left_Ventricle.v7.egenes.txt.gz", header=T, sep='\t', stringsAsFactors = F)
Tissue.2.Orig <- read.table("../data/Adipose_Subcutaneous.v7.egenes.txt.gz", header=T, sep='\t', stringsAsFactors = F)
#Filter to get genes tested in both
Tissue.1 <- Tissue.1.Orig %>% filter(gene_id %in% Tissue.2.Orig$gene_id)
Tissue.2 <- Tissue.2.Orig %>% filter(gene_id %in% Tissue.1.Orig$gene_id)
#Plot correlation of pvalues
Joined <- inner_join(Tissue.1, Tissue.2, by="gene_id")
R<-cor(-log10(Tissue.1$pval_nominal), -log10(Tissue.2$pval_nominal), method="pearson")
lb1 <- paste("~R^2==~", round(R**2,2))
ggplot(Joined, aes(x=-log10(pval_nominal.x), y=-log10(pval_nominal.y)))+
geom_point() +
xlab('-log10(Heart.Pvalue)') +
ylab('-log10(Adipose.Pvalue)') +
annotate("text",x=Inf,y=-Inf, label=lb1, hjust=1, vjust=-1, parse=TRUE) +
theme_bw()
LengthOut=60
Tissue1.EgeneCount <- Tissue.1 %>% filter(qval<0.05) %>% top_n(-5000, qval) %>% pull(qval) %>% length()
Tissue2.EgeneCount <- Tissue.2 %>% filter(qval<0.05) %>% top_n(-5000, qval) %>% pull(qval) %>% length()
Tissue1.EgeneCountList <- round(seq(1,Tissue1.EgeneCount, by=200))[-1]
Tissue2.EgeneCountList <- round(seq(1,Tissue2.EgeneCount, by=200))[-1]
OddsRatioMatrix <- matrix(nrow = length(Tissue1.EgeneCountList), ncol = length(Tissue2.EgeneCountList))
for (i in seq_along(Tissue1.EgeneCountList)){
Tissue1.TopN <- Tissue1.EgeneCountList[i]
# Filter human eGenes by topN qval
Tissue.1.SigGenes <- Tissue.1 %>% top_n(-Tissue1.TopN, qval) %>% pull(gene_id)
Tissue.1.NonSigGenes <- Tissue.1 %>%
filter(!gene_id %in% Tissue.1.SigGenes) %>%
pull(gene_id)
for (j in seq_along(Tissue2.EgeneCountList)){
Tissue2.TopN <- Tissue2.EgeneCountList[j]
Tissue.2.SigGenes <- Tissue.2 %>% top_n(-Tissue2.TopN, qval) %>% pull(gene_id)
Tissue.2.NonSigGenes <- Tissue.2 %>%
filter(!gene_id %in% Tissue.2.SigGenes) %>%
pull(gene_id)
ContigencyTable <- matrix( c( length(intersect(Tissue.1.SigGenes,Tissue.2.SigGenes)),
length(intersect(Tissue.1.SigGenes,Tissue.2.NonSigGenes)),
length(intersect(Tissue.1.NonSigGenes,Tissue.2.SigGenes)),
length(intersect(Tissue.1.NonSigGenes,Tissue.2.NonSigGenes))),
nrow = 2)
A<-fisher.test(ContigencyTable, conf.int=F)
OddsRatioMatrix[i,j] <- (as.numeric(A$estimate))
}
}
row.names(OddsRatioMatrix) <- Tissue1.EgeneCountList
colnames(OddsRatioMatrix) <- Tissue2.EgeneCountList
melt(OddsRatioMatrix) %>%
dplyr::rename(OddsRatio=value) %>%
ggplot(aes(x=as.numeric(Var1),y=as.numeric(Var2), fill=log2(OddsRatio))) +
geom_raster(interpolate=F) +
xlab("Top N heart eGenes") +
ylab("Top N adipose eGenes") +
scale_y_continuous(expand = c(0,0)) +
scale_x_continuous(expand = c(0,0)) +
scale_fill_distiller(palette = "Spectral", limits = c(-1,9)) +
theme_bw() +
theme(legend.position="bottom")
Gene ontology overlap analysis of genes that are Chimp eGenes but not human eGenes. The interpretation is that this is a somewhat prioritized list of candidate genes under stabilizing selection in the human lineage.
#Change FDR thresholds or take top N eGenes by qvalue
HumanFDR <- 0.1
ChimpFDR <- 0.1
HumanTopN <- 600
Chimp_eQTLs <- eQTLs %>%
filter(qvalue<ChimpFDR)
# Filter human eGenes by qval threshold
HumanSigGenes <- GtexHeartEgenes %>% filter(qval<HumanFDR) %>% pull(chimp_id)
# HumanSigGenes <- GtexHeartEgenes %>% top_n(-HumanTopN, qval) %>% pull(chimp_id)
HumanNonSigGenes <- GtexHeartEgenes %>%
filter(!chimp_id %in% HumanSigGenes) %>%
pull(chimp_id)
ChimpSigGenes <- GtexHeartEgenes %>%
filter(chimp_id %in% Chimp_eQTLs$gene) %>%
pull(chimp_id)
ChimpNonSigGenes <- GtexHeartEgenes %>%
filter(! chimp_id %in% Chimp_eQTLs$gene) %>%
pull(chimp_id)
ContigencyTable <- matrix( c( length(intersect(ChimpSigGenes,HumanSigGenes)),
length(intersect(HumanSigGenes,ChimpNonSigGenes)),
length(intersect(ChimpSigGenes,HumanNonSigGenes)),
length(intersect(ChimpNonSigGenes,HumanNonSigGenes))),
nrow = 2)
rownames(ContigencyTable) <- c("Chimp eGene", "Not Chimp eGene")
colnames(ContigencyTable) <- c("Human eGene", "Not human eGene")
#Contigency table of one to one orthologs tested in both chimps and humans of whether significant in humans, or chimps, or both, or neither
ContigencyTable
Human eGene Not human eGene
Chimp eGene 145 135
Not Chimp eGene 5265 6041
Now that we have a contingency table of eGenes between chimp and human, lets do gene set enrichment analysis. This analysis uses clusterProfiler
package to look for gene set enrichment in a foreground set of genes over a background set. For each foreground/background comparison, there will be a gene ontology enrichment for the GO subcategories of - biological process (bp) - cellular component (cc) - molecular function (mf)
Perhaps first most intuitive comparison to make is:
Foreground = Chimp eGene & not human eGene
background = All genes tested in both species
foreground = ChimpToHuman.ID(intersect(ChimpSigGenes,HumanNonSigGenes))
background = ChimpToHuman.ID(GtexHeartEgenes$chimp_id)
length(foreground)
[1] 135
length(background)
[1] 11586
ego.mf <- enrichGO(gene = foreground,
universe = background,
OrgDb = org.Hs.eg.db,
keyType = 'ENSEMBL',
ont = "MF",
pAdjustMethod = "BH",
pvalueCutoff = 0.01,
qvalueCutoff = 0.05)
kable(head(as.data.frame(ego.mf)))
ID | Description | GeneRatio | BgRatio | pvalue | p.adjust | qvalue | geneID | Count |
---|
ego.bp <- enrichGO(gene = foreground,
universe = background,
OrgDb = org.Hs.eg.db,
keyType = 'ENSEMBL',
ont = "BP",
pAdjustMethod = "BH",
pvalueCutoff = 0.01,
qvalueCutoff = 0.05)
kable(head(as.data.frame(ego.bp)))
ID | Description | GeneRatio | BgRatio | pvalue | p.adjust | qvalue | geneID | Count |
---|
ego.cc <- enrichGO(gene = foreground,
universe = background,
OrgDb = org.Hs.eg.db,
keyType = 'ENSEMBL',
ont = "CC",
pAdjustMethod = "BH",
pvalueCutoff = 0.01,
qvalueCutoff = 0.05)
kable(head(as.data.frame(ego.cc)))
ID | Description | GeneRatio | BgRatio | pvalue | p.adjust | qvalue | geneID | Count |
---|
Nothing enriched by this comparison of gene sets. Perhaps a more appropriate foreground/background set is:
foreground = chimp specific eGenes
background = all chimp eGenes
foreground = ChimpToHuman.ID(intersect(ChimpSigGenes,HumanNonSigGenes))
background = ChimpToHuman.ID(ChimpSigGenes)
length(foreground)
[1] 135
length(background)
[1] 280
ego.mf <- enrichGO(gene = foreground,
universe = background,
OrgDb = org.Hs.eg.db,
keyType = 'ENSEMBL',
ont = "MF",
pAdjustMethod = "BH",
pvalueCutoff = 0.01,
qvalueCutoff = 0.05)
kable(head(as.data.frame(ego.mf)))
ID | Description | GeneRatio | BgRatio | pvalue | p.adjust | qvalue | geneID | Count | |
---|---|---|---|---|---|---|---|---|---|
GO:0003676 | GO:0003676 | nucleic acid binding | 40/127 | 54/256 | 3.91e-05 | 0.0026993 | 0.0025943 | ENSG00000159208/ENSG00000158796/ENSG00000153187/ENSG00000184898/ENSG00000163602/ENSG00000114127/ENSG00000072274/ENSG00000114503/ENSG00000151623/ENSG00000164342/ENSG00000124279/ENSG00000113643/ENSG00000037241/ENSG00000106261/ENSG00000165061/ENSG00000185122/ENSG00000196150/ENSG00000147854/ENSG00000107371/ENSG00000125484/ENSG00000150593/ENSG00000211450/ENSG00000170325/ENSG00000134283/ENSG00000075856/ENSG00000139718/ENSG00000061936/ENSG00000173575/ENSG00000178952/ENSG00000102974/ENSG00000102984/ENSG00000167513/ENSG00000125457/ENSG00000185504/ENSG00000141646/ENSG00000181007/ENSG00000128000/ENSG00000090971/ENSG00000204519/ENSG00000152454 | 40 |
ego.bp <- enrichGO(gene = foreground,
universe = background,
OrgDb = org.Hs.eg.db,
keyType = 'ENSEMBL',
ont = "BP",
pAdjustMethod = "BH",
pvalueCutoff = 0.01,
qvalueCutoff = 0.05)
kable(head(as.data.frame(ego.bp)))
ID | Description | GeneRatio | BgRatio | pvalue | p.adjust | qvalue | geneID | Count | |
---|---|---|---|---|---|---|---|---|---|
GO:0051252 | GO:0051252 | regulation of RNA metabolic process | 39/122 | 50/255 | 1.4e-06 | 0.0005097 | 0.0003559 | ENSG00000159208/ENSG00000159388/ENSG00000153187/ENSG00000123609/ENSG00000163602/ENSG00000114127/ENSG00000114503/ENSG00000157404/ENSG00000118785/ENSG00000168743/ENSG00000151623/ENSG00000151718/ENSG00000164342/ENSG00000124279/ENSG00000152409/ENSG00000078401/ENSG00000106261/ENSG00000161057/ENSG00000164758/ENSG00000185122/ENSG00000196150/ENSG00000107371/ENSG00000171862/ENSG00000150593/ENSG00000170325/ENSG00000134283/ENSG00000094916/ENSG00000075856/ENSG00000061936/ENSG00000173575/ENSG00000102974/ENSG00000102984/ENSG00000167513/ENSG00000141646/ENSG00000181007/ENSG00000128000/ENSG00000090971/ENSG00000204519/ENSG00000152454 | 39 |
GO:0019219 | GO:0019219 | regulation of nucleobase-containing compound metabolic process | 41/122 | 54/255 | 2.5e-06 | 0.0005097 | 0.0003559 | ENSG00000159208/ENSG00000159388/ENSG00000153187/ENSG00000123609/ENSG00000163602/ENSG00000114127/ENSG00000072274/ENSG00000114503/ENSG00000157404/ENSG00000118785/ENSG00000168743/ENSG00000151623/ENSG00000151718/ENSG00000164342/ENSG00000124279/ENSG00000152409/ENSG00000078401/ENSG00000106261/ENSG00000161057/ENSG00000164758/ENSG00000185122/ENSG00000196150/ENSG00000107371/ENSG00000170312/ENSG00000171862/ENSG00000150593/ENSG00000170325/ENSG00000134283/ENSG00000094916/ENSG00000075856/ENSG00000061936/ENSG00000173575/ENSG00000102974/ENSG00000102984/ENSG00000167513/ENSG00000141646/ENSG00000181007/ENSG00000128000/ENSG00000090971/ENSG00000204519/ENSG00000152454 | 41 |
GO:0051171 | GO:0051171 | regulation of nitrogen compound metabolic process | 57/122 | 83/255 | 3.0e-06 | 0.0005097 | 0.0003559 | ENSG00000121769/ENSG00000159208/ENSG00000159388/ENSG00000153187/ENSG00000172985/ENSG00000163083/ENSG00000123609/ENSG00000163359/ENSG00000163376/ENSG00000163602/ENSG00000114127/ENSG00000072274/ENSG00000114503/ENSG00000163975/ENSG00000157404/ENSG00000118785/ENSG00000168743/ENSG00000151623/ENSG00000151718/ENSG00000164342/ENSG00000124279/ENSG00000152409/ENSG00000055163/ENSG00000078401/ENSG00000106261/ENSG00000161057/ENSG00000164758/ENSG00000185122/ENSG00000196150/ENSG00000107140/ENSG00000107371/ENSG00000170312/ENSG00000171862/ENSG00000138166/ENSG00000150593/ENSG00000154127/ENSG00000170325/ENSG00000134283/ENSG00000094916/ENSG00000075856/ENSG00000061936/ENSG00000133116/ENSG00000173575/ENSG00000150281/ENSG00000102974/ENSG00000102984/ENSG00000167513/ENSG00000109062/ENSG00000125457/ENSG00000141646/ENSG00000181007/ENSG00000128000/ENSG00000090971/ENSG00000204519/ENSG00000152454/ENSG00000100985/ENSG00000099958 | 57 |
GO:0010556 | GO:0010556 | regulation of macromolecule biosynthetic process | 41/122 | 55/255 | 6.0e-06 | 0.0006226 | 0.0004347 | ENSG00000159208/ENSG00000159388/ENSG00000153187/ENSG00000163083/ENSG00000123609/ENSG00000163376/ENSG00000163602/ENSG00000114127/ENSG00000114503/ENSG00000157404/ENSG00000118785/ENSG00000168743/ENSG00000151623/ENSG00000151718/ENSG00000164342/ENSG00000124279/ENSG00000152409/ENSG00000164219/ENSG00000078401/ENSG00000106261/ENSG00000161057/ENSG00000164758/ENSG00000185122/ENSG00000196150/ENSG00000170312/ENSG00000171862/ENSG00000150593/ENSG00000170325/ENSG00000134283/ENSG00000094916/ENSG00000173575/ENSG00000102974/ENSG00000102984/ENSG00000167513/ENSG00000125457/ENSG00000141646/ENSG00000181007/ENSG00000128000/ENSG00000090971/ENSG00000204519/ENSG00000152454 | 41 |
GO:0009889 | GO:0009889 | regulation of biosynthetic process | 42/122 | 57/255 | 7.4e-06 | 0.0006226 | 0.0004347 | ENSG00000121769/ENSG00000159208/ENSG00000159388/ENSG00000153187/ENSG00000163083/ENSG00000123609/ENSG00000163376/ENSG00000163602/ENSG00000114127/ENSG00000114503/ENSG00000157404/ENSG00000118785/ENSG00000168743/ENSG00000151623/ENSG00000151718/ENSG00000164342/ENSG00000124279/ENSG00000152409/ENSG00000164219/ENSG00000078401/ENSG00000106261/ENSG00000161057/ENSG00000164758/ENSG00000185122/ENSG00000196150/ENSG00000170312/ENSG00000171862/ENSG00000150593/ENSG00000170325/ENSG00000134283/ENSG00000094916/ENSG00000173575/ENSG00000102974/ENSG00000102984/ENSG00000167513/ENSG00000125457/ENSG00000141646/ENSG00000181007/ENSG00000128000/ENSG00000090971/ENSG00000204519/ENSG00000152454 | 42 |
GO:0010468 | GO:0010468 | regulation of gene expression | 42/122 | 57/255 | 7.4e-06 | 0.0006226 | 0.0004347 | ENSG00000159208/ENSG00000159388/ENSG00000153187/ENSG00000163376/ENSG00000163602/ENSG00000114127/ENSG00000114503/ENSG00000163975/ENSG00000157404/ENSG00000118785/ENSG00000168743/ENSG00000151623/ENSG00000151718/ENSG00000164342/ENSG00000124279/ENSG00000152409/ENSG00000078401/ENSG00000106261/ENSG00000161057/ENSG00000164758/ENSG00000185122/ENSG00000196150/ENSG00000107371/ENSG00000170312/ENSG00000171862/ENSG00000150593/ENSG00000170325/ENSG00000134283/ENSG00000094916/ENSG00000075856/ENSG00000061936/ENSG00000173575/ENSG00000102974/ENSG00000102984/ENSG00000167513/ENSG00000125457/ENSG00000141646/ENSG00000181007/ENSG00000128000/ENSG00000090971/ENSG00000204519/ENSG00000152454 | 42 |
ego.cc <- enrichGO(gene = foreground,
universe = background,
OrgDb = org.Hs.eg.db,
keyType = 'ENSEMBL',
ont = "CC",
pAdjustMethod = "BH",
pvalueCutoff = 0.01,
qvalueCutoff = 0.05)
kable(head(as.data.frame(ego.cc)))
ID | Description | GeneRatio | BgRatio | pvalue | p.adjust | qvalue | geneID | Count |
---|
dotplot(ego.mf, font.size=8)
Version | Author | Date |
---|---|---|
7ef6fe2 | Benjmain Fair | 2019-06-11 |
dotplot(ego.bp, font.size=8)
Version | Author | Date |
---|---|---|
7ef6fe2 | Benjmain Fair | 2019-06-11 |
dotplot(ego.cc, font.size=8)
Version | Author | Date |
---|---|---|
7ef6fe2 | Benjmain Fair | 2019-06-11 |
Compare those that are shared species eGenes, with the interpretation that they would be enriched for things not under stabilizing selection in either, perhaps things like relatively useless pseudogenes.
foreground = shared eGenes
background = all genes tested in both species
foreground = ChimpToHuman.ID(intersect(ChimpSigGenes,HumanSigGenes))
background = ChimpToHuman.ID(GtexHeartEgenes$chimp_id)
length(foreground)
[1] 145
length(background)
[1] 11586
# foreground = ChimpToHuman.ID(intersect(ChimpSigGenes,(GtexHeartEgenes %>% top_n(-600, qval) %>% pull(chimp_id))))
# Could also use the more stringent intersection of chimp eGenes and top600 human eGenes. You get mostly the sae GO terms, including MHC complex
ego.mf <- enrichGO(gene = foreground,
universe = background,
OrgDb = org.Hs.eg.db,
keyType = 'ENSEMBL',
ont = "MF",
pAdjustMethod = "BH",
pvalueCutoff = 0.01,
qvalueCutoff = 0.05)
kable(head(as.data.frame(ego.mf)))
ID | Description | GeneRatio | BgRatio | pvalue | p.adjust | qvalue | geneID | Count | |
---|---|---|---|---|---|---|---|---|---|
GO:0042605 | GO:0042605 | peptide antigen binding | 7/129 | 19/10605 | 0.00e+00 | 0.0000004 | 0.0000004 | ENSG00000206503/ENSG00000234745/ENSG00000198502/ENSG00000196126/ENSG00000196735/ENSG00000237541/ENSG00000231389 | 7 |
GO:0003823 | GO:0003823 | antigen binding | 8/129 | 37/10605 | 0.00e+00 | 0.0000016 | 0.0000016 | ENSG00000158473/ENSG00000206503/ENSG00000234745/ENSG00000198502/ENSG00000196126/ENSG00000196735/ENSG00000237541/ENSG00000231389 | 8 |
GO:0042277 | GO:0042277 | peptide binding | 11/129 | 172/10605 | 7.50e-06 | 0.0007191 | 0.0007172 | ENSG00000134184/ENSG00000158473/ENSG00000169760/ENSG00000163697/ENSG00000206503/ENSG00000234745/ENSG00000198502/ENSG00000196126/ENSG00000196735/ENSG00000237541/ENSG00000231389 | 11 |
GO:0033218 | GO:0033218 | amide binding | 11/129 | 221/10605 | 7.74e-05 | 0.0055310 | 0.0055167 | ENSG00000134184/ENSG00000158473/ENSG00000169760/ENSG00000163697/ENSG00000206503/ENSG00000234745/ENSG00000198502/ENSG00000196126/ENSG00000196735/ENSG00000237541/ENSG00000231389 | 11 |
ego.bp <- enrichGO(gene = foreground,
universe = background,
OrgDb = org.Hs.eg.db,
keyType = 'ENSEMBL',
ont = "BP",
pAdjustMethod = "BH",
pvalueCutoff = 0.01,
qvalueCutoff = 0.05)
kable(head(as.data.frame(ego.bp)))
ID | Description | GeneRatio | BgRatio | pvalue | p.adjust | qvalue | geneID | Count | |
---|---|---|---|---|---|---|---|---|---|
GO:0019884 | GO:0019884 | antigen processing and presentation of exogenous antigen | 9/133 | 96/10512 | 3.2e-06 | 0.0065215 | 0.0064726 | ENSG00000158473/ENSG00000206503/ENSG00000234745/ENSG00000198502/ENSG00000196126/ENSG00000196735/ENSG00000237541/ENSG00000231389/ENSG00000161800 | 9 |
ego.cc <- enrichGO(gene = foreground,
universe = background,
OrgDb = org.Hs.eg.db,
keyType = 'ENSEMBL',
ont = "CC",
pAdjustMethod = "BH",
pvalueCutoff = 0.01,
qvalueCutoff = 0.05)
kable(head(as.data.frame(ego.cc)))
ID | Description | GeneRatio | BgRatio | pvalue | p.adjust | qvalue | geneID | Count | |
---|---|---|---|---|---|---|---|---|---|
GO:0071556 | GO:0071556 | integral component of lumenal side of endoplasmic reticulum membrane | 8/136 | 21/10999 | 0.0e+00 | 0.00e+00 | 0.00e+00 | ENSG00000206503/ENSG00000234745/ENSG00000198502/ENSG00000196126/ENSG00000196735/ENSG00000237541/ENSG00000231389/ENSG00000005206 | 8 |
GO:0098553 | GO:0098553 | lumenal side of endoplasmic reticulum membrane | 8/136 | 21/10999 | 0.0e+00 | 0.00e+00 | 0.00e+00 | ENSG00000206503/ENSG00000234745/ENSG00000198502/ENSG00000196126/ENSG00000196735/ENSG00000237541/ENSG00000231389/ENSG00000005206 | 8 |
GO:0042611 | GO:0042611 | MHC protein complex | 7/136 | 18/10999 | 0.0e+00 | 1.00e-07 | 1.00e-07 | ENSG00000206503/ENSG00000234745/ENSG00000198502/ENSG00000196126/ENSG00000196735/ENSG00000237541/ENSG00000231389 | 7 |
GO:0042613 | GO:0042613 | MHC class II protein complex | 5/136 | 12/10999 | 2.0e-07 | 1.31e-05 | 1.17e-05 | ENSG00000198502/ENSG00000196126/ENSG00000196735/ENSG00000237541/ENSG00000231389 | 5 |
GO:0030660 | GO:0030660 | Golgi-associated vesicle membrane | 9/136 | 84/10999 | 9.0e-07 | 4.61e-05 | 4.10e-05 | ENSG00000206503/ENSG00000234745/ENSG00000198502/ENSG00000196126/ENSG00000196735/ENSG00000237541/ENSG00000231389/ENSG00000005206/ENSG00000242247 | 9 |
GO:0012507 | GO:0012507 | ER to Golgi transport vesicle membrane | 7/136 | 47/10999 | 1.6e-06 | 6.96e-05 | 6.19e-05 | ENSG00000206503/ENSG00000234745/ENSG00000198502/ENSG00000196126/ENSG00000196735/ENSG00000237541/ENSG00000231389 | 7 |
dotplot(ego.mf, font.size=8)
Version | Author | Date |
---|---|---|
7ef6fe2 | Benjmain Fair | 2019-06-11 |
dotplot(ego.bp, font.size=8)
Version | Author | Date |
---|---|---|
7ef6fe2 | Benjmain Fair | 2019-06-11 |
dotplot(ego.cc, font.size=8)
Version | Author | Date |
---|---|---|
7ef6fe2 | Benjmain Fair | 2019-06-11 |
Interestingly, the MHC complex comes out of this analysis as enriched among the genes that are eGenes in both species, consistent with these genes being rapidly evolving targets of selection in between human/chimp, with high diversity in both species.
A complementart analysis to GO overlap is gene set enrichment analysis. Here I will perform GSEA on the chimp qvalue orded list of chimp/human shared eGenes and chimp specific eGenes based on FDR<0.1 in the human dataset…
Actually, maybe a more sensible thing to do is consider the human qvalue ordered list and then separate based on if chimp eGene or not. This is more similar to what the previous odds-ratio plots are.
HumanOrderedGenes <- GtexHeartEgenes %>%
arrange(qval) %>%
filter(chimp_id %in% ChimpSigGenes)
GeneList <- log10(HumanOrderedGenes$qval) * -1
names(GeneList) <- as.character(ChimpToHuman.ID(HumanOrderedGenes$chimp_id))
gsego.cc.shared <- gseGO(gene = GeneList,
OrgDb = org.Hs.eg.db,
keyType = 'ENSEMBL',
maxGSSize = 500,
# pvalueCutoff=0.8,
ont = "CC")
kable(head(as.data.frame(gsego.cc.shared)))
dotplot(gsego.cc.shared, font.size=8, showCategory=15)
gseaplot(gsego.cc.shared, geneSetID = "GO:0042611", pvalue_table = TRUE)
That was still a work in progress that I may come back to one day… For now I will perform GSEA on ranked gene lists based on chimp FDR.
First, create chimp-qval-ordered gene list for genes that are human eGenes I expect this to return similar results as gene overlap analysis with forground as shared eGenes and background as all all genes tested. So this should return MHC complex among other things.
Chimp_OrderedGenes <- eQTLs %>%
group_by(gene) %>%
dplyr::slice(which.min(qvalue)) %>%
filter(gene %in% GtexHeartEgenes$chimp_id) %>%
arrange(qvalue) %>%
filter(gene %in% HumanSigGenes)
GeneList <- log10(Chimp_OrderedGenes$qvalue) * -1
names(GeneList) <- as.character(ChimpToHuman.ID(Chimp_OrderedGenes$gene))
gsego.cc.shared <- gseGO(gene = GeneList,
OrgDb = org.Hs.eg.db,
keyType = 'ENSEMBL',
maxGSSize = 500,
# pvalueCutoff=0.8,
ont = "CC",
nPerm = 10000)
preparing geneSet collections...
GSEA analysis...
Warning in fgsea(pathways = geneSets, stats = geneList, nperm = nPerm, minSize = minGSSize, : There are ties in the preranked stats (38.71% of the list).
The order of those tied genes will be arbitrary, which may produce unexpected results.
leading edge analysis...
done...
kable(head(as.data.frame(gsego.cc.shared)))
ID | Description | setSize | enrichmentScore | NES | pvalue | p.adjust | qvalues | rank | leading_edge | core_enrichment | |
---|---|---|---|---|---|---|---|---|---|---|---|
GO:0012507 | GO:0012507 | ER to Golgi transport vesicle membrane | 28 | 0.7104864 | 1.940217 | 0.0001007 | 0.0101562 | 0.0096857 | 436 | tags=39%, list=8%, signal=36% | ENSG00000196735/ENSG00000196126/ENSG00000206503/ENSG00000198502/ENSG00000237541/ENSG00000234745/ENSG00000231389/ENSG00000204525/ENSG00000148396/ENSG00000179344/ENSG00000223865 |
GO:0071556 | GO:0071556 | integral component of lumenal side of endoplasmic reticulum membrane | 16 | 0.8600123 | 2.186654 | 0.0001034 | 0.0101562 | 0.0096857 | 436 | tags=69%, list=8%, signal=63% | ENSG00000196735/ENSG00000196126/ENSG00000206503/ENSG00000198502/ENSG00000237541/ENSG00000005206/ENSG00000234745/ENSG00000231389/ENSG00000204525/ENSG00000179344/ENSG00000223865 |
GO:0098553 | GO:0098553 | lumenal side of endoplasmic reticulum membrane | 16 | 0.8600123 | 2.186654 | 0.0001034 | 0.0101562 | 0.0096857 | 436 | tags=69%, list=8%, signal=63% | ENSG00000196735/ENSG00000196126/ENSG00000206503/ENSG00000198502/ENSG00000237541/ENSG00000005206/ENSG00000234745/ENSG00000231389/ENSG00000204525/ENSG00000179344/ENSG00000223865 |
GO:0042611 | GO:0042611 | MHC protein complex | 14 | 0.8498340 | 2.108766 | 0.0001048 | 0.0101562 | 0.0096857 | 436 | tags=71%, list=8%, signal=66% | ENSG00000196735/ENSG00000196126/ENSG00000206503/ENSG00000198502/ENSG00000237541/ENSG00000234745/ENSG00000231389/ENSG00000204525/ENSG00000179344/ENSG00000223865 |
GO:0042613 | GO:0042613 | MHC class II protein complex | 10 | 0.8404787 | 1.960527 | 0.0001085 | 0.0101562 | 0.0096857 | 436 | tags=70%, list=8%, signal=64% | ENSG00000196735/ENSG00000196126/ENSG00000198502/ENSG00000237541/ENSG00000231389/ENSG00000179344/ENSG00000223865 |
GO:0030669 | GO:0030669 | clathrin-coated endocytic vesicle membrane | 19 | 0.7044431 | 1.834206 | 0.0002043 | 0.0159346 | 0.0151963 | 567 | tags=47%, list=11%, signal=42% | ENSG00000196735/ENSG00000196126/ENSG00000198502/ENSG00000237541/ENSG00000231389/ENSG00000179344/ENSG00000223865/ENSG00000174804/ENSG00000006125 |
dotplot(gsego.cc.shared, font.size=8, showCategory=15)
gseaplot2(gsego.cc.shared, geneSetID = c("GO:0042611", "GO:0042613", "GO:0032588"), title="Shared eGenes ordered by chimp -log(qvalue)", pvalue_table = TRUE)
Ok that does return MHC as expect. Now I will create chimp-qval-ordered gene list for genes that are not human eGenes. I expect this to not return MHC. Instead,I expect this to return similar results as gene overlap analysis with forground as chimp-specific eGenes and background as all chimp-eGenes (nucleic acid binding, etc).
Chimp_OrderedGenes <- eQTLs %>%
group_by(gene) %>%
dplyr::slice(which.min(qvalue)) %>%
filter(gene %in% GtexHeartEgenes$chimp_id) %>%
filter(qvalue<0.2) %>%
arrange(qvalue) %>%
filter(!gene %in% HumanSigGenes)
GeneList <- log10(Chimp_OrderedGenes$qvalue) * -1
names(GeneList) <- as.character(ChimpToHuman.ID(Chimp_OrderedGenes$gene))
gsego.cc.chimpspecific <- gseGO(gene = GeneList,
OrgDb = org.Hs.eg.db,
keyType = 'ENSEMBL',
maxGSSize = 500,
pvalueCutoff=0.8,
ont = "BP")
preparing geneSet collections...
GSEA analysis...
Warning in fgsea(pathways = geneSets, stats = geneList, nperm = nPerm, minSize = minGSSize, : There are ties in the preranked stats (28.95% of the list).
The order of those tied genes will be arbitrary, which may produce unexpected results.
no term enriched under specific pvalueCutoff...
kable(head(as.data.frame(gsego.cc.chimpspecific)))
ID | Description | setSize | enrichmentScore | NES | pvalue | p.adjust | qvalues |
---|
Ok that returned nothing, even at more relaxed pvalue thresholds (not shown) I can see the top terms do not have anything to do with nucleic acid binding like the previous gene overlap enrichment analysis results that compared chimp-specific-eGene (foreground) to all chimp eGenes (universe background).
By partitioning the GSEA analyses into “human eGene” ranked gene list and “not human eGene” ranked gene list, what I was really trying to get at is the semi-quantitative difference in eGene character. Essentially these are paired analyses, though GSEA does not have any natural way to run a paired analysis on two gene sets. Perhaps a better way to do this is to make a single gene list based on the difference in eGene ranks between the two species. Since GSEA is based on non-parametric rank orders, I think this is still somewhat reasonable to do. For example, if qvalues are ranked lowest to highest in both species (rank=1 being most significant), and I subtract the chimp ranking from the human ranking, I am left with the more chimp specific eGenes with a higher number. I will implement this idea below:
Chimp_OrderedGenes <- eQTLs %>%
group_by(gene) %>%
dplyr::slice(which.min(qvalue)) %>%
filter(gene %in% GtexHeartEgenes$chimp_id) %>%
left_join(GtexHeartEgenes, by=c("gene"="chimp_id")) %>%
dplyr::select(gene, qvalue, qval) %>% as.data.frame() %>%
mutate(ChimpRank = dense_rank(qvalue)) %>%
mutate(HumanRank = dense_rank(qval)) %>%
mutate(RankDifference = HumanRank-ChimpRank) %>%
arrange(desc(RankDifference))
Warning: Column `gene`/`chimp_id` joining factor and character vector,
coercing into character vector
GeneList <- Chimp_OrderedGenes$RankDifference
names(GeneList) <- as.character(ChimpToHuman.ID(Chimp_OrderedGenes$gene))
gsego.cc.chimpspecific <- gseGO(gene = GeneList,
OrgDb = org.Hs.eg.db,
keyType = 'ENSEMBL',
maxGSSize = 500,
pvalueCutoff=0.8,
ont = "BP")
preparing geneSet collections...
GSEA analysis...
Warning in fgsea(pathways = geneSets, stats = geneList, nperm = nPerm, minSize = minGSSize, : There are ties in the preranked stats (35.5% of the list).
The order of those tied genes will be arbitrary, which may produce unexpected results.
leading edge analysis...
done...
kable(head(as.data.frame(gsego.cc.chimpspecific)))
ID | Description | setSize | enrichmentScore | NES | pvalue | p.adjust | qvalues | rank | leading_edge | core_enrichment | |
---|---|---|---|---|---|---|---|---|---|---|---|
GO:0000904 | GO:0000904 | cell morphogenesis involved in differentiation | 473 | 0.3623578 | 1.318620 | 0.000999 | 0.0629941 | 0.0555252 | 4533 | tags=50%, list=41%, signal=31% | ENSG00000171862/ENSG00000179242/ENSG00000073712/ENSG00000163359/ENSG00000179820/ENSG00000176749/ENSG00000105186/ENSG00000163110/ENSG00000173482/ENSG00000167461/ENSG00000100345/ENSG00000118046/ENSG00000125650/ENSG00000197702/ENSG00000082684/ENSG00000133110/ENSG00000143590/ENSG00000167193/ENSG00000117600/ENSG00000011009/ENSG00000173166/ENSG00000149930/ENSG00000147862/ENSG00000163975/ENSG00000132561/ENSG00000181790/ENSG00000169554/ENSG00000046889/ENSG00000115904/ENSG00000174989/ENSG00000087470/ENSG00000117400/ENSG00000197283/ENSG00000115232/ENSG00000119508/ENSG00000159674/ENSG00000137845/ENSG00000165802/ENSG00000168036/ENSG00000117707/ENSG00000196923/ENSG00000166313/ENSG00000142168/ENSG00000153707/ENSG00000068305/ENSG00000163785/ENSG00000174238/ENSG00000169379/ENSG00000118785/ENSG00000124171/ENSG00000114745/ENSG00000076356/ENSG00000160460/ENSG00000144857/ENSG00000104133/ENSG00000084733/ENSG00000170558/ENSG00000141646/ENSG00000144619/ENSG00000100320/ENSG00000160691/ENSG00000141522/ENSG00000084112/ENSG00000138660/ENSG00000160469/ENSG00000165819/ENSG00000130558/ENSG00000179915/ENSG00000112658/ENSG00000105649/ENSG00000138411/ENSG00000067141/ENSG00000117228/ENSG00000173786/ENSG00000137817/ENSG00000092964/ENSG00000120156/ENSG00000101126/ENSG00000051382/ENSG00000163531/ENSG00000205221/ENSG00000169862/ENSG00000132003/ENSG00000170017/ENSG00000132640/ENSG00000176248/ENSG00000146013/ENSG00000109062/ENSG00000197892/ENSG00000106278/ENSG00000106078/ENSG00000119608/ENSG00000177885/ENSG00000154096/ENSG00000113749/ENSG00000184347/ENSG00000124126/ENSG00000099250/ENSG00000140538/ENSG00000122877/ENSG00000198836/ENSG00000079215/ENSG00000077942/ENSG00000091129/ENSG00000132670/ENSG00000055163/ENSG00000162738/ENSG00000036257/ENSG00000179051/ENSG00000148948/ENSG00000169439/ENSG00000197555/ENSG00000100968/ENSG00000107404/ENSG00000010017/ENSG00000136040/ENSG00000173898/ENSG00000171055/ENSG00000149269/ENSG00000160007/ENSG00000111913/ENSG00000164488/ENSG00000136854/ENSG00000152767/ENSG00000071127/ENSG00000188026/ENSG00000021574/ENSG00000142599/ENSG00000007168/ENSG00000117632/ENSG00000169604/ENSG00000105711/ENSG00000169855/ENSG00000138069/ENSG00000150760/ENSG00000107758/ENSG00000127603/ENSG00000171517/ENSG00000167601/ENSG00000111859/ENSG00000145675/ENSG00000159167/ENSG00000064300/ENSG00000124782/ENSG00000109458/ENSG00000133026/ENSG00000106571/ENSG00000156642/ENSG00000169504/ENSG00000137872/ENSG00000092820/ENSG00000148498/ENSG00000153234/ENSG00000130203/ENSG00000081052/ENSG00000105245/ENSG00000081189/ENSG00000100503/ENSG00000214655/ENSG00000257923/ENSG00000138347/ENSG00000169032/ENSG00000079805/ENSG00000092929/ENSG00000166579/ENSG00000173706/ENSG00000067900/ENSG00000008324/ENSG00000077943/ENSG00000149557/ENSG00000111962/ENSG00000188906/ENSG00000179403/ENSG00000114270/ENSG00000147459/ENSG00000128656/ENSG00000125266/ENSG00000149781/ENSG00000135387/ENSG00000151892/ENSG00000136603/ENSG00000197694/ENSG00000139626/ENSG00000251322/ENSG00000169760/ENSG00000179218/ENSG00000182578/ENSG00000115738/ENSG00000108561/ENSG00000137825/ENSG00000198513/ENSG00000118257/ENSG00000100030/ENSG00000116106/ENSG00000166333/ENSG00000198492/ENSG00000182197/ENSG00000121879/ENSG00000080371/ENSG00000164050/ENSG00000108830/ENSG00000206052/ENSG00000185950/ENSG00000133104/ENSG00000101144/ENSG00000154133/ENSG00000114251/ENSG00000087250/ENSG00000074527/ENSG00000130449/ENSG00000077097/ENSG00000112715/ENSG00000243364/ENSG00000171608/ENSG00000139926/ENSG00000156299/ENSG00000116035/ENSG00000221866/ENSG00000107731/ENSG00000119328/ENSG00000164736/ENSG00000166963/ENSG00000154310/ENSG00000187688/ENSG00000161642/ENSG00000100393/ENSG00000033327/ENSG00000182580/ENSG00000149418/ENSG00000105976/ENSG00000177169/ENSG00000125875/ENSG00000115694/ENSG00000184144/ENSG00000125249/ENSG00000158321/ENSG00000150977 |
GO:0001501 | GO:0001501 | skeletal system development | 311 | 0.3801804 | 1.363580 | 0.000999 | 0.0629941 | 0.0555252 | 3391 | tags=41%, list=31%, signal=29% | ENSG00000100985/ENSG00000163359/ENSG00000109906/ENSG00000147316/ENSG00000139329/ENSG00000143570/ENSG00000078401/ENSG00000157404/ENSG00000019549/ENSG00000182718/ENSG00000178573/ENSG00000141873/ENSG00000151388/ENSG00000125878/ENSG00000133110/ENSG00000173868/ENSG00000116183/ENSG00000143995/ENSG00000092969/ENSG00000147862/ENSG00000107372/ENSG00000151702/ENSG00000132561/ENSG00000124216/ENSG00000139567/ENSG00000172845/ENSG00000120254/ENSG00000163513/ENSG00000120149/ENSG00000168036/ENSG00000116539/ENSG00000165458/ENSG00000204262/ENSG00000101265/ENSG00000081237/ENSG00000173153/ENSG00000163785/ENSG00000131759/ENSG00000170577/ENSG00000168542/ENSG00000134013/ENSG00000145423/ENSG00000172071/ENSG00000104313/ENSG00000168646/ENSG00000077092/ENSG00000119699/ENSG00000164692/ENSG00000135111/ENSG00000141543/ENSG00000196159/ENSG00000184916/ENSG00000105664/ENSG00000108557/ENSG00000142453/ENSG00000104447/ENSG00000112658/ENSG00000164190/ENSG00000134250/ENSG00000128606/ENSG00000054598/ENSG00000075711/ENSG00000141627/ENSG00000120156/ENSG00000205221/ENSG00000155090/ENSG00000070814/ENSG00000121039/ENSG00000183688/ENSG00000107679/ENSG00000180228/ENSG00000174600/ENSG00000166949/ENSG00000185630/ENSG00000078246/ENSG00000177119/ENSG00000153162/ENSG00000126351/ENSG00000165804/ENSG00000109685/ENSG00000106483/ENSG00000179111/ENSG00000125845/ENSG00000164107/ENSG00000176842/ENSG00000172809/ENSG00000012223/ENSG00000158859/ENSG00000127418/ENSG00000007168/ENSG00000142871/ENSG00000141753/ENSG00000178882/ENSG00000110693/ENSG00000145431/ENSG00000138685/ENSG00000166224/ENSG00000089041/ENSG00000090539/ENSG00000159167/ENSG00000145545/ENSG00000106571/ENSG00000143867/ENSG00000167522/ENSG00000148516/ENSG00000072840/ENSG00000081189/ENSG00000020633/ENSG00000134853/ENSG00000163659/ENSG00000082293/ENSG00000163132/ENSG00000170776/ENSG00000166341/ENSG00000134253/ENSG00000011143/ENSG00000188783/ENSG00000100644/ENSG00000118523/ENSG00000088256/ENSG00000112293/ENSG00000134245/ENSG00000102977/ENSG00000186480/ENSG00000179403/ENSG00000154122/ENSG00000114270/ENSG00000197467 |
GO:0001525 | GO:0001525 | angiogenesis | 351 | 0.3623115 | 1.306815 | 0.000999 | 0.0629941 | 0.0555252 | 4224 | tags=50%, list=38%, signal=32% | ENSG00000171862/ENSG00000105974/ENSG00000164619/ENSG00000173482/ENSG00000100345/ENSG00000078401/ENSG00000182718/ENSG00000163638/ENSG00000069667/ENSG00000141376/ENSG00000105851/ENSG00000197702/ENSG00000164134/ENSG00000143995/ENSG00000143590/ENSG00000134871/ENSG00000092969/ENSG00000134954/ENSG00000154188/ENSG00000181790/ENSG00000139567/ENSG00000153904/ENSG00000137801/ENSG00000176170/ENSG00000163513/ENSG00000129173/ENSG00000233276/ENSG00000168036/ENSG00000173801/ENSG00000076706/ENSG00000138798/ENSG00000177464/ENSG00000176692/ENSG00000136848/ENSG00000106366/ENSG00000164342/ENSG00000134013/ENSG00000145423/ENSG00000123358/ENSG00000070495/ENSG00000172071/ENSG00000125730/ENSG00000141448/ENSG00000136158/ENSG00000048052/ENSG00000160691/ENSG00000205336/ENSG00000117461/ENSG00000112658/ENSG00000054598/ENSG00000140992/ENSG00000120156/ENSG00000051382/ENSG00000140199/ENSG00000074181/ENSG00000166292/ENSG00000174059/ENSG00000107014/ENSG00000065970/ENSG00000138080/ENSG00000163874/ENSG00000154096/ENSG00000099250/ENSG00000162434/ENSG00000105538/ENSG00000150782/ENSG00000130770/ENSG00000171951/ENSG00000091129/ENSG00000100219/ENSG00000214274/ENSG00000171812/ENSG00000138772/ENSG00000133639/ENSG00000100968/ENSG00000136960/ENSG00000173083/ENSG00000132170/ENSG00000170989/ENSG00000164107/ENSG00000239697/ENSG00000179348/ENSG00000142871/ENSG00000136826/ENSG00000169245/ENSG00000138685/ENSG00000160293/ENSG00000108691/ENSG00000168329/ENSG00000164283/ENSG00000126458/ENSG00000147649/ENSG00000101384/ENSG00000122679/ENSG00000111145/ENSG00000166086/ENSG00000171236/ENSG00000118503/ENSG00000142208/ENSG00000169855/ENSG00000187498/ENSG00000120063/ENSG00000101230/ENSG00000144476/ENSG00000157613/ENSG00000064300/ENSG00000166501/ENSG00000109458/ENSG00000162775/ENSG00000169429/ENSG00000169504/ENSG00000117020/ENSG00000140464/ENSG00000081052/ENSG00000117525/ENSG00000106511/ENSG00000073756/ENSG00000006638/ENSG00000074842/ENSG00000061273/ENSG00000134853/ENSG00000145632/ENSG00000111961/ENSG00000100644/ENSG00000115415/ENSG00000067900/ENSG00000168214/ENSG00000118523/ENSG00000112293/ENSG00000108840/ENSG00000126785/ENSG00000011405/ENSG00000006210/ENSG00000148926/ENSG00000112562/ENSG00000138061/ENSG00000125266/ENSG00000027869/ENSG00000140105/ENSG00000079385/ENSG00000123342/ENSG00000136720/ENSG00000106804/ENSG00000156427/ENSG00000113196/ENSG00000167772/ENSG00000161714/ENSG00000113721/ENSG00000185359/ENSG00000019991/ENSG00000160255/ENSG00000118257/ENSG00000115053/ENSG00000124212/ENSG00000135250/ENSG00000138639/ENSG00000064989/ENSG00000121879/ENSG00000087245/ENSG00000154133/ENSG00000127837/ENSG00000189058/ENSG00000114251/ENSG00000159399/ENSG00000143878/ENSG00000006831/ENSG00000135636/ENSG00000112715/ENSG00000091879/ENSG00000152270/ENSG00000004776/ENSG00000134318/ENSG00000110955/ENSG00000101109/ENSG00000107731/ENSG00000100292 |
GO:0001568 | GO:0001568 | blood vessel development | 472 | 0.3523209 | 1.281995 | 0.000999 | 0.0629941 | 0.0555252 | 4224 | tags=49%, list=38%, signal=31% | ENSG00000171862/ENSG00000105974/ENSG00000148737/ENSG00000164619/ENSG00000173482/ENSG00000100345/ENSG00000078401/ENSG00000182718/ENSG00000163638/ENSG00000069667/ENSG00000141376/ENSG00000105851/ENSG00000197702/ENSG00000164134/ENSG00000143995/ENSG00000143590/ENSG00000134871/ENSG00000092969/ENSG00000134954/ENSG00000154188/ENSG00000181790/ENSG00000115904/ENSG00000174989/ENSG00000139567/ENSG00000153904/ENSG00000137801/ENSG00000176170/ENSG00000163513/ENSG00000129173/ENSG00000233276/ENSG00000168036/ENSG00000173801/ENSG00000076706/ENSG00000138798/ENSG00000117707/ENSG00000177464/ENSG00000176692/ENSG00000136848/ENSG00000106366/ENSG00000168542/ENSG00000169946/ENSG00000164342/ENSG00000134013/ENSG00000145423/ENSG00000123358/ENSG00000070495/ENSG00000172071/ENSG00000125730/ENSG00000104313/ENSG00000164692/ENSG00000141448/ENSG00000170558/ENSG00000136158/ENSG00000135111/ENSG00000133454/ENSG00000048052/ENSG00000086598/ENSG00000160691/ENSG00000205336/ENSG00000117461/ENSG00000112658/ENSG00000069122/ENSG00000054598/ENSG00000120738/ENSG00000140992/ENSG00000120156/ENSG00000116473/ENSG00000051382/ENSG00000185650/ENSG00000140199/ENSG00000074181/ENSG00000166292/ENSG00000174059/ENSG00000107014/ENSG00000065970/ENSG00000138080/ENSG00000163874/ENSG00000154096/ENSG00000099250/ENSG00000162434/ENSG00000105538/ENSG00000150782/ENSG00000198081/ENSG00000130770/ENSG00000107796/ENSG00000171951/ENSG00000091129/ENSG00000049323/ENSG00000100219/ENSG00000214274/ENSG00000171812/ENSG00000087088/ENSG00000138772/ENSG00000133639/ENSG00000100968/ENSG00000136960/ENSG00000105672/ENSG00000173083/ENSG00000132170/ENSG00000170989/ENSG00000164107/ENSG00000239697/ENSG00000179348/ENSG00000142871/ENSG00000136826/ENSG00000145715/ENSG00000169604/ENSG00000169245/ENSG00000138685/ENSG00000160293/ENSG00000166224/ENSG00000108691/ENSG00000113083/ENSG00000168329/ENSG00000164283/ENSG00000126458/ENSG00000147649/ENSG00000101384/ENSG00000122679/ENSG00000166135/ENSG00000111145/ENSG00000166086/ENSG00000171236/ENSG00000117713/ENSG00000118503/ENSG00000142208/ENSG00000137834/ENSG00000169855/ENSG00000187498/ENSG00000120063/ENSG00000101230/ENSG00000144476/ENSG00000157483/ENSG00000157613/ENSG00000064300/ENSG00000065534/ENSG00000166501/ENSG00000109458/ENSG00000162775/ENSG00000128918/ENSG00000133026/ENSG00000197603/ENSG00000169429/ENSG00000106571/ENSG00000169504/ENSG00000143867/ENSG00000117020/ENSG00000130203/ENSG00000140464/ENSG00000081052/ENSG00000107263/ENSG00000117525/ENSG00000081189/ENSG00000106511/ENSG00000073756/ENSG00000006638/ENSG00000074842/ENSG00000061273/ENSG00000134853/ENSG00000163659/ENSG00000145632/ENSG00000169032/ENSG00000079805/ENSG00000173706/ENSG00000111961/ENSG00000100644/ENSG00000115415/ENSG00000067900/ENSG00000168214/ENSG00000118523/ENSG00000112293/ENSG00000108840/ENSG00000126785/ENSG00000011405/ENSG00000006210/ENSG00000148926/ENSG00000112562/ENSG00000138061/ENSG00000125266/ENSG00000027869/ENSG00000163909/ENSG00000184557/ENSG00000140105/ENSG00000079385/ENSG00000183072/ENSG00000112655/ENSG00000123342/ENSG00000136720/ENSG00000106804/ENSG00000063176/ENSG00000156427/ENSG00000113196/ENSG00000167772/ENSG00000074219/ENSG00000161714/ENSG00000113721/ENSG00000185359/ENSG00000019991/ENSG00000160255/ENSG00000118257/ENSG00000115053/ENSG00000100030/ENSG00000124212/ENSG00000135250/ENSG00000138639/ENSG00000064989/ENSG00000121879/ENSG00000129038/ENSG00000087245/ENSG00000005981/ENSG00000114739/ENSG00000101144/ENSG00000154133/ENSG00000127837/ENSG00000189058/ENSG00000114251/ENSG00000159399/ENSG00000143878/ENSG00000006831/ENSG00000135636/ENSG00000118762/ENSG00000112715/ENSG00000091879/ENSG00000152270/ENSG00000107882/ENSG00000004776/ENSG00000134318/ENSG00000110955/ENSG00000101109/ENSG00000107731/ENSG00000100292 |
GO:0001655 | GO:0001655 | urogenital system development | 224 | 0.3804207 | 1.351549 | 0.000999 | 0.0629941 | 0.0555252 | 4144 | tags=49%, list=38%, signal=31% | ENSG00000171862/ENSG00000178585/ENSG00000109906/ENSG00000128059/ENSG00000164619/ENSG00000181690/ENSG00000168743/ENSG00000118046/ENSG00000170561/ENSG00000141449/ENSG00000092969/ENSG00000130707/ENSG00000154188/ENSG00000103494/ENSG00000132470/ENSG00000168036/ENSG00000117707/ENSG00000153094/ENSG00000177464/ENSG00000115884/ENSG00000117724/ENSG00000131759/ENSG00000170577/ENSG00000124145/ENSG00000070495/ENSG00000170348/ENSG00000104313/ENSG00000173473/ENSG00000077092/ENSG00000162849/ENSG00000187391/ENSG00000141646/ENSG00000196159/ENSG00000081181/ENSG00000115204/ENSG00000070404/ENSG00000164190/ENSG00000163348/ENSG00000054598/ENSG00000006016/ENSG00000120738/ENSG00000075711/ENSG00000120156/ENSG00000005884/ENSG00000112837/ENSG00000074181/ENSG00000174059/ENSG00000121039/ENSG00000169018/ENSG00000099250/ENSG00000100360/ENSG00000166949/ENSG00000107796/ENSG00000185630/ENSG00000162738/ENSG00000186350/ENSG00000087088/ENSG00000153162/ENSG00000171016/ENSG00000125845/ENSG00000164488/ENSG00000179348/ENSG00000025796/ENSG00000138685/ENSG00000166224/ENSG00000101384/ENSG00000005513/ENSG00000117318/ENSG00000137834/ENSG00000187498/ENSG00000157483/ENSG00000111276/ENSG00000128918/ENSG00000145545/ENSG00000197603/ENSG00000106571/ENSG00000143867/ENSG00000081052/ENSG00000081189/ENSG00000134853/ENSG00000163659/ENSG00000166341/ENSG00000115415/ENSG00000134245/ENSG00000116962/ENSG00000077943/ENSG00000102977/ENSG00000188906/ENSG00000125266/ENSG00000163909/ENSG00000137869/ENSG00000121361/ENSG00000091831/ENSG00000111087/ENSG00000115738/ENSG00000113721/ENSG00000196562/ENSG00000116106/ENSG00000166333/ENSG00000116455/ENSG00000114739/ENSG00000101144/ENSG00000114251/ENSG00000102900/ENSG00000118762/ENSG00000112715/ENSG00000115758/ENSG00000091879/ENSG00000205213 |
GO:0001701 | GO:0001701 | in utero embryonic development | 232 | 0.3694125 | 1.313362 | 0.000999 | 0.0629941 | 0.0555252 | 3705 | tags=45%, list=34%, signal=30% | ENSG00000100345/ENSG00000143570/ENSG00000078401/ENSG00000141873/ENSG00000100601/ENSG00000112893/ENSG00000154188/ENSG00000107372/ENSG00000103494/ENSG00000124216/ENSG00000174989/ENSG00000139567/ENSG00000172845/ENSG00000142784/ENSG00000144357/ENSG00000163513/ENSG00000129173/ENSG00000137845/ENSG00000130726/ENSG00000126457/ENSG00000168036/ENSG00000153094/ENSG00000185122/ENSG00000169946/ENSG00000119699/ENSG00000132376/ENSG00000141448/ENSG00000131446/ENSG00000108773/ENSG00000135111/ENSG00000141646/ENSG00000133454/ENSG00000086598/ENSG00000184916/ENSG00000100146/ENSG00000254999/ENSG00000147536/ENSG00000198730/ENSG00000104375/ENSG00000112658/ENSG00000150961/ENSG00000163348/ENSG00000134057/ENSG00000054598/ENSG00000113163/ENSG00000185650/ENSG00000198026/ENSG00000166292/ENSG00000121039/ENSG00000177885/ENSG00000122257/ENSG00000119048/ENSG00000166949/ENSG00000186350/ENSG00000036257/ENSG00000105672/ENSG00000165916/ENSG00000125845/ENSG00000164107/ENSG00000196839/ENSG00000179348/ENSG00000142871/ENSG00000100814/ENSG00000110693/ENSG00000112578/ENSG00000005513/ENSG00000101003/ENSG00000142208/ENSG00000120063/ENSG00000197063/ENSG00000157483/ENSG00000115760/ENSG00000133026/ENSG00000106571/ENSG00000167522/ENSG00000100888/ENSG00000134853/ENSG00000101773/ENSG00000034053/ENSG00000110107/ENSG00000163132/ENSG00000169032/ENSG00000166579/ENSG00000136450/ENSG00000173706/ENSG00000100644/ENSG00000168214/ENSG00000113555/ENSG00000148926/ENSG00000141030/ENSG00000184557/ENSG00000136720/ENSG00000106804/ENSG00000136603/ENSG00000138336/ENSG00000107077/ENSG00000111596/ENSG00000171345/ENSG00000113196/ENSG00000169375/ENSG00000161714/ENSG00000105656/ENSG00000140416/ENSG00000011132 |
# gseaplot(gsego.cc.chimpspecific, geneSetID = "GO:0001501", pvalue_table = TRUE)
# dotplot(gsego.cc.chimpspecific, font.size=8, showCategory=15)
Nothing is significant by any notable treshold by this method…
Perhaps I need to limit the gene set to genes which were called as eGenes in chimps, since many too many chimp non-eGenes may contribute to noise.
#Relative rank instead of rank
Chimp_OrderedGenes <- eQTLs %>%
group_by(gene) %>%
dplyr::slice(which.min(qvalue)) %>%
filter(gene %in% GtexHeartEgenes$chimp_id) %>%
left_join(GtexHeartEgenes, by=c("gene"="chimp_id")) %>%
dplyr::select(gene, qvalue, qval) %>% as.data.frame() %>%
filter(qvalue <0.1) %>%
mutate(ChimpRank = dense_rank(qvalue)) %>%
mutate(ChimpRelativeRank = ChimpRank/max(ChimpRank)) %>%
mutate(HumanRank = dense_rank(qval)) %>%
mutate(HumanRelativeRank = HumanRank/max(HumanRank)) %>%
mutate(RankDifference = HumanRank-ChimpRank) %>%
arrange(desc(RankDifference))
Warning: Column `gene`/`chimp_id` joining factor and character vector,
coercing into character vector
GeneList <- Chimp_OrderedGenes$RankDifference
names(GeneList) <- as.character(ChimpToHuman.ID(Chimp_OrderedGenes$gene))
gsego.cc.chimpspecific <- gseGO(gene = GeneList,
OrgDb = org.Hs.eg.db,
keyType = 'ENSEMBL',
maxGSSize = 500,
ont = "BP",
nPerm = 100000)
preparing geneSet collections...
GSEA analysis...
Warning in fgsea(pathways = geneSets, stats = geneList, nperm = nPerm, minSize = minGSSize, : There are ties in the preranked stats (33.21% of the list).
The order of those tied genes will be arbitrary, which may produce unexpected results.
leading edge analysis...
done...
kable(head(as.data.frame(gsego.cc.chimpspecific), 2))
ID | Description | setSize | enrichmentScore | NES | pvalue | p.adjust | qvalues | rank | leading_edge | core_enrichment | |
---|---|---|---|---|---|---|---|---|---|---|---|
GO:0016070 | GO:0016070 | RNA metabolic process | 57 | 0.5592330 | 1.660876 | 0.0001101 | 0.0180429 | 0.0151564 | 107 | tags=65%, list=38%, signal=50% | ENSG00000173575/ENSG00000102974/ENSG00000171862/ENSG00000075856/ENSG00000167513/ENSG00000164758/ENSG00000125484/ENSG00000128000/ENSG00000078401/ENSG00000181007/ENSG00000159388/ENSG00000094916/ENSG00000152454/ENSG00000124279/ENSG00000061936/ENSG00000114503/ENSG00000107371/ENSG00000161057/ENSG00000168743/ENSG00000157404/ENSG00000159208/ENSG00000196150/ENSG00000150593/ENSG00000204519/ENSG00000090971/ENSG00000164342/ENSG00000151623/ENSG00000163602/ENSG00000153187/ENSG00000102984/ENSG00000123609/ENSG00000141646/ENSG00000182899/ENSG00000170325/ENSG00000106261/ENSG00000113643/ENSG00000185122 |
GO:0051252 | GO:0051252 | regulation of RNA metabolic process | 50 | 0.5679773 | 1.671423 | 0.0001201 | 0.0180429 | 0.0151564 | 101 | tags=66%, list=36%, signal=51% | ENSG00000173575/ENSG00000102974/ENSG00000171862/ENSG00000075856/ENSG00000167513/ENSG00000164758/ENSG00000128000/ENSG00000078401/ENSG00000181007/ENSG00000159388/ENSG00000094916/ENSG00000152454/ENSG00000124279/ENSG00000061936/ENSG00000114503/ENSG00000107371/ENSG00000161057/ENSG00000168743/ENSG00000157404/ENSG00000159208/ENSG00000196150/ENSG00000150593/ENSG00000204519/ENSG00000090971/ENSG00000164342/ENSG00000151623/ENSG00000163602/ENSG00000153187/ENSG00000102984/ENSG00000123609/ENSG00000141646/ENSG00000170325/ENSG00000106261 |
gseaplot2(gsego.cc.chimpspecific, geneSetID = c("GO:0006366","GO:0006355"), title="Chimp eGenes ordered by difference in species rank", pvalue_table = TRUE)
dotplot(gsego.cc.chimpspecific, font.size=8, showCategory=38)
Now let’s do the GSEA more carefully (covering all Gene Ontology categories; BP, MF, CC) and plot it together for a more pretty figure.
#put eval=F as temporary fix since this block throws an error since some GSEA results return zero hits, so cbind doesn't work
CC.gsea <- gseGO(gene = GeneList,
OrgDb = org.Hs.eg.db,
keyType = 'ENSEMBL',
maxGSSize = 500,
ont = "CC",
nPerm = 100000)
BP.gsea <- gseGO(gene = GeneList,
OrgDb = org.Hs.eg.db,
keyType = 'ENSEMBL',
maxGSSize = 500,
ont = "BP",
nPerm = 1000000)
MF.gsea <- gseGO(gene = GeneList,
OrgDb = org.Hs.eg.db,
keyType = 'ENSEMBL',
maxGSSize = 500,
ont = "MF",
nPerm = 100000)
CC.gsea.simplified <- as.data.frame(simplify(CC.gsea))
# CC.gsea.simplified$OntologyCategory <- "Cellular.Component"
BP.gsea.simplified <- as.data.frame(simplify(BP.gsea))
BP.gsea.simplified$OntologyCategory <- "Biological.Process"
MF.gsea.simplified <- as.data.frame(simplify(MF.gsea))
# MF.gsea.simplified$OntologyCategory <- "Molecular.Function"
Combined <- rbind(
CC.gsea.simplified,
BP.gsea.simplified,
MF.gsea.simplified)
Combined %>%
group_by(OntologyCategory) %>%
# top_n(n = 5, wt = abs(enrichmentScore)) %>%
ungroup() %>%
ggplot(aes(x=enrichmentScore, y=Description, color=p.adjust, size=setSize)) +
geom_point() +
xlim(c(-1,1)) +
facet_grid(OntologyCategory~., scales = "free") +
scale_colour_gradient(low="red", high="black") +
facet_grid(OntologyCategory~., scales = "free") +
labs(color = "Adjusted P-value") +
theme_bw()
Combined %>%
group_by(OntologyCategory) %>%
top_n(n = -7, wt = qvalues) %>%
top_n(n = 7, wt = setSize) %>%
ungroup() %>%
# group_by(OntologyCategory) %>%
# sample_n(8) %>%
ggplot(aes(x=enrichmentScore, y=Description, size=setSize)) +
geom_point() +
xlim(c(-1,1)) +
facet_grid(OntologyCategory~., scales = "free") +
# scale_colour_gradient(low="red", high="black") +
# labs(color = "Adjusted P-value") +
theme_bw()
Maybe I should have been using relative (percentile ranks) instead of ranks
#Relative rank instead of rank
Chimp_OrderedGenes <- eQTLs %>%
group_by(gene) %>%
dplyr::slice(which.min(qvalue)) %>%
filter(gene %in% GtexHeartEgenes$chimp_id) %>%
left_join(GtexHeartEgenes, by=c("gene"="chimp_id")) %>%
dplyr::select(gene, qvalue, qval) %>% as.data.frame() %>%
filter(qvalue <0.1) %>%
mutate(ChimpRank = dense_rank(qvalue)) %>%
mutate(ChimpRelativeRank = ChimpRank/max(ChimpRank)) %>%
mutate(HumanRank = dense_rank(qval)) %>%
mutate(HumanRelativeRank = HumanRank/max(HumanRank)) %>%
mutate(RelativeRankDifference = HumanRelativeRank-ChimpRelativeRank) %>%
mutate(RankDifference = HumanRank-ChimpRank) %>%
arrange(desc(RankDifference))
Warning: Column `gene`/`chimp_id` joining factor and character vector,
coercing into character vector
GeneList <- Chimp_OrderedGenes$RankDifference
names(GeneList) <- as.character(ChimpToHuman.ID(Chimp_OrderedGenes$gene))
gsego.cc.chimpspecific <- gseGO(gene = GeneList,
OrgDb = org.Hs.eg.db,
keyType = 'ENSEMBL',
maxGSSize = 500,
ont = "BP",
nPerm = 100000)
preparing geneSet collections...
GSEA analysis...
Warning in fgsea(pathways = geneSets, stats = geneList, nperm = nPerm, minSize = minGSSize, : There are ties in the preranked stats (33.21% of the list).
The order of those tied genes will be arbitrary, which may produce unexpected results.
leading edge analysis...
done...
kable(head(as.data.frame(gsego.cc.chimpspecific), 2))
ID | Description | setSize | enrichmentScore | NES | pvalue | p.adjust | qvalues | rank | leading_edge | core_enrichment | |
---|---|---|---|---|---|---|---|---|---|---|---|
GO:0016070 | GO:0016070 | RNA metabolic process | 57 | 0.5592330 | 1.660513 | 0.0001001 | 0.020705 | 0.0173926 | 107 | tags=65%, list=38%, signal=50% | ENSG00000173575/ENSG00000102974/ENSG00000171862/ENSG00000075856/ENSG00000167513/ENSG00000164758/ENSG00000125484/ENSG00000128000/ENSG00000078401/ENSG00000181007/ENSG00000159388/ENSG00000094916/ENSG00000152454/ENSG00000124279/ENSG00000061936/ENSG00000114503/ENSG00000107371/ENSG00000161057/ENSG00000168743/ENSG00000157404/ENSG00000159208/ENSG00000196150/ENSG00000150593/ENSG00000204519/ENSG00000090971/ENSG00000164342/ENSG00000151623/ENSG00000163602/ENSG00000153187/ENSG00000102984/ENSG00000123609/ENSG00000141646/ENSG00000182899/ENSG00000170325/ENSG00000106261/ENSG00000113643/ENSG00000185122 |
GO:0044271 | GO:0044271 | cellular nitrogen compound biosynthetic process | 64 | 0.5375722 | 1.607472 | 0.0001600 | 0.020705 | 0.0173926 | 110 | tags=64%, list=39%, signal=50% | ENSG00000173575/ENSG00000102974/ENSG00000171862/ENSG00000167513/ENSG00000164758/ENSG00000125484/ENSG00000128000/ENSG00000078401/ENSG00000163376/ENSG00000181007/ENSG00000159388/ENSG00000094916/ENSG00000152454/ENSG00000124279/ENSG00000178952/ENSG00000114503/ENSG00000161057/ENSG00000168743/ENSG00000157404/ENSG00000159208/ENSG00000163923/ENSG00000196150/ENSG00000150593/ENSG00000204519/ENSG00000037241/ENSG00000090971/ENSG00000164342/ENSG00000151623/ENSG00000163602/ENSG00000153187/ENSG00000127586/ENSG00000102984/ENSG00000123609/ENSG00000141646/ENSG00000182899/ENSG00000170325/ENSG00000106261/ENSG00000113643/ENSG00000152402/ENSG00000185122/ENSG00000125457 |
gseaplot2(gsego.cc.chimpspecific, geneSetID = c("GO:1903506"), title="Chimp eGenes ordered by difference in species rank", pvalue_table = TRUE)
simplified <- simplify(gsego.cc.chimpspecific)
dotplot(gsego.cc.chimpspecific, font.size=8, showCategory=37)
Alright. Great. that analysis recapitulated the gene overlap analysis of [foreground=Chimp-specific-eGenes; background=all-chimp-eGenes] in the sense that terms like ‘gene transcription’ pop up.
Let’s look at some of the genes in this GO category that are at the top of this ranked metric (have more eGene character in chimp than human)
gsea.results <- as.data.frame(gsego.cc.chimpspecific)
PolII.genes.in.set <- gsea.results %>%
filter(Description=="transcription by RNA polymerase II") %>%
pull(core_enrichment) %>%
strsplit("/") %>% unlist() %>%
mapIds(org.Hs.eg.db, keys=., column="SYMBOL", keytype="ENSEMBL", multiVals="first")
'select()' returned 1:1 mapping between keys and columns
PolII.genes.in.set
ENSG00000173575 ENSG00000102974 ENSG00000164758 ENSG00000078401
"CHD2" "CTCF" "MED30" "EDN1"
ENSG00000181007 ENSG00000159388 ENSG00000094916 ENSG00000152454
"ZFP82" "BTG2" "CBX5" "ZNF256"
ENSG00000114503 ENSG00000161057 ENSG00000168743 ENSG00000157404
"NCBP2" "PSMC2" "NPNT" "KIT"
ENSG00000196150 ENSG00000150593 ENSG00000204519 ENSG00000164342
"ZNF250" "PDCD4" "ZNF551" "TLR3"
ENSG00000151623 ENSG00000163602 ENSG00000153187 ENSG00000102984
"NR3C2" "RYBP" "HNRNPU" "ZNF821"
ENSG00000123609 ENSG00000141646 ENSG00000170325 ENSG00000106261
"NMI" "SMAD4" "PRDM10" "ZKSCAN1"
ENSG00000185122
"HSF1"
CTCF (ENSG00000102974) and HSF1 (ENSG00000185122) sticks out as something interesting and recognizeable genes. Also, quite a few zinc-finger proteins (ZNF821, ZNF551, ZNF250, ZFP82, ZNF256, PRDM10) Let’s see exactly where they are on this ranked list…
# All the top genes by this difference in ranks ordered gene list
GeneSymbolAdded <- Chimp_OrderedGenes %>%
mutate(geneSymbol = mapIds(org.Hs.eg.db, keys=ChimpToHuman.ID(gene), column="SYMBOL", keytype="ENSEMBL", multiVals="first") )
'select()' returned 1:many mapping between keys and columns
GeneSymbolAdded %>% head(40) %>% kable()
gene | qvalue | qval | ChimpRank | ChimpRelativeRank | HumanRank | HumanRelativeRank | RelativeRankDifference | RankDifference | geneSymbol |
---|---|---|---|---|---|---|---|---|---|
ENSPTRG00000007478 | 0.0404686 | 0.385221 | 17 | 0.1223022 | 274 | 0.9820789 | 0.8597767 | 257 | CHD2 |
ENSPTRG00000023277 | 0.0404686 | 0.381735 | 17 | 0.1223022 | 272 | 0.9749104 | 0.8526082 | 255 | NECAP1 |
ENSPTRG00000009925 | 0.0404686 | 0.377596 | 17 | 0.1223022 | 269 | 0.9641577 | 0.8418555 | 252 | CABYR |
ENSPTRG00000013577 | 0.0404686 | 0.376814 | 17 | 0.1223022 | 268 | 0.9605735 | 0.8382713 | 251 | MMP9 |
ENSPTRG00000013074 | 0.0404686 | 0.360164 | 17 | 0.1223022 | 265 | 0.9498208 | 0.8275186 | 248 | COL6A3 |
ENSPTRG00000051169 | 0.0404686 | 0.344418 | 17 | 0.1223022 | 259 | 0.9283154 | 0.8060133 | 242 | HERC3 |
ENSPTRG00000008235 | 0.0469129 | 0.377657 | 30 | 0.2158273 | 270 | 0.9677419 | 0.7519146 | 240 | CTCF |
ENSPTRG00000005567 | 0.0434259 | 0.350216 | 23 | 0.1654676 | 261 | 0.9354839 | 0.7700162 | 238 | SETD1B |
ENSPTRG00000001564 | 0.0549566 | 0.394075 | 41 | 0.2949640 | 278 | 0.9964158 | 0.7014517 | 237 | F11R |
ENSPTRG00000002719 | 0.0529162 | 0.384939 | 36 | 0.2589928 | 273 | 0.9784946 | 0.7195018 | 237 | PTEN |
ENSPTRG00000005404 | 0.0404686 | 0.322560 | 17 | 0.1223022 | 254 | 0.9103943 | 0.7880921 | 237 | SART3 |
ENSPTRG00000008465 | 0.0309940 | 0.314829 | 13 | 0.0935252 | 249 | 0.8924731 | 0.7989479 | 236 | CDT1 |
ENSPTRG00000020525 | 0.0523096 | 0.377596 | 35 | 0.2517986 | 269 | 0.9641577 | 0.7123591 | 234 | MED30 |
ENSPTRG00000021501 | 0.0404686 | 0.318408 | 17 | 0.1223022 | 251 | 0.8996416 | 0.7773394 | 234 | GTF3C4 |
ENSPTRG00000044857 | 0.0464412 | 0.334661 | 29 | 0.2086331 | 256 | 0.9175627 | 0.7089296 | 227 | RABEP2 |
ENSPTRG00000010639 | 0.0410963 | 0.305536 | 19 | 0.1366906 | 245 | 0.8781362 | 0.7414456 | 226 | RAB8A |
ENSPTRG00000010988 | 0.0404686 | 0.300724 | 17 | 0.1223022 | 243 | 0.8709677 | 0.7486656 | 226 | ZNF780B |
ENSPTRG00000017730 | 0.0260784 | 0.296499 | 11 | 0.0791367 | 237 | 0.8494624 | 0.7703257 | 226 | EDN1 |
ENSPTRG00000021354 | 0.0571713 | 0.381265 | 45 | 0.3237410 | 271 | 0.9713262 | 0.6475852 | 226 | PSMB7 |
ENSPTRG00000014606 | 0.0469129 | 0.330502 | 30 | 0.2158273 | 255 | 0.9139785 | 0.6981512 | 225 | EMC3 |
ENSPTRG00000010613 | 0.0469129 | 0.315997 | 30 | 0.2158273 | 250 | 0.8960573 | 0.6802300 | 220 | SYDE1 |
ENSPTRG00000015086 | 0.0571713 | 0.352464 | 45 | 0.3237410 | 263 | 0.9426523 | 0.6189113 | 218 | KBTBD8 |
ENSPTRG00000008700 | 0.0586051 | 0.335386 | 46 | 0.3309353 | 257 | 0.9211470 | 0.5902117 | 211 | SHBG |
ENSPTRG00000010583 | 0.0404686 | 0.264299 | 17 | 0.1223022 | 226 | 0.8100358 | 0.6877337 | 209 | SAMD1 |
ENSPTRG00000006406 | 0.0404686 | 0.260304 | 17 | 0.1223022 | 223 | 0.7992832 | 0.6769810 | 206 | DHRS7 |
ENSPTRG00000010894 | 0.0459946 | 0.284799 | 27 | 0.1942446 | 232 | 0.8315412 | 0.6372966 | 205 | ZFP82 |
ENSPTRG00000014219 | 0.0404686 | 0.255949 | 17 | 0.1223022 | 221 | 0.7921147 | 0.6698125 | 204 | GAS2L1 |
ENSPTRG00000051490 | 0.0626533 | 0.347984 | 56 | 0.4028777 | 260 | 0.9318996 | 0.5290219 | 204 | ACKR4 |
ENSPTRG00000001871 | 0.0404686 | 0.255353 | 17 | 0.1223022 | 220 | 0.7885305 | 0.6662283 | 203 | BTG2 |
ENSPTRG00000007356 | 0.0535353 | 0.298250 | 37 | 0.2661871 | 239 | 0.8566308 | 0.5904438 | 202 | TMED3 |
ENSPTRG00000001712 | 0.0404686 | 0.254465 | 17 | 0.1223022 | 218 | 0.7813620 | 0.6590598 | 201 | PAPPA2 |
ENSPTRG00000020911 | 0.0699290 | 0.364383 | 72 | 0.5179856 | 267 | 0.9569892 | 0.4390036 | 195 | TESK1 |
ENSPTRG00000005034 | 0.0618029 | 0.305659 | 54 | 0.3884892 | 246 | 0.8817204 | 0.4932312 | 192 | CBX5 |
ENSPTRG00000011577 | 0.0619315 | 0.306314 | 55 | 0.3956835 | 247 | 0.8853047 | 0.4896212 | 192 | ZNF256 |
ENSPTRG00000043184 | 0.0404686 | 0.238447 | 17 | 0.1223022 | 208 | 0.7455197 | 0.6232176 | 191 | FCN2 |
ENSPTRG00000012511 | 0.0404686 | 0.235707 | 17 | 0.1223022 | 205 | 0.7347670 | 0.6124649 | 188 | GTDC1 |
ENSPTRG00000043212 | 0.0592845 | 0.293125 | 48 | 0.3453237 | 236 | 0.8458781 | 0.5005544 | 188 | DUSP5 |
ENSPTRG00000000457 | 0.0469129 | 0.252560 | 30 | 0.2158273 | 217 | 0.7777778 | 0.5619504 | 187 | FABP3 |
ENSPTRG00000004521 | 0.0546417 | 0.269495 | 40 | 0.2877698 | 227 | 0.8136201 | 0.5258503 | 187 | CACNA2D4 |
ENSPTRG00000016720 | 0.0799690 | 0.389822 | 94 | 0.6762590 | 276 | 0.9892473 | 0.3129883 | 182 | FASTKD3 |
# The "interesting genes" that are in the PolII regulation of transcription gene set
GeneSymbolAdded %>%
filter(geneSymbol %in% PolII.genes.in.set) %>% kable()
gene | qvalue | qval | ChimpRank | ChimpRelativeRank | HumanRank | HumanRelativeRank | RelativeRankDifference | RankDifference | geneSymbol |
---|---|---|---|---|---|---|---|---|---|
ENSPTRG00000007478 | 0.0404686 | 0.385221 | 17 | 0.1223022 | 274 | 0.9820789 | 0.8597767 | 257 | CHD2 |
ENSPTRG00000008235 | 0.0469129 | 0.377657 | 30 | 0.2158273 | 270 | 0.9677419 | 0.7519146 | 240 | CTCF |
ENSPTRG00000020525 | 0.0523096 | 0.377596 | 35 | 0.2517986 | 269 | 0.9641577 | 0.7123591 | 234 | MED30 |
ENSPTRG00000017730 | 0.0260784 | 0.296499 | 11 | 0.0791367 | 237 | 0.8494624 | 0.7703257 | 226 | EDN1 |
ENSPTRG00000010894 | 0.0459946 | 0.284799 | 27 | 0.1942446 | 232 | 0.8315412 | 0.6372966 | 205 | ZFP82 |
ENSPTRG00000001871 | 0.0404686 | 0.255353 | 17 | 0.1223022 | 220 | 0.7885305 | 0.6662283 | 203 | BTG2 |
ENSPTRG00000005034 | 0.0618029 | 0.305659 | 54 | 0.3884892 | 246 | 0.8817204 | 0.4932312 | 192 | CBX5 |
ENSPTRG00000011577 | 0.0619315 | 0.306314 | 55 | 0.3956835 | 247 | 0.8853047 | 0.4896212 | 192 | ZNF256 |
ENSPTRG00000048726 | 0.0414226 | 0.197905 | 20 | 0.1438849 | 188 | 0.6738351 | 0.5299502 | 168 | NCBP2 |
ENSPTRG00000019553 | 0.0323298 | 0.174447 | 14 | 0.1007194 | 173 | 0.6200717 | 0.5193523 | 159 | PSMC2 |
ENSPTRG00000016343 | 0.0713741 | 0.287004 | 76 | 0.5467626 | 233 | 0.8351254 | 0.2883629 | 157 | NPNT |
ENSPTRG00000016067 | 0.0788016 | 0.300901 | 90 | 0.6474820 | 244 | 0.8745520 | 0.2270700 | 154 | KIT |
ENSPTRG00000044805 | 0.0943837 | 0.385718 | 128 | 0.9208633 | 275 | 0.9856631 | 0.0647998 | 147 | ZNF250 |
ENSPTRG00000002940 | 0.0736106 | 0.279169 | 86 | 0.6187050 | 230 | 0.8243728 | 0.2056677 | 144 | PDCD4 |
ENSPTRG00000011567 | 0.0404686 | 0.133755 | 17 | 0.1223022 | 160 | 0.5734767 | 0.4511745 | 143 | ZNF551 |
ENSPTRG00000016658 | 0.0536295 | 0.188872 | 38 | 0.2733813 | 179 | 0.6415771 | 0.3681958 | 141 | TLR3 |
ENSPTRG00000016499 | 0.0799690 | 0.281694 | 94 | 0.6762590 | 231 | 0.8279570 | 0.1516980 | 137 | NR3C2 |
ENSPTRG00000051886 | 0.0799690 | 0.271973 | 94 | 0.6762590 | 228 | 0.8172043 | 0.1409453 | 134 | RYBP |
ENSPTRG00000002182 | 0.0803410 | 0.261595 | 95 | 0.6834532 | 224 | 0.8028674 | 0.1194141 | 129 | HNRNPU |
ENSPTRG00000008328 | 0.0696251 | 0.213046 | 71 | 0.5107914 | 196 | 0.7025090 | 0.1917176 | 125 | ZNF821 |
ENSPTRG00000012531 | 0.0752192 | 0.248161 | 89 | 0.6402878 | 214 | 0.7670251 | 0.1267373 | 125 | NMI |
ENSPTRG00000010028 | 0.0568039 | 0.159087 | 44 | 0.3165468 | 168 | 0.6021505 | 0.2856038 | 124 | SMAD4 |
ENSPTRG00000004477 | 0.0842910 | 0.262606 | 103 | 0.7410072 | 225 | 0.8064516 | 0.0654444 | 122 | PRDM10 |
ENSPTRG00000044142 | 0.0866009 | 0.275569 | 109 | 0.7841727 | 229 | 0.8207885 | 0.0366159 | 120 | ZKSCAN1 |
ENSPTRG00000048158 | 0.0688478 | 0.194752 | 68 | 0.4892086 | 184 | 0.6594982 | 0.1702896 | 116 | HSF1 |
CTCF and other zinc fingers are among the top in the list (some top chimp eGenes but not for human). This surprises me considering I think of CTCF as so conserved across large evolutionary distance. I will have to look back at more raw data to reassure myself that these chimp eQTLs are real. Also have to keep in mind zinc fingers are one of most common motifs in genome, and there is a GO term for this, so the abundance of zinc-finger proteins may not be meaningful enrichment.
Now let’s try a reciprocal analysis; where we look for what is enriched in human-specific eGenes, (again where the metric to order the gene list is a difference in ranks.)… Still a work-in-progress
Chimp_OrderedGenes <- eQTLs %>%
group_by(gene) %>%
dplyr::slice(which.min(qvalue)) %>%
filter(gene %in% GtexHeartEgenes$chimp_id) %>%
filter(qvalue <0.1) %>%
left_join(GtexHeartEgenes, by=c("gene"="chimp_id")) %>%
dplyr::select(gene, qvalue, qval) %>% as.data.frame() %>%
mutate(ChimpRank = dense_rank(qvalue)) %>%
mutate(HumanRank = dense_rank(qval)) %>%
mutate(RankDifference = HumanRank-ChimpRank) %>%
arrange(desc(RankDifference))
GeneList <- Chimp_OrderedGenes$RankDifference
names(GeneList) <- as.character(ChimpToHuman.ID(Chimp_OrderedGenes$gene))
gsego.cc.chimpspecific <- gseGO(gene = GeneList,
OrgDb = org.Hs.eg.db,
keyType = 'ENSEMBL',
maxGSSize = 500,
ont = "BP",
nPerm = 10000)
kable(head(as.data.frame(gsego.cc.chimpspecific), 15))
gseaplot2(gsego.cc.chimpspecific, geneSetID = c("GO:0006357", "GO:0006355"), title="Chimp eGenes ordered by difference in species rank", pvalue_table = TRUE)
dotplot(gsego.cc.chimpspecific, font.size=8, showCategory=60)
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS 10.14
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] parallel stats4 stats graphics grDevices utils datasets
[8] methods base
other attached packages:
[1] enrichplot_1.2.0 gridExtra_2.3 org.Hs.eg.db_3.7.0
[4] AnnotationDbi_1.44.0 IRanges_2.16.0 S4Vectors_0.20.1
[7] Biobase_2.42.0 BiocGenerics_0.28.0 clusterProfiler_3.10.1
[10] ggpmisc_0.3.1 data.table_1.12.2 knitr_1.23
[13] forcats_0.4.0 stringr_1.4.0 dplyr_0.8.1
[16] purrr_0.3.2 readr_1.3.1 tidyr_0.8.3
[19] tibble_2.1.3 ggplot2_3.1.1 tidyverse_1.2.1
[22] plyr_1.8.4
loaded via a namespace (and not attached):
[1] nlme_3.1-140 fs_1.3.1 lubridate_1.7.4
[4] bit64_0.9-7 progress_1.2.2 RColorBrewer_1.1-2
[7] httr_1.4.0 UpSetR_1.4.0 rprojroot_1.3-2
[10] tools_3.5.1 backports_1.1.4 R6_2.4.0
[13] DBI_1.0.0 lazyeval_0.2.2 colorspace_1.4-1
[16] withr_2.1.2 prettyunits_1.0.2 tidyselect_0.2.5
[19] bit_1.1-14 compiler_3.5.1 git2r_0.25.2
[22] cli_1.1.0 rvest_0.3.4 xml2_1.2.0
[25] labeling_0.3 triebeard_0.3.0 scales_1.0.0
[28] ggridges_0.5.1 digest_0.6.19 rmarkdown_1.13
[31] DOSE_3.8.2 pkgconfig_2.0.2 htmltools_0.3.6
[34] highr_0.8 rlang_0.3.4 readxl_1.3.1
[37] rstudioapi_0.10 RSQLite_2.1.1 gridGraphics_0.4-1
[40] generics_0.0.2 farver_1.1.0 jsonlite_1.6
[43] BiocParallel_1.16.6 GOSemSim_2.8.0 magrittr_1.5
[46] ggplotify_0.0.3 GO.db_3.7.0 Matrix_1.2-17
[49] Rcpp_1.0.1 munsell_0.5.0 viridis_0.5.1
[52] stringi_1.4.3 whisker_0.3-2 yaml_2.2.0
[55] ggraph_1.0.2 MASS_7.3-51.4 qvalue_2.14.1
[58] grid_3.5.1 blob_1.1.1 ggrepel_0.8.1
[61] DO.db_2.9 crayon_1.3.4 lattice_0.20-38
[64] cowplot_0.9.4 haven_2.1.0 splines_3.5.1
[67] hms_0.4.2 pillar_1.4.1 fgsea_1.8.0
[70] igraph_1.2.4.1 reshape2_1.4.3 fastmatch_1.1-0
[73] glue_1.3.1 evaluate_0.14 modelr_0.1.4
[76] urltools_1.7.3 tweenr_1.0.1 cellranger_1.1.0
[79] gtable_0.3.0 polyclip_1.10-0 assertthat_0.2.1
[82] xfun_0.7 ggforce_0.2.2 europepmc_0.3
[85] broom_0.5.2 viridisLite_0.3.0 rvcheck_0.1.3
[88] memoise_1.1.0 workflowr_1.4.0