Last updated: 2019-12-11

Checks: 7 0

Knit directory: Comparative_APA/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.5.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190902) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    code/chimp_log/
    Ignored:    code/human_log/
    Ignored:    data/.DS_Store
    Ignored:    data/HC_filenames.txt.sb-4426323c-IKIs0S/
    Ignored:    data/MapPantro6_meta.txt.sb-a5794dd2-Cskmlm/
    Ignored:    data/OppositeSpeciesMap.txt.sb-a5794dd2-mayWJf/
    Ignored:    data/RNASEQ_metadata.txt.sb-4426323c-TE4ns3/
    Ignored:    data/RNASEQ_metadata.txt.sb-51f67ae1-HXp7Gq/
    Ignored:    data/RNASEQ_metadata_2Removed.txt.sb-4426323c-a4lBwx/
    Ignored:    data/RNASEQ_metadata_stranded.txt.sb-a5794dd2-D659m2/
    Ignored:    data/metadata_HCpanel.txt.sb-a3d92a2d-b9cYoF/
    Ignored:    data/metadata_HCpanel.txt.sb-f4823d1e-qihGek/

Untracked files:
    Untracked:  ._.DS_Store
    Untracked:  Chimp/
    Untracked:  Human/
    Untracked:  analysis/assessReadQual.Rmd
    Untracked:  code/._ClassifyLeafviz.sh
    Untracked:  code/._Config_chimp.yaml
    Untracked:  code/._Config_chimp_full.yaml
    Untracked:  code/._Config_human.yaml
    Untracked:  code/._ConvertJunc2Bed.sh
    Untracked:  code/._CountNucleotides.py
    Untracked:  code/._CrossMapChimpRNA.sh
    Untracked:  code/._DiffSplice.sh
    Untracked:  code/._DiffSplicePlots.sh
    Untracked:  code/._DiffSplicePlots_gencode.sh
    Untracked:  code/._DiffSplice_gencode.sh
    Untracked:  code/._DiffSplice_removebad.sh
    Untracked:  code/._GetMAPQscore.py
    Untracked:  code/._GetSecondaryMap.py
    Untracked:  code/._LiftFinalChimpJunc2Human.sh
    Untracked:  code/._LiftOrthoPAS2chimp.sh
    Untracked:  code/._MapBadSamples.sh
    Untracked:  code/._QuantMergedClusters.sh
    Untracked:  code/._ReverseLiftFilter.R
    Untracked:  code/._RunFixLeafCluster.sh
    Untracked:  code/._Snakefile
    Untracked:  code/._SnakefilePAS
    Untracked:  code/._SnakefilePASfilt
    Untracked:  code/._SortIndexBadSamples.sh
    Untracked:  code/._bed215upbed.py
    Untracked:  code/._bed2SAF_gen.py
    Untracked:  code/._buildIndecpantro5
    Untracked:  code/._buildIndecpantro5.sh
    Untracked:  code/._buildLeafviz.sh
    Untracked:  code/._buildLeafviz_leadAnno.sh
    Untracked:  code/._buildStarIndex.sh
    Untracked:  code/._chimpChromprder.sh
    Untracked:  code/._cleanbed2saf.py
    Untracked:  code/._cluster.json
    Untracked:  code/._cluster2bed.py
    Untracked:  code/._clusterLiftReverse.sh
    Untracked:  code/._clusterLiftReverse_removebad.sh
    Untracked:  code/._clusterLiftprimary.sh
    Untracked:  code/._clusterLiftprimary_removebad.sh
    Untracked:  code/._converBam2Junc.sh
    Untracked:  code/._converBam2Junc_removeBad.sh
    Untracked:  code/._extraSnakefiltpas
    Untracked:  code/._filter5percPAS.py
    Untracked:  code/._filterNumChroms.py
    Untracked:  code/._filterPASforMP.py
    Untracked:  code/._filterPostLift.py
    Untracked:  code/._fixExonFC.py
    Untracked:  code/._fixLeafCluster.py
    Untracked:  code/._fixLiftedJunc.py
    Untracked:  code/._fixUTRexonanno.py
    Untracked:  code/._formathg38Anno.py
    Untracked:  code/._formatpantro6Anno.py
    Untracked:  code/._getRNAseqMapStats.sh
    Untracked:  code/._hg19MapStats.sh
    Untracked:  code/._humanChromorder.sh
    Untracked:  code/._intersectLiftedPAS.sh
    Untracked:  code/._liftJunctionFiles.sh
    Untracked:  code/._liftPAS19to38.sh
    Untracked:  code/._liftedchimpJunc2human.sh
    Untracked:  code/._makeSamplyGroupsHuman_TvN.py
    Untracked:  code/._mapRNAseqhg19.sh
    Untracked:  code/._mapRNAseqhg19_newPipeline.sh
    Untracked:  code/._maphg19.sh
    Untracked:  code/._maphg19_subjunc.sh
    Untracked:  code/._mergedBam2BW.sh
    Untracked:  code/._nameClusters.py
    Untracked:  code/._numMultimap.py
    Untracked:  code/._overlapapaQTLPAS.sh
    Untracked:  code/._prepareCleanLiftedFC_5perc4LC.py
    Untracked:  code/._prepareLeafvizAnno.sh
    Untracked:  code/._preparePAS4lift.py
    Untracked:  code/._primaryLift.sh
    Untracked:  code/._processhg38exons.py
    Untracked:  code/._quantJunc.sh
    Untracked:  code/._quantJunc_TEST.sh
    Untracked:  code/._quantJunc_removeBad.sh
    Untracked:  code/._quantMerged_seperatly.sh
    Untracked:  code/._recLiftchim2human.sh
    Untracked:  code/._revLiftPAShg38to19.sh
    Untracked:  code/._reverseLift.sh
    Untracked:  code/._runCheckReverseLift.sh
    Untracked:  code/._runChimpDiffIso.sh
    Untracked:  code/._runCountNucleotides.sh
    Untracked:  code/._runFilterNumChroms.sh
    Untracked:  code/._runHumanDiffIso.sh
    Untracked:  code/._runNuclearDifffIso.sh
    Untracked:  code/._run_chimpverifybam.sh
    Untracked:  code/._run_verifyBam.sh
    Untracked:  code/._snakemake.batch
    Untracked:  code/._snakemakePAS.batch
    Untracked:  code/._snakemakePASchimp.batch
    Untracked:  code/._snakemakePAShuman.batch
    Untracked:  code/._snakemake_chimp.batch
    Untracked:  code/._snakemake_human.batch
    Untracked:  code/._snakemakefiltPAS.batch
    Untracked:  code/._snakemakefiltPAS_chimp
    Untracked:  code/._snakemakefiltPAS_chimp.sh
    Untracked:  code/._snakemakefiltPAS_human.sh
    Untracked:  code/._submit-snakemake-chimp.sh
    Untracked:  code/._submit-snakemake-human.sh
    Untracked:  code/._submit-snakemakePAS-chimp.sh
    Untracked:  code/._submit-snakemakePAS-human.sh
    Untracked:  code/._submit-snakemakefiltPAS-chimp.sh
    Untracked:  code/._submit-snakemakefiltPAS-human.sh
    Untracked:  code/._subset_diffisopheno_Nuclear_HvC.py
    Untracked:  code/._transcriptDTplotsNuclear.sh
    Untracked:  code/._verifyBam4973.sh
    Untracked:  code/._verifyBam4973inHuman.sh
    Untracked:  code/._wrap_chimpverifybam.sh
    Untracked:  code/._wrap_verifyBam.sh
    Untracked:  code/._writeMergecode.py
    Untracked:  code/.snakemake/
    Untracked:  code/ClassifyLeafviz.sh
    Untracked:  code/Config_chimp.yaml
    Untracked:  code/Config_chimp_full.yaml
    Untracked:  code/Config_human.yaml
    Untracked:  code/ConvertJunc2Bed.err
    Untracked:  code/ConvertJunc2Bed.out
    Untracked:  code/ConvertJunc2Bed.sh
    Untracked:  code/CountNucleotides.py
    Untracked:  code/CrossMapChimpRNA.sh
    Untracked:  code/CrossmapChimpRNA.err
    Untracked:  code/CrossmapChimpRNA.out
    Untracked:  code/DiffSplice.err
    Untracked:  code/DiffSplice.out
    Untracked:  code/DiffSplice.sh
    Untracked:  code/DiffSplicePlots.err
    Untracked:  code/DiffSplicePlots.out
    Untracked:  code/DiffSplicePlots.sh
    Untracked:  code/DiffSplicePlots_gencode.sh
    Untracked:  code/DiffSplice_gencode.sh
    Untracked:  code/DiffSplice_removebad.err
    Untracked:  code/DiffSplice_removebad.out
    Untracked:  code/DiffSplice_removebad.sh
    Untracked:  code/FilterReverseLift.err
    Untracked:  code/FilterReverseLift.out
    Untracked:  code/GencodeDiffSplice.err
    Untracked:  code/GencodeDiffSplice.out
    Untracked:  code/GetMAPQscore.py
    Untracked:  code/GetSecondaryMap.py
    Untracked:  code/HchromOrder.err
    Untracked:  code/HchromOrder.out
    Untracked:  code/JunctionLift.err
    Untracked:  code/JunctionLift.out
    Untracked:  code/JunctionLiftFinalChimp.err
    Untracked:  code/JunctionLiftFinalChimp.out
    Untracked:  code/LiftClustersFirst.err
    Untracked:  code/LiftClustersFirst.out
    Untracked:  code/LiftClustersFirst_remove.err
    Untracked:  code/LiftClustersFirst_remove.out
    Untracked:  code/LiftClustersSecond.err
    Untracked:  code/LiftClustersSecond.out
    Untracked:  code/LiftClustersSecond_remove.err
    Untracked:  code/LiftClustersSecond_remove.out
    Untracked:  code/LiftFinalChimpJunc2Human.sh
    Untracked:  code/LiftOrthoPAS2chimp.sh
    Untracked:  code/LiftorthoPAS.err
    Untracked:  code/LiftorthoPASt.out
    Untracked:  code/Log.out
    Untracked:  code/MapBadSamples.err
    Untracked:  code/MapBadSamples.out
    Untracked:  code/MapBadSamples.sh
    Untracked:  code/MapStats.err
    Untracked:  code/MapStats.out
    Untracked:  code/MergeClusters.err
    Untracked:  code/MergeClusters.out
    Untracked:  code/MergeClusters.sh
    Untracked:  code/QuantMergeClusters
    Untracked:  code/QuantMergeClusters.err
    Untracked:  code/QuantMergeClusters.out
    Untracked:  code/QuantMergedClusters.sh
    Untracked:  code/Rev_liftoverPAShg19to38.err
    Untracked:  code/Rev_liftoverPAShg19to38.out
    Untracked:  code/ReverseLiftFilter.R
    Untracked:  code/RunFixCluster.err
    Untracked:  code/RunFixCluster.out
    Untracked:  code/RunFixLeafCluster.sh
    Untracked:  code/SAF215upbed_gen.py
    Untracked:  code/Snakefile
    Untracked:  code/SnakefilePAS
    Untracked:  code/SnakefilePASfilt
    Untracked:  code/SortIndexBadSamples.err
    Untracked:  code/SortIndexBadSamples.out
    Untracked:  code/SortIndexBadSamples.sh
    Untracked:  code/TotalTranscriptDTplot.err
    Untracked:  code/TotalTranscriptDTplot.out
    Untracked:  code/Upstream10Bases_general.py
    Untracked:  code/apaQTLsnake.err
    Untracked:  code/apaQTLsnake.out
    Untracked:  code/apaQTLsnakePAS.err
    Untracked:  code/apaQTLsnakePAS.out
    Untracked:  code/apaQTLsnakePAShuman.err
    Untracked:  code/bam2junc.err
    Untracked:  code/bam2junc.out
    Untracked:  code/bam2junc_remove.err
    Untracked:  code/bam2junc_remove.out
    Untracked:  code/bed215upbed.py
    Untracked:  code/bed2SAF_gen.py
    Untracked:  code/bed2saf.py
    Untracked:  code/bg_to_cov.py
    Untracked:  code/buildIndecpantro5
    Untracked:  code/buildIndecpantro5.sh
    Untracked:  code/buildLeafviz.err
    Untracked:  code/buildLeafviz.out
    Untracked:  code/buildLeafviz.sh
    Untracked:  code/buildLeafviz_leadAnno.sh
    Untracked:  code/buildLeafviz_leafanno.err
    Untracked:  code/buildLeafviz_leafanno.out
    Untracked:  code/buildStarIndex.sh
    Untracked:  code/callPeaksYL.py
    Untracked:  code/chimpChromprder.sh
    Untracked:  code/chooseAnno2Bed.py
    Untracked:  code/chooseAnno2SAF.py
    Untracked:  code/chromOrder.err
    Untracked:  code/chromOrder.out
    Untracked:  code/classifyLeafviz.err
    Untracked:  code/classifyLeafviz.out
    Untracked:  code/cleanbed2saf.py
    Untracked:  code/cluster.json
    Untracked:  code/cluster2bed.py
    Untracked:  code/clusterLiftReverse.sh
    Untracked:  code/clusterLiftReverse_removebad.sh
    Untracked:  code/clusterLiftprimary.sh
    Untracked:  code/clusterLiftprimary_removebad.sh
    Untracked:  code/clusterPAS.json
    Untracked:  code/clusterfiltPAS.json
    Untracked:  code/comands2Mege.sh
    Untracked:  code/converBam2Junc.sh
    Untracked:  code/converBam2Junc_removeBad.sh
    Untracked:  code/convertNumeric.py
    Untracked:  code/environment.yaml
    Untracked:  code/extraSnakefiltpas
    Untracked:  code/filter5perc.R
    Untracked:  code/filter5percPAS.py
    Untracked:  code/filter5percPheno.py
    Untracked:  code/filterBamforMP.pysam2_gen.py
    Untracked:  code/filterJuncChroms.err
    Untracked:  code/filterJuncChroms.out
    Untracked:  code/filterMissprimingInNuc10_gen.py
    Untracked:  code/filterNumChroms.py
    Untracked:  code/filterPASforMP.py
    Untracked:  code/filterPostLift.py
    Untracked:  code/filterSAFforMP_gen.py
    Untracked:  code/filterSortBedbyCleanedBed_gen.R
    Untracked:  code/filterpeaks.py
    Untracked:  code/fixExonFC.py
    Untracked:  code/fixFChead.py
    Untracked:  code/fixFChead_bothfrac.py
    Untracked:  code/fixLeafCluster.py
    Untracked:  code/fixLiftedJunc.py
    Untracked:  code/fixUTRexonanno.py
    Untracked:  code/formathg38Anno.py
    Untracked:  code/generateStarIndex.err
    Untracked:  code/generateStarIndex.out
    Untracked:  code/generateStarIndexHuman.err
    Untracked:  code/generateStarIndexHuman.out
    Untracked:  code/getRNAseqMapStats.sh
    Untracked:  code/hg19MapStats.err
    Untracked:  code/hg19MapStats.out
    Untracked:  code/hg19MapStats.sh
    Untracked:  code/humanChromorder.sh
    Untracked:  code/humanFiles
    Untracked:  code/intersectAnno.err
    Untracked:  code/intersectAnno.out
    Untracked:  code/intersectLiftedPAS.sh
    Untracked:  code/leafcutter_merge_regtools_redo.py
    Untracked:  code/liftJunctionFiles.sh
    Untracked:  code/liftPAS19to38.sh
    Untracked:  code/liftoverPAShg19to38.err
    Untracked:  code/liftoverPAShg19to38.out
    Untracked:  code/log/
    Untracked:  code/make5percPeakbed.py
    Untracked:  code/makeFileID.py
    Untracked:  code/makePheno.py
    Untracked:  code/makeSamplyGroupsChimp_TvN.py
    Untracked:  code/makeSamplyGroupsHuman_TvN.py
    Untracked:  code/mapRNAseqhg19.sh
    Untracked:  code/mapRNAseqhg19_newPipeline.sh
    Untracked:  code/maphg19.err
    Untracked:  code/maphg19.out
    Untracked:  code/maphg19.sh
    Untracked:  code/maphg19_new.err
    Untracked:  code/maphg19_new.out
    Untracked:  code/maphg19_sub.err
    Untracked:  code/maphg19_sub.out
    Untracked:  code/maphg19_subjunc.sh
    Untracked:  code/merge.err
    Untracked:  code/merge_leafcutter_clusters_redo.py
    Untracked:  code/mergedBam2BW.sh
    Untracked:  code/mergedbam2bw.err
    Untracked:  code/mergedbam2bw.out
    Untracked:  code/nameClusters.py
    Untracked:  code/namePeaks.py
    Untracked:  code/nuclearTranscriptDTplot.err
    Untracked:  code/nuclearTranscriptDTplot.out
    Untracked:  code/numMultimap.py
    Untracked:  code/overlapPAS.err
    Untracked:  code/overlapPAS.out
    Untracked:  code/overlapapaQTLPAS.sh
    Untracked:  code/peak2PAS.py
    Untracked:  code/pheno2countonly.R
    Untracked:  code/prepareAnnoLeafviz.err
    Untracked:  code/prepareAnnoLeafviz.out
    Untracked:  code/prepareCleanLiftedFC_5perc4LC.py
    Untracked:  code/prepareLeafvizAnno.sh
    Untracked:  code/preparePAS4lift.py
    Untracked:  code/prepare_phenotype_table.py
    Untracked:  code/primaryLift.err
    Untracked:  code/primaryLift.out
    Untracked:  code/primaryLift.sh
    Untracked:  code/processhg38exons.py
    Untracked:  code/quantJunc.sh
    Untracked:  code/quantJunc_TEST.sh
    Untracked:  code/quantJunc_removeBad.sh
    Untracked:  code/quantLiftedPAS.err
    Untracked:  code/quantLiftedPAS.out
    Untracked:  code/quantLiftedPAS.sh
    Untracked:  code/quatJunc.err
    Untracked:  code/quatJunc.out
    Untracked:  code/recChimpback2Human.err
    Untracked:  code/recChimpback2Human.out
    Untracked:  code/recLiftchim2human.sh
    Untracked:  code/revLift.err
    Untracked:  code/revLift.out
    Untracked:  code/revLiftPAShg38to19.sh
    Untracked:  code/reverseLift.sh
    Untracked:  code/runCheckReverseLift.sh
    Untracked:  code/runChimpDiffIso.sh
    Untracked:  code/runCountNucleotides.err
    Untracked:  code/runCountNucleotides.out
    Untracked:  code/runCountNucleotides.sh
    Untracked:  code/runCountNucleotidesPantro6.err
    Untracked:  code/runCountNucleotidesPantro6.out
    Untracked:  code/runCountNucleotides_pantro6.sh
    Untracked:  code/runFilterNumChroms.sh
    Untracked:  code/runHumanDiffIso.sh
    Untracked:  code/runNuclearDifffIso.sh
    Untracked:  code/run_Chimpleafcutter_ds.err
    Untracked:  code/run_Chimpleafcutter_ds.out
    Untracked:  code/run_Chimpverifybam.err
    Untracked:  code/run_Chimpverifybam.out
    Untracked:  code/run_Humanleafcutter_ds.err
    Untracked:  code/run_Humanleafcutter_ds.out
    Untracked:  code/run_Nuclearleafcutter_ds.err
    Untracked:  code/run_Nuclearleafcutter_ds.out
    Untracked:  code/run_chimpverifybam.sh
    Untracked:  code/run_verifyBam.sh
    Untracked:  code/run_verifybam.err
    Untracked:  code/run_verifybam.out
    Untracked:  code/slurm-62824013.out
    Untracked:  code/slurm-62825841.out
    Untracked:  code/slurm-62826116.out
    Untracked:  code/slurm-64108209.out
    Untracked:  code/slurm-64108521.out
    Untracked:  code/slurm-64108557.out
    Untracked:  code/snakePASChimp.err
    Untracked:  code/snakePASChimp.out
    Untracked:  code/snakePAShuman.out
    Untracked:  code/snakemake.batch
    Untracked:  code/snakemakeChimp.err
    Untracked:  code/snakemakeChimp.out
    Untracked:  code/snakemakeHuman.err
    Untracked:  code/snakemakeHuman.out
    Untracked:  code/snakemakePAS.batch
    Untracked:  code/snakemakePASFiltChimp.err
    Untracked:  code/snakemakePASFiltChimp.out
    Untracked:  code/snakemakePASFiltHuman.err
    Untracked:  code/snakemakePASFiltHuman.out
    Untracked:  code/snakemakePASchimp.batch
    Untracked:  code/snakemakePAShuman.batch
    Untracked:  code/snakemake_chimp.batch
    Untracked:  code/snakemake_human.batch
    Untracked:  code/snakemakefiltPAS.batch
    Untracked:  code/snakemakefiltPAS_chimp.sh
    Untracked:  code/snakemakefiltPAS_human.sh
    Untracked:  code/submit-snakemake-chimp.sh
    Untracked:  code/submit-snakemake-human.sh
    Untracked:  code/submit-snakemakePAS-chimp.sh
    Untracked:  code/submit-snakemakePAS-human.sh
    Untracked:  code/submit-snakemakefiltPAS-chimp.sh
    Untracked:  code/submit-snakemakefiltPAS-human.sh
    Untracked:  code/subset_diffisopheno.py
    Untracked:  code/subset_diffisopheno_Chimp_tvN.py
    Untracked:  code/subset_diffisopheno_Huma_tvN.py
    Untracked:  code/subset_diffisopheno_Nuclear_HvC.py
    Untracked:  code/test
    Untracked:  code/transcriptDTplotsNuclear.sh
    Untracked:  code/transcriptDTplotsTotal.sh
    Untracked:  code/verifyBam4973.sh
    Untracked:  code/verifyBam4973inHuman.sh
    Untracked:  code/verifybam4973.err
    Untracked:  code/verifybam4973.out
    Untracked:  code/verifybam4973HumanMap.err
    Untracked:  code/verifybam4973HumanMap.out
    Untracked:  code/wrap_Chimpverifybam.err
    Untracked:  code/wrap_Chimpverifybam.out
    Untracked:  code/wrap_chimpverifybam.sh
    Untracked:  code/wrap_verifyBam.sh
    Untracked:  code/wrap_verifybam.err
    Untracked:  code/wrap_verifybam.out
    Untracked:  code/writeMergecode.py
    Untracked:  data/._.DS_Store
    Untracked:  data/._HC_filenames.txt
    Untracked:  data/._HC_filenames.txt.sb-4426323c-IKIs0S
    Untracked:  data/._HC_filenames.xlsx
    Untracked:  data/._MapPantro6_meta.txt
    Untracked:  data/._MapPantro6_meta.txt.sb-a5794dd2-Cskmlm
    Untracked:  data/._MapPantro6_meta.xlsx
    Untracked:  data/._OppositeSpeciesMap.txt
    Untracked:  data/._OppositeSpeciesMap.txt.sb-a5794dd2-mayWJf
    Untracked:  data/._OppositeSpeciesMap.xlsx
    Untracked:  data/._RNASEQ_metadata.txt
    Untracked:  data/._RNASEQ_metadata.txt.sb-4426323c-TE4ns3
    Untracked:  data/._RNASEQ_metadata.txt.sb-51f67ae1-HXp7Gq
    Untracked:  data/._RNASEQ_metadata_2Removed.txt
    Untracked:  data/._RNASEQ_metadata_2Removed.txt.sb-4426323c-a4lBwx
    Untracked:  data/._RNASEQ_metadata_2Removed.xlsx
    Untracked:  data/._RNASEQ_metadata_stranded.txt
    Untracked:  data/._RNASEQ_metadata_stranded.txt.sb-a5794dd2-D659m2
    Untracked:  data/._RNASEQ_metadata_stranded.xlsx
    Untracked:  data/._metadata_HCpanel.txt
    Untracked:  data/._metadata_HCpanel.txt.sb-a3d92a2d-b9cYoF
    Untracked:  data/._metadata_HCpanel.txt.sb-f4823d1e-qihGek
    Untracked:  data/._metadata_HCpanel.xlsx
    Untracked:  data/._~$RNASEQ_metadata.xlsx
    Untracked:  data/._~$RNASEQ_metadata_stranded.xlsx
    Untracked:  data/._~$metadata_HCpanel.xlsx
    Untracked:  data/._.xlsx
    Untracked:  data/CompapaQTLpas/
    Untracked:  data/DTmatrix/
    Untracked:  data/DiffExpression/
    Untracked:  data/DiffIso_Nuclear/
    Untracked:  data/DiffSplice/
    Untracked:  data/DiffSplice_liftedJunc/
    Untracked:  data/DiffSplice_removeBad/
    Untracked:  data/EvalPantro5/
    Untracked:  data/HC_filenames.txt
    Untracked:  data/HC_filenames.xlsx
    Untracked:  data/MapPantro6_meta.txt
    Untracked:  data/MapPantro6_meta.xlsx
    Untracked:  data/MapStats/
    Untracked:  data/NuclearHvC/
    Untracked:  data/OppositeSpeciesMap.txt
    Untracked:  data/OppositeSpeciesMap.xlsx
    Untracked:  data/Peaks_5perc/
    Untracked:  data/Pheno_5perc/
    Untracked:  data/Pheno_5perc_nuclear/
    Untracked:  data/Pheno_5perc_total/
    Untracked:  data/RNASEQ_metadata.txt
    Untracked:  data/RNASEQ_metadata_2Removed.txt
    Untracked:  data/RNASEQ_metadata_2Removed.xlsx
    Untracked:  data/RNASEQ_metadata_stranded.txt
    Untracked:  data/RNASEQ_metadata_stranded.xlsx
    Untracked:  data/TwoBadSampleAnalysis/
    Untracked:  data/chainFiles/
    Untracked:  data/cleanPeaks_anno/
    Untracked:  data/cleanPeaks_byspecies/
    Untracked:  data/cleanPeaks_lifted/
    Untracked:  data/leafviz/
    Untracked:  data/liftover_files/
    Untracked:  data/metadata_HCpanel.txt
    Untracked:  data/metadata_HCpanel.xlsx
    Untracked:  data/primaryLift/
    Untracked:  data/reverseLift/
    Untracked:  data/~$RNASEQ_metadata.xlsx
    Untracked:  data/~$RNASEQ_metadata_stranded.xlsx
    Untracked:  data/~$metadata_HCpanel.xlsx
    Untracked:  data/.xlsx
    Untracked:  output/dtPlots/
    Untracked:  projectNotes.Rmd

Unstaged changes:
    Modified:   analysis/CorrbetweenInd.Rmd
    Modified:   analysis/OppositeMap.Rmd
    Modified:   analysis/PASnumperSpecies.Rmd
    Modified:   analysis/annotatePAS.Rmd
    Modified:   analysis/annotationInfo.Rmd
    Modified:   analysis/index.Rmd
    Modified:   analysis/investigatePantro5.Rmd
    Modified:   analysis/liftoverPAS.Rmd
    Modified:   analysis/multiMap.Rmd
    Modified:   analysis/verifyBAM.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd 76142de brimittleman 2019-12-11 update reciprocal lift
html d7f04d9 brimittleman 2019-12-11 Build site.
Rmd 6b8b23c brimittleman 2019-12-11 fix redundancy in splicing genes
html 8ae44d5 brimittleman 2019-12-10 Build site.
Rmd 28c77be brimittleman 2019-12-10 add examples and anno code
html 174fba1 brimittleman 2019-12-07 Build site.
Rmd 81cbc5f brimittleman 2019-12-07 add res
html e9cfec8 brimittleman 2019-12-07 Build site.
Rmd 1d92e9f brimittleman 2019-12-07 add res
html a288a29 brimittleman 2019-12-04 Build site.
Rmd 558b39f brimittleman 2019-12-04 add current error for splice and write out DE genes
html 2fbf2d4 brimittleman 2019-12-02 Build site.
Rmd b5df813 brimittleman 2019-12-02 initial results no overlap
html 12a7fcb brimittleman 2019-11-20 Build site.
Rmd 6d6e7d5 brimittleman 2019-11-20 fix label
html 9b73cff brimittleman 2019-11-18 Build site.
Rmd 3c2512b brimittleman 2019-11-18 wflow_publish(“analysis/diffSplicing.Rmd”)
html 7770d55 brimittleman 2019-11-18 Build site.
Rmd fa2c075 brimittleman 2019-11-18 code for diff splice
html 106f3c1 brimittleman 2019-11-15 Build site.
Rmd 4ad7bce brimittleman 2019-11-15 look at results of cluster lift
html dc91b0a brimittleman 2019-11-11 Build site.
Rmd b5ba82e brimittleman 2019-11-11 add diff expression and diff splicing

library(tidyverse)
── Attaching packages ───────────────────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.1.1       ✔ purrr   0.3.2  
✔ tibble  2.1.1       ✔ dplyr   0.8.0.1
✔ tidyr   0.8.3       ✔ stringr 1.3.1  
✔ readr   1.3.1       ✔ forcats 0.3.0  
── Conflicts ──────────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
library(reshape2)

Attaching package: 'reshape2'
The following object is masked from 'package:tidyr':

    smiths

I want to use the RNA seq I collected to also perform a differential splicing analysis with leafcutter. I will follow the pipeline found at http://davidaknowles.github.io/leafcutter/articles/Usage.html. For a first pass I will use the bam files from the snakemake and differential expression analysis pipeline.

I will get clusters in both species then perform reciprocal liftover. I can use a liftover pipeline similar to the one I used for the differnetial PAS analysis.

Pipeline from example on leafcutter github.



for bamfile in `ls run/geuvadis/*chr1.bam`; do
    echo Converting $bamfile to $bamfile.junc
    samtools index $bamfile
    regtools junctions extract -a 8 -m 50 -M 500000 $bamfile -o $bamfile.junc
    echo $bamfile.junc >> test_juncfiles.txt
done

python ../clustering/leafcutter_cluster_regtools.py -j test_juncfiles.txt -m 50 -o testYRIvsEU -l 500000

At this point I will be able to liftover the junctions. I can use the human corrdinates for the differential splicing step.

../scripts/leafcutter_ds.R --num_threads 4 ../example_data/testYRIvsEU_perind_numers.counts.gz example_geuvadis/groups_file.txt

I now have my RNA seq for each species. I can write a script that runs the junctions for each species.

sbatch converBam2Junc.sh

Create a script that only keeps the number chromosomes (2A and 2B for chimp). This means I will not have any of the chimp contigs.

I should lift first then filter


mkdir ../data/DiffSplice_liftedJunc
sbatch liftJunctionFiles.sh

Assess the number that liftover: Resiprocal must map back to the same spot.

First I will look at how many pass the original lift.

#Original:
touch /project2/gilad/briana/Comparative_APA/data/DiffSplice_liftedJunc/JuncNums.txt
for i in $(ls /project2/gilad/briana/Comparative_APA/Human/data/RNAseq/sort/*.bam.junc)
do
describer=$(echo ${i} cut -d/ -f 9 | cut -d- -f 4)
number=$(wc -l < $i)
echo -e "\t" ${describer} ${number} "original" "Human" >>  /project2/gilad/briana/Comparative_APA/data/DiffSplice_liftedJunc/JuncNums.txt
done
#reverse
for i in $(ls /project2/gilad/briana/Comparative_APA/Human/data/RNAseq/sort/*.bam.junc.2Chimp)
do
describer=$(echo ${i} cut -d/ -f 9 | cut -d- -f 4)
number=$(wc -l < $i)
echo -e "\t" ${describer} ${number} "ForwardLift" "Human" >>  /project2/gilad/briana/Comparative_APA/data/DiffSplice_liftedJunc/JuncNums.txt
done
#chimp files
#original

for i in $(ls /project2/gilad/briana/Comparative_APA/Chimp/data/RNAseq/sort/*.bam.junc)
do
describer=$(echo ${i} cut -d/ -f 9 | cut -d- -f 4)
number=$(wc -l < $i)
echo -e "\t" ${describer} ${number} "original" "Chimp" >>  /project2/gilad/briana/Comparative_APA/data/DiffSplice_liftedJunc/JuncNums.txt
done
#reverse
for i in $(ls /project2/gilad/briana/Comparative_APA/Chimp/data/RNAseq/sort/*.bam.junc.2Human)
do
describer=$(echo ${i} cut -d/ -f 9 | cut -d- -f 4)
number=$(wc -l < $i)
echo -e "\t" ${describer} ${number} "ForwardLift" "Chimp" >>  /project2/gilad/briana/Comparative_APA/data/DiffSplice_liftedJunc/JuncNums.txt
done

Next I need to make sure everything lifts back to the same place.

I will write an R script that takes both files and inner joins to the same locations. I need the original and the final lift.

sbatch runCheckReverseLift.sh

Evaluate results:


for i in $(ls /project2/gilad/briana/Comparative_APA/Human/data/RNAseq/sort/*.SamePlace)
do
describer=$(echo ${i} cut -d/ -f 9 | cut -d- -f 4)
number=$(wc -l < $i)
echo -e "\t" ${describer} ${number} "SamePlace" "Human" >>  /project2/gilad/briana/Comparative_APA/data/DiffSplice_liftedJunc/JuncNums.txt
done

for i in $(ls /project2/gilad/briana/Comparative_APA/Chimp/data/RNAseq/sort/*.SamePlace)
do
describer=$(echo ${i} cut -d/ -f 9 | cut -d- -f 4)
number=$(wc -l < $i)
echo -e "\t" ${describer} ${number} "SamePlace" "Chimp" >>  /project2/gilad/briana/Comparative_APA/data/DiffSplice_liftedJunc/JuncNums.txt
done
liftStats=read.table("../data/DiffSplice_liftedJunc/JuncNums.txt", col.names = c("line", "Njunc","File", "Species"),stringsAsFactors = F)
#spread by line
liftStatsSpread= liftStats %>% spread(key="File", value="Njunc") %>% mutate(PercLift=ForwardLift/original, PercSame=SamePlace/original)

ggplot(liftStatsSpread, aes(x=line, fill=Species, y=PercSame)) + geom_bar(stat="identity")+geom_text(aes(label=round(PercSame,3)), vjust=1.6, color="black") + labs(title="Proportion of Junctions Passing reciprocal liftover")

Lift the passing chimps to human:

sbatch LiftFinalChimpJunc2Human.sh

I need to write a script that fixes the lifted files. I need to make column 9 255,0,0 and remove the commas from the last 2 columns.

I can impliment the fix in the filter file.

sbatch runFilterNumChroms.sh

Make clusters:

juncfiles=read.table("../data/DiffSplice_liftedJunc/BothSpec_juncfiles.txt", header = F)
humanFiles=juncfiles %>% slice(1:6)
write.table(humanFiles, "../data/DiffSplice_liftedJunc/Human_juncfiles.txt", quote = F, col.names = F, row.names = F)
chimpFiles=juncfiles %>% slice(7:12)
write.table(chimpFiles, "../data/DiffSplice_liftedJunc/Chimp_juncfiles.txt", quote = F, col.names = F, row.names = F)
sbatch quantJunc.sh

Now I can merge all of the culsters with: /project2/yangili1/yangili/leafcutter_scripts/merge_leafcutter_clusters.py

sbatch MergeClusters.sh
sbatch QuantMergedClusters.sh
gunzip ../data/DiffSplice_liftedJunc/MergeCombined_perind_numers.counts.gz

Make the sample list:

combinedCounts=read.table("../data/DiffSplice_liftedJunc/MergeCombined_perind_numers.counts", header=T)
x=colnames(combinedCounts)
#YG-BM-S8-18499H-Total_S8_R1_001-sort.bam
indiv=as.data.frame(x)  %>%  separate(x, into=c("yg", "bm","lane", "sample", "total",  "sort", "bam"), sep="[.]") %>% mutate(sample=paste(yg, "-", bm, "-", lane, "-", sample, "-", total, "-", sort, ".", bam, sep="")) %>% dplyr::select(sample) %>%  mutate(Species=ifelse(grepl("H",sample), "Human", "Chimp"))


write.table(indiv, "../data/DiffSplice_liftedJunc/groups_file.txt", quote = F, col.names = F, row.names = F, sep = "\t")

fix to -Total instead of .Total

counts=read.table('../data/DiffSplice_liftedJunc/MergeCombined_perind_numers.counts', header=T, check.names = F)
meta=read.table("../data/DiffSplice_liftedJunc/groups_file.txt", header=F, stringsAsFactors = F)
colnames(meta)[1:2]=c("sample","group")
counts=counts[,meta$sample]
#rownames(counts)
gzip ../data/DiffSplice_liftedJunc/MergeCombined_perind_numers.counts

I am going to write a python work around to change the cluster format. This will take the unziped version of the counts file. When I run it, I can unzip and zip the results in the bash script.


sbatch RunFixLeafCluster.sh

sbatch DiffSplice.sh

There are either not enough samples or min coverage problems. Let me compare these to the numbers.

results=read.table("../data/DiffSplice_liftedJunc/MergedRes_cluster_significance.txt",stringsAsFactors = F, header = T, sep="\t") %>% separate(cluster, into=c("chrom", "clus"),sep=":") %>% filter(status=="Success") 
results$p.adjust=as.numeric(as.character(results$p.adjust))

results %>% filter(p.adjust < .05 ) %>% nrow()
[1] 2221
results_sig= results %>% filter(p.adjust < .05 )
qqplot(-log10(runif(nrow(results))), -log10(results$p.adjust),ylab="-log10 Total Adjusted Leafcutter pvalue", xlab="-log 10 Uniform expectation", main="Human Chimp differential splicing")
abline(0,1)

Version Author Date
2fbf2d4 brimittleman 2019-12-02
9b73cff brimittleman 2019-11-18
effectsize=read.table("../data/DiffSplice_liftedJunc/MergedRes_effect_sizes.txt", stringsAsFactors = F,header=T)
plot(sort(effectsize$deltapsi), ,main="Human vs Chimp Effect sizes", ylab="Delta PSI", xlab="Cluster Index")

Use the leafcutter tool to visualize

sbatch DiffSplicePlots.sh 

prepare genes:

genes=results_sig %>% arrange(p.adjust) %>% dplyr::select(genes) %>% unique()
nrow(genes)
[1] 1774
write.table(genes, "../data/DiffSplice_liftedJunc/orderedGenelist.txt", col.names = F, row.names = F, quote = F)

Fixlist:

tr , '\n' < ../data/DiffSplice_liftedJunc/orderedGenelist.txt > ../data/DiffSplice_liftedJunc/orderedGeneListFixed.txt

Build leafviz

sbatch prepareeafvizAnno.sh
sbatch buildLeafviz.sh
#with leafcutter annotation (https://github.com/davidaknowles/leafcutter/blob/master/leafviz/download_human_annotation_codes.sh)
sbatch buildLeafviz_leadAnno.sh
#classify clusters 
sbatch ClassifyLeafviz.sh

Run this from leafviz on my own computer,

Convert juntions to bed to look at in IGV:

sbatch ConvertJunc2Bed.sh

Lift chimp bams to look at in IGV as well.

Pantro5- hg38.

mkdir ../Chimp/data/RNAseq/Sort_hg38
sbatch CrossMapChimpRNA.sh 

Interesting spots: - WSH3p= alt start -RPL22 (NM_000983.3) -RPL38 - chr3:129171277-129171446, NM_001127192.1, CNBP -chr20:46394503-46406548 - ELMO2, NM_001318253.1 - chimp extra exon chr10:79814716-79826198


sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] reshape2_1.4.3  forcats_0.3.0   stringr_1.3.1   dplyr_0.8.0.1  
 [5] purrr_0.3.2     readr_1.3.1     tidyr_0.8.3     tibble_2.1.1   
 [9] ggplot2_3.1.1   tidyverse_1.2.1

loaded via a namespace (and not attached):
 [1] tidyselect_0.2.5 haven_1.1.2      lattice_0.20-38  colorspace_1.3-2
 [5] generics_0.0.2   htmltools_0.3.6  yaml_2.2.0       rlang_0.4.0     
 [9] later_0.7.5      pillar_1.3.1     glue_1.3.0       withr_2.1.2     
[13] modelr_0.1.2     readxl_1.1.0     plyr_1.8.4       munsell_0.5.0   
[17] gtable_0.2.0     workflowr_1.5.0  cellranger_1.1.0 rvest_0.3.2     
[21] evaluate_0.12    labeling_0.3     knitr_1.20       httpuv_1.4.5    
[25] broom_0.5.1      Rcpp_1.0.2       promises_1.0.1   scales_1.0.0    
[29] backports_1.1.2  jsonlite_1.6     fs_1.3.1         hms_0.4.2       
[33] digest_0.6.18    stringi_1.2.4    grid_3.5.1       rprojroot_1.3-2 
[37] cli_1.1.0        tools_3.5.1      magrittr_1.5     lazyeval_0.2.1  
[41] crayon_1.3.4     whisker_0.3-2    pkgconfig_2.0.2  xml2_1.2.0      
[45] lubridate_1.7.4  assertthat_0.2.0 rmarkdown_1.10   httr_1.3.1      
[49] rstudioapi_0.10  R6_2.3.0         nlme_3.1-137     git2r_0.26.1    
[53] compiler_3.5.1