Last updated: 2020-01-21

Checks: 7 0

Knit directory: Comparative_APA/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.5.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190902) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    code/chimp_log/
    Ignored:    code/human_log/
    Ignored:    data/.DS_Store
    Ignored:    data/metadata_HCpanel.txt.sb-a5794dd2-i594qs/

Untracked files:
    Untracked:  ._.DS_Store
    Untracked:  Chimp/
    Untracked:  Human/
    Untracked:  analysis/CrossChimpThreePrime.Rmd
    Untracked:  analysis/DiffTransProtvsExpression.Rmd
    Untracked:  analysis/assessReadQual.Rmd
    Untracked:  analysis/diffExpressionPantro6.Rmd
    Untracked:  code/._ClassifyLeafviz.sh
    Untracked:  code/._Config_chimp.yaml
    Untracked:  code/._Config_chimp_full.yaml
    Untracked:  code/._Config_human.yaml
    Untracked:  code/._ConvertJunc2Bed.sh
    Untracked:  code/._CountNucleotides.py
    Untracked:  code/._CrossMapChimpRNA.sh
    Untracked:  code/._CrossMapThreeprime.sh
    Untracked:  code/._DiffSplice.sh
    Untracked:  code/._DiffSplicePlots.sh
    Untracked:  code/._DiffSplicePlots_gencode.sh
    Untracked:  code/._DiffSplice_gencode.sh
    Untracked:  code/._DiffSplice_removebad.sh
    Untracked:  code/._FindIntronForDomPAS.sh
    Untracked:  code/._GetMAPQscore.py
    Untracked:  code/._GetSecondaryMap.py
    Untracked:  code/._Lift5perPAS.sh
    Untracked:  code/._LiftFinalChimpJunc2Human.sh
    Untracked:  code/._LiftOrthoPAS2chimp.sh
    Untracked:  code/._MapBadSamples.sh
    Untracked:  code/._PAS_ATTAAA.sh
    Untracked:  code/._PASsequences.sh
    Untracked:  code/._PlotNuclearUsagebySpecies.R
    Untracked:  code/._QuantMergedClusters.sh
    Untracked:  code/._ReverseLiftFilter.R
    Untracked:  code/._RunFixLeafCluster.sh
    Untracked:  code/._RunNegMCMediation.sh
    Untracked:  code/._Snakefile
    Untracked:  code/._SnakefilePAS
    Untracked:  code/._SnakefilePASfilt
    Untracked:  code/._SortIndexBadSamples.sh
    Untracked:  code/._bed215upbed.py
    Untracked:  code/._bed2SAF_gen.py
    Untracked:  code/._buildIndecpantro5
    Untracked:  code/._buildIndecpantro5.sh
    Untracked:  code/._buildLeafviz.sh
    Untracked:  code/._buildLeafviz_leadAnno.sh
    Untracked:  code/._buildStarIndex.sh
    Untracked:  code/._chimpChromprder.sh
    Untracked:  code/._cleanbed2saf.py
    Untracked:  code/._cluster.json
    Untracked:  code/._cluster2bed.py
    Untracked:  code/._clusterLiftReverse.sh
    Untracked:  code/._clusterLiftReverse_removebad.sh
    Untracked:  code/._clusterLiftprimary.sh
    Untracked:  code/._clusterLiftprimary_removebad.sh
    Untracked:  code/._converBam2Junc.sh
    Untracked:  code/._converBam2Junc_removeBad.sh
    Untracked:  code/._extraSnakefiltpas
    Untracked:  code/._filter5percPAS.py
    Untracked:  code/._filterNumChroms.py
    Untracked:  code/._filterPASforMP.py
    Untracked:  code/._filterPostLift.py
    Untracked:  code/._fixExonFC.py
    Untracked:  code/._fixLeafCluster.py
    Untracked:  code/._fixLiftedJunc.py
    Untracked:  code/._fixUTRexonanno.py
    Untracked:  code/._formathg38Anno.py
    Untracked:  code/._formatpantro6Anno.py
    Untracked:  code/._getRNAseqMapStats.sh
    Untracked:  code/._hg19MapStats.sh
    Untracked:  code/._humanChromorder.sh
    Untracked:  code/._intersectLiftedPAS.sh
    Untracked:  code/._liftJunctionFiles.sh
    Untracked:  code/._liftPAS19to38.sh
    Untracked:  code/._liftedchimpJunc2human.sh
    Untracked:  code/._makeNuclearDapaplots.sh
    Untracked:  code/._makeSamplyGroupsHuman_TvN.py
    Untracked:  code/._mapRNAseqhg19.sh
    Untracked:  code/._mapRNAseqhg19_newPipeline.sh
    Untracked:  code/._maphg19.sh
    Untracked:  code/._maphg19_subjunc.sh
    Untracked:  code/._mediation_test.R
    Untracked:  code/._mergeChimp3prime_inhg38.sh
    Untracked:  code/._mergedBam2BW.sh
    Untracked:  code/._nameClusters.py
    Untracked:  code/._negativeMediation_montecarlo.R
    Untracked:  code/._numMultimap.py
    Untracked:  code/._overlapapaQTLPAS.sh
    Untracked:  code/._prepareCleanLiftedFC_5perc4LC.py
    Untracked:  code/._prepareLeafvizAnno.sh
    Untracked:  code/._preparePAS4lift.py
    Untracked:  code/._primaryLift.sh
    Untracked:  code/._processhg38exons.py
    Untracked:  code/._quantJunc.sh
    Untracked:  code/._quantJunc_TEST.sh
    Untracked:  code/._quantJunc_removeBad.sh
    Untracked:  code/._quantMerged_seperatly.sh
    Untracked:  code/._recLiftchim2human.sh
    Untracked:  code/._revLiftPAShg38to19.sh
    Untracked:  code/._reverseLift.sh
    Untracked:  code/._runCheckReverseLift.sh
    Untracked:  code/._runChimpDiffIso.sh
    Untracked:  code/._runCountNucleotides.sh
    Untracked:  code/._runFilterNumChroms.sh
    Untracked:  code/._runHumanDiffIso.sh
    Untracked:  code/._runNuclearDifffIso.sh
    Untracked:  code/._runTotalDiffIso.sh
    Untracked:  code/._run_chimpverifybam.sh
    Untracked:  code/._run_verifyBam.sh
    Untracked:  code/._snakemake.batch
    Untracked:  code/._snakemakePAS.batch
    Untracked:  code/._snakemakePASchimp.batch
    Untracked:  code/._snakemakePAShuman.batch
    Untracked:  code/._snakemake_chimp.batch
    Untracked:  code/._snakemake_human.batch
    Untracked:  code/._snakemakefiltPAS.batch
    Untracked:  code/._snakemakefiltPAS_chimp
    Untracked:  code/._snakemakefiltPAS_chimp.sh
    Untracked:  code/._snakemakefiltPAS_human.sh
    Untracked:  code/._submit-snakemake-chimp.sh
    Untracked:  code/._submit-snakemake-human.sh
    Untracked:  code/._submit-snakemakePAS-chimp.sh
    Untracked:  code/._submit-snakemakePAS-human.sh
    Untracked:  code/._submit-snakemakefiltPAS-chimp.sh
    Untracked:  code/._submit-snakemakefiltPAS-human.sh
    Untracked:  code/._subset_diffisopheno_Nuclear_HvC.py
    Untracked:  code/._subset_diffisopheno_Total_HvC.py
    Untracked:  code/._threeprimeOrthoFC.sh
    Untracked:  code/._transcriptDTplotsNuclear.sh
    Untracked:  code/._verifyBam4973.sh
    Untracked:  code/._verifyBam4973inHuman.sh
    Untracked:  code/._wrap_chimpverifybam.sh
    Untracked:  code/._wrap_verifyBam.sh
    Untracked:  code/._writeMergecode.py
    Untracked:  code/.snakemake/
    Untracked:  code/ClassifyLeafviz.sh
    Untracked:  code/Config_chimp.yaml
    Untracked:  code/Config_chimp_full.yaml
    Untracked:  code/Config_human.yaml
    Untracked:  code/ConvertJunc2Bed.err
    Untracked:  code/ConvertJunc2Bed.out
    Untracked:  code/ConvertJunc2Bed.sh
    Untracked:  code/CountNucleotides.py
    Untracked:  code/CrossMapChimpRNA.sh
    Untracked:  code/CrossMapThreeprime.sh
    Untracked:  code/CrossmapChimp3prime.err
    Untracked:  code/CrossmapChimp3prime.out
    Untracked:  code/CrossmapChimpRNA.err
    Untracked:  code/CrossmapChimpRNA.out
    Untracked:  code/DiffSplice.err
    Untracked:  code/DiffSplice.out
    Untracked:  code/DiffSplice.sh
    Untracked:  code/DiffSplicePlots.err
    Untracked:  code/DiffSplicePlots.out
    Untracked:  code/DiffSplicePlots.sh
    Untracked:  code/DiffSplicePlots_gencode.sh
    Untracked:  code/DiffSplice_gencode.sh
    Untracked:  code/DiffSplice_removebad.err
    Untracked:  code/DiffSplice_removebad.out
    Untracked:  code/DiffSplice_removebad.sh
    Untracked:  code/FilterReverseLift.err
    Untracked:  code/FilterReverseLift.out
    Untracked:  code/FindIntronForDomPAS.err
    Untracked:  code/FindIntronForDomPAS.out
    Untracked:  code/FindIntronForDomPAS.sh
    Untracked:  code/GencodeDiffSplice.err
    Untracked:  code/GencodeDiffSplice.out
    Untracked:  code/GetMAPQscore.py
    Untracked:  code/GetSecondaryMap.py
    Untracked:  code/HchromOrder.err
    Untracked:  code/HchromOrder.out
    Untracked:  code/JunctionLift.err
    Untracked:  code/JunctionLift.out
    Untracked:  code/JunctionLiftFinalChimp.err
    Untracked:  code/JunctionLiftFinalChimp.out
    Untracked:  code/Lift5perPAS.sh
    Untracked:  code/Lift5perPASbed.err
    Untracked:  code/Lift5perPASbed.out
    Untracked:  code/LiftClustersFirst.err
    Untracked:  code/LiftClustersFirst.out
    Untracked:  code/LiftClustersFirst_remove.err
    Untracked:  code/LiftClustersFirst_remove.out
    Untracked:  code/LiftClustersSecond.err
    Untracked:  code/LiftClustersSecond.out
    Untracked:  code/LiftClustersSecond_remove.err
    Untracked:  code/LiftClustersSecond_remove.out
    Untracked:  code/LiftFinalChimpJunc2Human.sh
    Untracked:  code/LiftOrthoPAS2chimp.sh
    Untracked:  code/LiftorthoPAS.err
    Untracked:  code/LiftorthoPASt.out
    Untracked:  code/Log.out
    Untracked:  code/MapBadSamples.err
    Untracked:  code/MapBadSamples.out
    Untracked:  code/MapBadSamples.sh
    Untracked:  code/MapStats.err
    Untracked:  code/MapStats.out
    Untracked:  code/MergeClusters.err
    Untracked:  code/MergeClusters.out
    Untracked:  code/MergeClusters.sh
    Untracked:  code/PAS_ATTAAA.err
    Untracked:  code/PAS_ATTAAA.out
    Untracked:  code/PAS_ATTAAA.sh
    Untracked:  code/PAS_sequence.err
    Untracked:  code/PAS_sequence.out
    Untracked:  code/PASsequences.sh
    Untracked:  code/PlotNuclearUsagebySpecies.R
    Untracked:  code/QuantMergeClusters
    Untracked:  code/QuantMergeClusters.err
    Untracked:  code/QuantMergeClusters.out
    Untracked:  code/QuantMergedClusters.sh
    Untracked:  code/Rev_liftoverPAShg19to38.err
    Untracked:  code/Rev_liftoverPAShg19to38.out
    Untracked:  code/ReverseLiftFilter.R
    Untracked:  code/RunFixCluster.err
    Untracked:  code/RunFixCluster.out
    Untracked:  code/RunFixLeafCluster.sh
    Untracked:  code/RunNegMCMediation.err
    Untracked:  code/RunNegMCMediation.sh
    Untracked:  code/RunNegMCMediationr.out
    Untracked:  code/RunPosMCMediation.err
    Untracked:  code/RunPosMCMediation.sh
    Untracked:  code/RunPosMCMediationr.out
    Untracked:  code/SAF215upbed_gen.py
    Untracked:  code/Snakefile
    Untracked:  code/SnakefilePAS
    Untracked:  code/SnakefilePASfilt
    Untracked:  code/SortIndexBadSamples.err
    Untracked:  code/SortIndexBadSamples.out
    Untracked:  code/SortIndexBadSamples.sh
    Untracked:  code/TotalTranscriptDTplot.err
    Untracked:  code/TotalTranscriptDTplot.out
    Untracked:  code/Upstream10Bases_general.py
    Untracked:  code/apaQTLsnake.err
    Untracked:  code/apaQTLsnake.out
    Untracked:  code/apaQTLsnakePAS.err
    Untracked:  code/apaQTLsnakePAS.out
    Untracked:  code/apaQTLsnakePAShuman.err
    Untracked:  code/bam2junc.err
    Untracked:  code/bam2junc.out
    Untracked:  code/bam2junc_remove.err
    Untracked:  code/bam2junc_remove.out
    Untracked:  code/bed215upbed.py
    Untracked:  code/bed2SAF_gen.py
    Untracked:  code/bed2saf.py
    Untracked:  code/bg_to_cov.py
    Untracked:  code/buildIndecpantro5
    Untracked:  code/buildIndecpantro5.sh
    Untracked:  code/buildLeafviz.err
    Untracked:  code/buildLeafviz.out
    Untracked:  code/buildLeafviz.sh
    Untracked:  code/buildLeafviz_leadAnno.sh
    Untracked:  code/buildLeafviz_leafanno.err
    Untracked:  code/buildLeafviz_leafanno.out
    Untracked:  code/buildStarIndex.sh
    Untracked:  code/callPeaksYL.py
    Untracked:  code/chimpChromprder.sh
    Untracked:  code/chooseAnno2Bed.py
    Untracked:  code/chooseAnno2SAF.py
    Untracked:  code/chromOrder.err
    Untracked:  code/chromOrder.out
    Untracked:  code/classifyLeafviz.err
    Untracked:  code/classifyLeafviz.out
    Untracked:  code/cleanbed2saf.py
    Untracked:  code/cluster.json
    Untracked:  code/cluster2bed.py
    Untracked:  code/clusterLiftReverse.sh
    Untracked:  code/clusterLiftReverse_removebad.sh
    Untracked:  code/clusterLiftprimary.sh
    Untracked:  code/clusterLiftprimary_removebad.sh
    Untracked:  code/clusterPAS.json
    Untracked:  code/clusterfiltPAS.json
    Untracked:  code/comands2Mege.sh
    Untracked:  code/converBam2Junc.sh
    Untracked:  code/converBam2Junc_removeBad.sh
    Untracked:  code/convertNumeric.py
    Untracked:  code/environment.yaml
    Untracked:  code/extraSnakefiltpas
    Untracked:  code/filter5perc.R
    Untracked:  code/filter5percPAS.py
    Untracked:  code/filter5percPheno.py
    Untracked:  code/filterBamforMP.pysam2_gen.py
    Untracked:  code/filterJuncChroms.err
    Untracked:  code/filterJuncChroms.out
    Untracked:  code/filterMissprimingInNuc10_gen.py
    Untracked:  code/filterNumChroms.py
    Untracked:  code/filterPASforMP.py
    Untracked:  code/filterPostLift.py
    Untracked:  code/filterSAFforMP_gen.py
    Untracked:  code/filterSortBedbyCleanedBed_gen.R
    Untracked:  code/filterpeaks.py
    Untracked:  code/fixExonFC.py
    Untracked:  code/fixFChead.py
    Untracked:  code/fixFChead_bothfrac.py
    Untracked:  code/fixLeafCluster.py
    Untracked:  code/fixLiftedJunc.py
    Untracked:  code/fixUTRexonanno.py
    Untracked:  code/formathg38Anno.py
    Untracked:  code/generateStarIndex.err
    Untracked:  code/generateStarIndex.out
    Untracked:  code/generateStarIndexHuman.err
    Untracked:  code/generateStarIndexHuman.out
    Untracked:  code/getRNAseqMapStats.sh
    Untracked:  code/hg19MapStats.err
    Untracked:  code/hg19MapStats.out
    Untracked:  code/hg19MapStats.sh
    Untracked:  code/humanChromorder.sh
    Untracked:  code/humanFiles
    Untracked:  code/intersectAnno.err
    Untracked:  code/intersectAnno.out
    Untracked:  code/intersectAnnoExt.err
    Untracked:  code/intersectAnnoExt.out
    Untracked:  code/intersectLiftedPAS.sh
    Untracked:  code/leafcutter_merge_regtools_redo.py
    Untracked:  code/liftJunctionFiles.sh
    Untracked:  code/liftPAS19to38.sh
    Untracked:  code/liftoverPAShg19to38.err
    Untracked:  code/liftoverPAShg19to38.out
    Untracked:  code/log/
    Untracked:  code/make5percPeakbed.py
    Untracked:  code/makeFileID.py
    Untracked:  code/makeNuclearDapaplots.sh
    Untracked:  code/makeNuclearPlots.err
    Untracked:  code/makeNuclearPlots.out
    Untracked:  code/makePheno.py
    Untracked:  code/makeSamplyGroupsChimp_TvN.py
    Untracked:  code/makeSamplyGroupsHuman_TvN.py
    Untracked:  code/mapRNAseqhg19.sh
    Untracked:  code/mapRNAseqhg19_newPipeline.sh
    Untracked:  code/maphg19.err
    Untracked:  code/maphg19.out
    Untracked:  code/maphg19.sh
    Untracked:  code/maphg19_new.err
    Untracked:  code/maphg19_new.out
    Untracked:  code/maphg19_sub.err
    Untracked:  code/maphg19_sub.out
    Untracked:  code/maphg19_subjunc.sh
    Untracked:  code/mediation_test.R
    Untracked:  code/merge.err
    Untracked:  code/mergeChimp3prime_inhg38.sh
    Untracked:  code/merge_leafcutter_clusters_redo.py
    Untracked:  code/mergeandsort_ChimpinHuman.err
    Untracked:  code/mergeandsort_ChimpinHuman.out
    Untracked:  code/mergedBam2BW.sh
    Untracked:  code/mergedbam2bw.err
    Untracked:  code/mergedbam2bw.out
    Untracked:  code/nameClusters.py
    Untracked:  code/namePeaks.py
    Untracked:  code/negativeMediation_montecarlo.R
    Untracked:  code/nuclearTranscriptDTplot.err
    Untracked:  code/nuclearTranscriptDTplot.out
    Untracked:  code/numMultimap.py
    Untracked:  code/overlapPAS.err
    Untracked:  code/overlapPAS.out
    Untracked:  code/overlapapaQTLPAS.sh
    Untracked:  code/overlapapaQTLPAS_extended.sh
    Untracked:  code/overlapapaQTLPAS_samples.sh
    Untracked:  code/peak2PAS.py
    Untracked:  code/pheno2countonly.R
    Untracked:  code/postiveMediation_montecarlo.R
    Untracked:  code/prepareAnnoLeafviz.err
    Untracked:  code/prepareAnnoLeafviz.out
    Untracked:  code/prepareCleanLiftedFC_5perc4LC.py
    Untracked:  code/prepareLeafvizAnno.sh
    Untracked:  code/preparePAS4lift.py
    Untracked:  code/prepare_phenotype_table.py
    Untracked:  code/primaryLift.err
    Untracked:  code/primaryLift.out
    Untracked:  code/primaryLift.sh
    Untracked:  code/processhg38exons.py
    Untracked:  code/quantJunc.sh
    Untracked:  code/quantJunc_TEST.sh
    Untracked:  code/quantJunc_removeBad.sh
    Untracked:  code/quantLiftedPAS.err
    Untracked:  code/quantLiftedPAS.out
    Untracked:  code/quantLiftedPAS.sh
    Untracked:  code/quatJunc.err
    Untracked:  code/quatJunc.out
    Untracked:  code/recChimpback2Human.err
    Untracked:  code/recChimpback2Human.out
    Untracked:  code/recLiftchim2human.sh
    Untracked:  code/revLift.err
    Untracked:  code/revLift.out
    Untracked:  code/revLiftPAShg38to19.sh
    Untracked:  code/reverseLift.sh
    Untracked:  code/runCheckReverseLift.sh
    Untracked:  code/runChimpDiffIso.sh
    Untracked:  code/runCountNucleotides.err
    Untracked:  code/runCountNucleotides.out
    Untracked:  code/runCountNucleotides.sh
    Untracked:  code/runCountNucleotidesPantro6.err
    Untracked:  code/runCountNucleotidesPantro6.out
    Untracked:  code/runCountNucleotides_pantro6.sh
    Untracked:  code/runFilterNumChroms.sh
    Untracked:  code/runHumanDiffIso.sh
    Untracked:  code/runNuclearDifffIso.sh
    Untracked:  code/runTotalDiffIso.sh
    Untracked:  code/run_Chimpleafcutter_ds.err
    Untracked:  code/run_Chimpleafcutter_ds.out
    Untracked:  code/run_Chimpverifybam.err
    Untracked:  code/run_Chimpverifybam.out
    Untracked:  code/run_Humanleafcutter_ds.err
    Untracked:  code/run_Humanleafcutter_ds.out
    Untracked:  code/run_Nuclearleafcutter_ds.err
    Untracked:  code/run_Nuclearleafcutter_ds.out
    Untracked:  code/run_Totalleafcutter_ds.err
    Untracked:  code/run_Totalleafcutter_ds.out
    Untracked:  code/run_chimpverifybam.sh
    Untracked:  code/run_verifyBam.sh
    Untracked:  code/run_verifybam.err
    Untracked:  code/run_verifybam.out
    Untracked:  code/slurm-62824013.out
    Untracked:  code/slurm-62825841.out
    Untracked:  code/slurm-62826116.out
    Untracked:  code/slurm-64108209.out
    Untracked:  code/slurm-64108521.out
    Untracked:  code/slurm-64108557.out
    Untracked:  code/snakePASChimp.err
    Untracked:  code/snakePASChimp.out
    Untracked:  code/snakePAShuman.out
    Untracked:  code/snakemake.batch
    Untracked:  code/snakemakeChimp.err
    Untracked:  code/snakemakeChimp.out
    Untracked:  code/snakemakeHuman.err
    Untracked:  code/snakemakeHuman.out
    Untracked:  code/snakemakePAS.batch
    Untracked:  code/snakemakePASFiltChimp.err
    Untracked:  code/snakemakePASFiltChimp.out
    Untracked:  code/snakemakePASFiltHuman.err
    Untracked:  code/snakemakePASFiltHuman.out
    Untracked:  code/snakemakePASchimp.batch
    Untracked:  code/snakemakePAShuman.batch
    Untracked:  code/snakemake_chimp.batch
    Untracked:  code/snakemake_human.batch
    Untracked:  code/snakemakefiltPAS.batch
    Untracked:  code/snakemakefiltPAS_chimp.sh
    Untracked:  code/snakemakefiltPAS_human.sh
    Untracked:  code/submit-snakemake-chimp.sh
    Untracked:  code/submit-snakemake-human.sh
    Untracked:  code/submit-snakemakePAS-chimp.sh
    Untracked:  code/submit-snakemakePAS-human.sh
    Untracked:  code/submit-snakemakefiltPAS-chimp.sh
    Untracked:  code/submit-snakemakefiltPAS-human.sh
    Untracked:  code/subset_diffisopheno.py
    Untracked:  code/subset_diffisopheno_Chimp_tvN.py
    Untracked:  code/subset_diffisopheno_Huma_tvN.py
    Untracked:  code/subset_diffisopheno_Nuclear_HvC.py
    Untracked:  code/subset_diffisopheno_Total_HvC.py
    Untracked:  code/test
    Untracked:  code/threeprimeOrthoFC.out
    Untracked:  code/threeprimeOrthoFC.sh
    Untracked:  code/threeprimeOrthoFCcd.err
    Untracked:  code/transcriptDTplotsNuclear.sh
    Untracked:  code/transcriptDTplotsTotal.sh
    Untracked:  code/verifyBam4973.sh
    Untracked:  code/verifyBam4973inHuman.sh
    Untracked:  code/verifybam4973.err
    Untracked:  code/verifybam4973.out
    Untracked:  code/verifybam4973HumanMap.err
    Untracked:  code/verifybam4973HumanMap.out
    Untracked:  code/wrap_Chimpverifybam.err
    Untracked:  code/wrap_Chimpverifybam.out
    Untracked:  code/wrap_chimpverifybam.sh
    Untracked:  code/wrap_verifyBam.sh
    Untracked:  code/wrap_verifybam.err
    Untracked:  code/wrap_verifybam.out
    Untracked:  code/writeMergecode.py
    Untracked:  data/._.DS_Store
    Untracked:  data/._HC_filenames.txt
    Untracked:  data/._HC_filenames.txt.sb-4426323c-IKIs0S
    Untracked:  data/._HC_filenames.xlsx
    Untracked:  data/._MapPantro6_meta.txt
    Untracked:  data/._MapPantro6_meta.txt.sb-a5794dd2-Cskmlm
    Untracked:  data/._MapPantro6_meta.xlsx
    Untracked:  data/._OppositeSpeciesMap.txt
    Untracked:  data/._OppositeSpeciesMap.txt.sb-a5794dd2-mayWJf
    Untracked:  data/._OppositeSpeciesMap.xlsx
    Untracked:  data/._RNASEQ_metadata.txt
    Untracked:  data/._RNASEQ_metadata.txt.sb-4426323c-TE4ns3
    Untracked:  data/._RNASEQ_metadata.txt.sb-51f67ae1-HXp7Gq
    Untracked:  data/._RNASEQ_metadata_2Removed.txt
    Untracked:  data/._RNASEQ_metadata_2Removed.txt.sb-4426323c-a4lBwx
    Untracked:  data/._RNASEQ_metadata_2Removed.xlsx
    Untracked:  data/._RNASEQ_metadata_stranded.txt
    Untracked:  data/._RNASEQ_metadata_stranded.txt.sb-a5794dd2-D659m2
    Untracked:  data/._RNASEQ_metadata_stranded.txt.sb-a5794dd2-ImNMoY
    Untracked:  data/._RNASEQ_metadata_stranded.txt.sb-e4bf31f0-ZGnGgl
    Untracked:  data/._RNASEQ_metadata_stranded.xlsx
    Untracked:  data/._metadata_HCpanel.txt
    Untracked:  data/._metadata_HCpanel.txt.sb-a3d92a2d-b9cYoF
    Untracked:  data/._metadata_HCpanel.txt.sb-a5794dd2-i594qs
    Untracked:  data/._metadata_HCpanel.txt.sb-f4823d1e-qihGek
    Untracked:  data/._metadata_HCpanel.xlsx
    Untracked:  data/._metadata_HCpanel_frompantro5.xlsx
    Untracked:  data/._~$RNASEQ_metadata.xlsx
    Untracked:  data/._~$metadata_HCpanel.xlsx
    Untracked:  data/._.xlsx
    Untracked:  data/CompapaQTLpas/
    Untracked:  data/DTmatrix/
    Untracked:  data/DiffExpression/
    Untracked:  data/DiffIso_Nuclear/
    Untracked:  data/DiffIso_Total/
    Untracked:  data/DiffSplice/
    Untracked:  data/DiffSplice_liftedJunc/
    Untracked:  data/DiffSplice_removeBad/
    Untracked:  data/DominantPAS/
    Untracked:  data/EvalPantro5/
    Untracked:  data/HC_filenames.txt
    Untracked:  data/HC_filenames.xlsx
    Untracked:  data/Khan_prot/
    Untracked:  data/Li_eqtls/
    Untracked:  data/MapPantro6_meta.txt
    Untracked:  data/MapPantro6_meta.xlsx
    Untracked:  data/MapStats/
    Untracked:  data/NormalizedClusters/
    Untracked:  data/NuclearHvC/
    Untracked:  data/OppositeSpeciesMap.txt
    Untracked:  data/OppositeSpeciesMap.xlsx
    Untracked:  data/OverlapBenchmark/
    Untracked:  data/PAS/
    Untracked:  data/PAS_doubleFilter/
    Untracked:  data/Peaks_5perc/
    Untracked:  data/Pheno_5perc/
    Untracked:  data/Pheno_5perc_nuclear/
    Untracked:  data/Pheno_5perc_nuclear_old/
    Untracked:  data/Pheno_5perc_total/
    Untracked:  data/RNASEQ_metadata.txt
    Untracked:  data/RNASEQ_metadata_2Removed.txt
    Untracked:  data/RNASEQ_metadata_2Removed.xlsx
    Untracked:  data/RNASEQ_metadata_stranded.txt
    Untracked:  data/RNASEQ_metadata_stranded.txt.sb-e4bf31f0-ZGnGgl/
    Untracked:  data/RNASEQ_metadata_stranded.xlsx
    Untracked:  data/SignalSites/
    Untracked:  data/Threeprime2Ortho/
    Untracked:  data/TotalHvC/
    Untracked:  data/TwoBadSampleAnalysis/
    Untracked:  data/Wang_ribo/
    Untracked:  data/apaQTLGenes/
    Untracked:  data/chainFiles/
    Untracked:  data/cleanPeaks_anno/
    Untracked:  data/cleanPeaks_byspecies/
    Untracked:  data/cleanPeaks_lifted/
    Untracked:  data/files4viz_nuclear/
    Untracked:  data/leafviz/
    Untracked:  data/liftover_files/
    Untracked:  data/mediation/
    Untracked:  data/metadata_HCpanel.txt
    Untracked:  data/metadata_HCpanel.xlsx
    Untracked:  data/metadata_HCpanel_frompantro5.txt
    Untracked:  data/metadata_HCpanel_frompantro5.xlsx
    Untracked:  data/primaryLift/
    Untracked:  data/reverseLift/
    Untracked:  data/~$RNASEQ_metadata.xlsx
    Untracked:  data/~$metadata_HCpanel.xlsx
    Untracked:  data/.xlsx
    Untracked:  output/dtPlots/
    Untracked:  projectNotes.Rmd

Unstaged changes:
    Modified:   analysis/OppositeMap.Rmd
    Modified:   analysis/annotationInfo.Rmd
    Modified:   analysis/comp2apaQTLPAS.Rmd
    Modified:   analysis/correlationPhenos.Rmd
    Modified:   analysis/index.Rmd
    Modified:   analysis/investigatePantro5.Rmd
    Modified:   analysis/multiMap.Rmd
    Modified:   analysis/speciesSpecific.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd 3ef9947 brimittleman 2020-01-21 write out dobule filtered
html a9924fb brimittleman 2020-01-21 Build site.
html 42c66a9 brimittleman 2020-01-21 Build site.
Rmd c27674c brimittleman 2020-01-21 remove disc in chimp
html c211e21 brimittleman 2020-01-18 Build site.
Rmd 7a9f608 brimittleman 2020-01-18 finished benchmark
html 0c14f51 brimittleman 2020-01-17 Build site.
Rmd 11b26b4 brimittleman 2020-01-17 add benchmark res
html 9024e86 brimittleman 2020-01-17 Build site.
Rmd 6c72627 brimittleman 2020-01-17 add code to make sample APS
html 5eef3eb brimittleman 2020-01-16 Build site.
Rmd 5c24c0c brimittleman 2020-01-16 add cutoff code files

library(tidyverse)
── Attaching packages ─────────────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.1.1       ✔ purrr   0.3.2  
✔ tibble  2.1.1       ✔ dplyr   0.8.0.1
✔ tidyr   0.8.3       ✔ stringr 1.3.1  
✔ readr   1.3.1       ✔ forcats 0.3.0  
── Conflicts ────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
library(cowplot)

Attaching package: 'cowplot'
The following object is masked from 'package:ggplot2':

    ggsave

In this analyisis I will chose the 3 sets of 6 individuals randomly from my previous study to use for a benchmark analysis.

I will need to rerun the snakefile each time.

indiv=read.table("../../apaQTL/data/MetaDataSequencing.txt", header= T, stringsAsFactors = F) %>% dplyr::select(line) %>% unique()
mkdir ../data/OverlapBenchmark

Randomly choose 3 sets:

#sample1= sample(indiv$line, 6)
#sample2= sample(indiv$line, 6)
#sample3= sample(indiv$line, 6)

#save(sample1, sample2,sample3, file = "../data/OverlapBenchmark/samples.RData")


load("../data/OverlapBenchmark/samples.RData")
sample1
[1] "NA19144" "NA18508" "NA18858" "NA19239" "NA18504" "NA19119"
sample2
[1] "NA18522" "NA18516" "NA18504" "NA19119" "NA19131" "NA19137"
sample3
[1] "NA19131" "NA18486" "NA19210" "NA19223" "NA19092" "NA19200"
mkdir ../../PAS_Sample1
mkdir ../../PAS_Sample1/code
mkdir ../../PAS_Sample1/data
mkdir ../../PAS_Sample1/data/fastq

mkdir ../../PAS_Sample2
mkdir ../../PAS_Sample2/code
mkdir ../../PAS_Sample2/data
mkdir ../../PAS_Sample2/data/fastq


mkdir ../../PAS_Sample3/
mkdir ../../PAS_Sample3/code/
mkdir ../../PAS_Sample3/data/
mkdir ../../PAS_Sample3/data/fastq

Move over these fastq files.

I will also move the necessary snakefile and run files.

Next steps:

mkdir ../data/cleanPeaks_anno
bedtools map -a ../data/cleanPeaks/human_APApeaks.ALLChrom.Filtered.Named.Cleaned.bed -b  /project2/gilad/briana/genome_anotation_data/hg38_refseq_anno/hg38_ncbiRefseq_Formatted_Allannotation.sort.bed -c 4 -S -o distinct > ../data/cleanPeaks_anno/AllPAS_postLift.sort_LocAnno.bed 

python chooseAnno2Bed.py ../data/cleanPeaks_anno/AllPAS_postLift.sort_LocAnno.bed  ../data/cleanPeaks_anno/AllPAS_postLift.sort_LocAnnoPARSED.bed

python bed2SAF_gen.py ../data/cleanPeaks_anno/AllPAS_postLift.sort_LocAnnoPARSED.bed  ../data/cleanPeaks_anno/AllPAS_postLift.sort_LocAnnoPARSED.SAF

mkdir  ../data/CleanLiftedPeaks_FC/

sbatch quantLiftedPAS.sh 


###
python fixFChead_bothfrac.py ../data/CleanLiftedPeaks_FC/ALLPAS_postLift_LocParsed_Human ../data/CleanLiftedPeaks_FC/ALLPAS_postLift_LocParsed_Human_fixed.fc


python makeFileID.py ../data/CleanLiftedPeaks_FC/ALLPAS_postLift_LocParsed_Human ../data/CleanLiftedPeaks_FC/HumanFileID.txt


mkdir ../data/phenotype/

python makePheno.py  ../data/CleanLiftedPeaks_FC/ALLPAS_postLift_LocParsed_Human_fixed.fc ../data/CleanLiftedPeaks_FC/HumanFileID.txt ../data/phenotype/ALLPAS_postLift_LocParsed_Human_Pheno.txt

Rscript pheno2countonly.R -I ../data/phenotype/ALLPAS_postLift_LocParsed_Human_Pheno.txt -O ../data/phenotype/ALLPAS_postLift_LocParsed_Human_Pheno_countOnly.txt

python convertNumeric.py ../data/phenotype/ALLPAS_postLift_LocParsed_Human_Pheno_countOnly.txt ../data/phenotype/ALLPAS_postLift_LocParsed_Human_Pheno_countOnlyNumeric.txt

Pull these in, pull just the nuclear and get the mean:

Sample 1

Sample1Anno=read.table("../../PAS_Sample1/data/phenotype/ALLPAS_postLift_LocParsed_Human_Pheno.txt", header = T, stringsAsFactors = F) %>% tidyr::separate(chrom, sep = ":", into = c("start1", "start", "end", "id")) %>% tidyr::separate(id, sep="_", into=c("gene", "strand", "peak"))  %>% separate(peak,into=c("loc", "PAS","chr"), sep="-")

Sample1Ind=colnames(Sample1Anno)[9:ncol(Sample1Anno)]

Sample1Usage=read.table("../../PAS_Sample1/data/phenotype/ALLPAS_postLift_LocParsed_Human_Pheno_countOnlyNumeric.txt", col.names = Sample1Ind) %>% dplyr::select(contains("_N")) 

Sample1All=as.data.frame(cbind(cbind(Sample1Anno[,1:8], Sample1=rowMeans(Sample1Usage))))

Sample 2:

Sample2Anno=read.table("../../PAS_Sample2/data/phenotype/ALLPAS_postLift_LocParsed_Human_Pheno.txt", header = T, stringsAsFactors = F) %>% tidyr::separate(chrom, sep = ":", into = c("start1", "start", "end", "id")) %>% tidyr::separate(id, sep="_", into=c("gene", "strand", "peak"))  %>% separate(peak,into=c("loc", "PAS","chr"), sep="-")

Sample2Ind=colnames(Sample2Anno)[9:ncol(Sample2Anno)]

Sample2Usage=read.table("../../PAS_Sample2/data/phenotype/ALLPAS_postLift_LocParsed_Human_Pheno_countOnlyNumeric.txt", col.names = Sample2Ind) %>% dplyr::select(contains("_N")) 

Sample2All=as.data.frame(cbind(cbind(Sample2Anno[,1:8], Sample2=rowMeans(Sample2Usage))))

Sample 3

Sample3Anno=read.table("../../PAS_Sample3/data/phenotype/ALLPAS_postLift_LocParsed_Human_Pheno.txt", header = T, stringsAsFactors = F) %>% tidyr::separate(chrom, sep = ":", into = c("start1", "start", "end", "id")) %>% tidyr::separate(id, sep="_", into=c("gene", "strand", "peak"))  %>% separate(peak,into=c("loc", "PAS","chr"), sep="-")

Sample3Ind=colnames(Sample3Anno)[9:ncol(Sample3Anno)]

Sample3Usage=read.table("../../PAS_Sample3/data/phenotype/ALLPAS_postLift_LocParsed_Human_Pheno_countOnlyNumeric.txt", col.names = Sample3Ind) %>% dplyr::select(contains("_N")) 

Sample3All=as.data.frame(cbind(cbind(Sample3Anno[,1:8], Sample3=rowMeans(Sample3Usage))))

I need to make a bed file with these to overlap with the original PAS. I want 100 bp on each side of the end. Positive strand (actual negative strand) take

Sample1bed=Sample1All %>% mutate(PASName=paste(gene,PAS, sep="_"),newStart=ifelse(strand=="+", as.integer(start)-100, as.integer(end)-100), newEnd=ifelse(strand=="+",as.integer(start)+100, as.integer(end)+100)) %>%  dplyr::select(chr, newStart, newEnd, PASName, Sample1, strand)

#write.table(Sample1bed,"../data/OverlapBenchmark/sample1PAS.bed", col.names = F, row.names = F, sep="\t", quote = F )

Sample2bed=Sample2All %>% mutate(PASName=paste(gene,PAS, sep="_"),newStart=ifelse(strand=="+", as.integer(start)-100, as.integer(end)-100), newEnd=ifelse(strand=="+",as.integer(start)+100, as.integer(end)+100)) %>%  dplyr::select(chr, newStart, newEnd, PASName, Sample2, strand)

#write.table(Sample2bed,"../data/OverlapBenchmark/sample2PAS.bed", col.names = F, row.names = F, sep="\t", quote = F )

Sample3bed=Sample3All %>% mutate(PASName=paste(gene,PAS, sep="_"),newStart=ifelse(strand=="+", as.integer(start)-100, as.integer(end)-100), newEnd=ifelse(strand=="+",as.integer(start)+100, as.integer(end)+100)) %>%  dplyr::select(chr, newStart, newEnd, PASName, Sample3, strand)

#write.table(Sample3bed,"../data/OverlapBenchmark/sample3PAS.bed", col.names = F, row.names = F, sep="\t", quote = F )
sort -k1,1 -k2,2n ../data/OverlapBenchmark/sample1PAS.bed > ../data/OverlapBenchmark/sample1PAS_sort.bed

sort -k1,1 -k2,2n ../data/OverlapBenchmark/sample2PAS.bed > ../data/OverlapBenchmark/sample2PAS_sort.bed

sort -k1,1 -k2,2n ../data/OverlapBenchmark/sample3PAS.bed > ../data/OverlapBenchmark/sample3PAS_sort.bed

Next step is to assess the overlap.

sbatch overlapapaQTLPAS_samples.sh

Sample 1 res:

wOverlap1=read.table("../data/OverlapBenchmark/sample1PAS_sort.Intersect.bed", col.names = colnames(Sample1bed)) %>% mutate(overlap="yes")
noOverlap1=read.table("../data/OverlapBenchmark/sample1PAS_sort.Intersect.NoOverlap.bed", col.names = colnames(Sample1bed)) %>% mutate(overlap="no")

AllwOinfo1=as.data.frame(rbind(wOverlap1, noOverlap1))
nrow(AllwOinfo1)
[1] 77850
overlap1=c()
totalvec1=c()
seq_usage=seq(0, .95, .01)
for (i in seq_usage){
  x=AllwOinfo1 %>% filter(Sample1>i) %>% group_by(overlap) %>% summarise(n=n())
  yes=as.numeric(x[2,2])
  total=as.numeric(x[2,2])+ as.numeric(x[1,2])
  prop=yes/total
  overlap1=c(overlap1,prop)
  totalvec1=c(totalvec1,total)
}

plot(seq_usage,overlap1,main="Sample 1", ylab="Percent Overlap", xlab="Usage Cutoff")
abline(v=.05,col="red")
abline(v=.1,col="blue")

Version Author Date
0c14f51 brimittleman 2020-01-17

Sample 2

wOverlap2=read.table("../data/OverlapBenchmark/sample2PAS_sort.Intersect.bed", col.names = colnames(Sample2bed)) %>% mutate(overlap="yes")
noOverlap2=read.table("../data/OverlapBenchmark/sample2PAS_sort.Intersect.NoOverlap.bed", col.names = colnames(Sample2bed)) %>% mutate(overlap="no")

AllwOinfo2=as.data.frame(rbind(wOverlap2, noOverlap2))
nrow(AllwOinfo2)
[1] 106751
overlap2=c()
totalvec2=c()
seq_usage=seq(0, .95, .01)
for (i in seq_usage){
  x=AllwOinfo2 %>% filter(Sample2>i) %>% group_by(overlap) %>% summarise(n=n())
  yes=as.numeric(x[2,2])
  total=as.numeric(x[2,2])+ as.numeric(x[1,2])
  prop=yes/total
  overlap2=c(overlap2,prop)
  totalve2c=c(totalvec2,total)
}

plot(seq_usage,overlap2,main="Sample 2", ylab="Percent Overlap", xlab="Usage Cutoff")
abline(v=.05,col="red")
abline(v=.1,col="blue")

Version Author Date
0c14f51 brimittleman 2020-01-17

Sample 3

wOverlap3=read.table("../data/OverlapBenchmark/sample3PAS_sort.Intersect.bed", col.names = colnames(Sample3bed)) %>% mutate(overlap="yes")
noOverlap3=read.table("../data/OverlapBenchmark/sample3PAS_sort.Intersect.NoOverlap.bed", col.names = colnames(Sample3bed)) %>% mutate(overlap="no")

AllwOinfo3=as.data.frame(rbind(wOverlap3, noOverlap3))
nrow(AllwOinfo3)
[1] 96769
overlap3=c()
totalvec3=c()
seq_usage=seq(0, .95, .01)
for (i in seq_usage){
  x=AllwOinfo3 %>% filter(Sample3>i) %>% group_by(overlap) %>% summarise(n=n())
  yes=as.numeric(x[2,2])
  total=as.numeric(x[2,2])+ as.numeric(x[1,2])
  prop=yes/total
  overlap3=c(overlap3,prop)
  totalvec3=c(totalvec3,total)
}

plot(seq_usage,overlap3,main="Sample 2", ylab="Percent Overlap", xlab="Usage Cutoff")
abline(v=.05,col="red")
abline(v=.1,col="blue")

Version Author Date
0c14f51 brimittleman 2020-01-17

Plot with all:

allSamp=as.data.frame(cbind(seq_usage,overlap1,overlap2,overlap3))
actualres= read.table("../data/CompapaQTLpas/ExtendedResoverlap.txt", header = T)

SampandRes=allSamp %>% inner_join(actualres,by="seq_usage") 

colnames(SampandRes)= c("Cutoff","Sample1", "Sample2", "Sample3", "CompPAS")

SampandRes_gather=SampandRes %>% gather(key="set", value="overlap",-Cutoff)

Plot:

bench=ggplot(SampandRes_gather,aes(x=Cutoff,y=overlap, by=set, col=set))+ geom_line() + labs(title="Benchmark results with 3 sets of 6 samples") + geom_vline(xintercept=.05,col="red")+ geom_vline(xintercept=.1,col="blue")

bench

Version Author Date
c211e21 brimittleman 2020-01-18
0c14f51 brimittleman 2020-01-17

I will filter this to only genes passing the filter I established in the previous:

PassingGenes=read.table("../data/OverlapBenchmark/genesPassingCuttoff.txt", header = T, stringsAsFactors = F)
AllwOinfo1_filt=AllwOinfo1 %>% separate(PASName, into=c("gene", "PAS"), sep="_")%>% filter(gene %in% PassingGenes$genes)


AllwOinfo2_filt=AllwOinfo2 %>% separate(PASName, into=c("gene", "PAS"), sep="_") %>% filter(gene %in% PassingGenes$genes)
AllwOinfo3_filt=AllwOinfo3 %>% separate(PASName, into=c("gene", "PAS"), sep="_") %>% filter(gene %in% PassingGenes$genes)

Actual results:

chroms=c('chr10', 'chr11', 'chr12', 'chr13', 'chr14', 'chr15', 'chr16', 'chr17', 'chr18', 'chr19', 'chr1', 'chr2', 'chr20', 'chr21', 'chr22', 'chr3', 'chr4', 'chr5', 'chr6', 'chr7','chr8', 'chr9')

compAPAPAS=read.table("../data/Peaks_5perc/Peaks_5perc_either_HumanCoordHummanUsage.bed", header =   T, stringsAsFactors = F)  %>%  filter(Human>=0.05, chr %in% chroms) 
metaDataPAS=read.table("../data/PAS/PAS_5perc_either_HumanCoord_BothUsage_meta.txt", header = T, stringsAsFactors = F) %>% dplyr::select(PAS, gene)


wOverlapExt=read.table("../data/CompapaQTLpas/PAS_5percHuman.sort.Intersect_ext.bed", col.names = colnames(compAPAPAS)) %>% mutate(overlap="yes")
noOverlapExt=read.table("../data/CompapaQTLpas/PAS_5percHuman.sort.Intersect.NoOverlap_ext.bed", col.names = colnames(compAPAPAS)) %>% mutate(overlap="no")

AllwOinfoExt=as.data.frame(rbind(wOverlapExt, noOverlapExt)) %>% inner_join(metaDataPAS,by="PAS") %>% filter(gene %in% PassingGenes$genes)
Warning: Column `PAS` joining factor and character vector, coercing into
character vector
nrow(AllwOinfoExt)
[1] 36802
overlapFilt1=c()
seq_usage=seq(0, .95, .01)
for (i in seq_usage){
  x=AllwOinfo1_filt %>% filter(Sample1>i) %>% group_by(overlap) %>% summarise(n=n())
  yes=as.numeric(x[2,2])
  total=as.numeric(x[2,2])+ as.numeric(x[1,2])
  prop=yes/total
  overlapFilt1=c(overlapFilt1,prop)
}

overlapFilt2=c()
for (i in seq_usage){
  x=AllwOinfo2_filt %>% filter(Sample2>i) %>% group_by(overlap) %>% summarise(n=n())
  yes=as.numeric(x[2,2])
  total=as.numeric(x[2,2])+ as.numeric(x[1,2])
  prop=yes/total
  overlapFilt2=c(overlapFilt2,prop)
}

overlapFilt3=c()
for (i in seq_usage){
  x=AllwOinfo3_filt %>% filter(Sample3>i) %>% group_by(overlap) %>% summarise(n=n())
  yes=as.numeric(x[2,2])
  total=as.numeric(x[2,2])+ as.numeric(x[1,2])
  prop=yes/total
  overlapFilt3=c(overlapFilt3,prop)
}

overlapFiltActual=c()
for (i in seq_usage){
  x=AllwOinfoExt %>% filter(Human>i) %>% group_by(overlap) %>% summarise(n=n())
  yes=as.numeric(x[2,2])
  total=as.numeric(x[2,2])+ as.numeric(x[1,2])
  prop=yes/total
  overlapFiltActual=c(overlapFiltActual,prop)
}

FilteredRes=as.data.frame(cbind(seq_usage,overlapFilt1,overlapFilt2,overlapFilt3,overlapFiltActual))
colnames(FilteredRes)= c("Cutoff","Sample1", "Sample2", "Sample3", "CompPAS")

FilteredRes_gather=FilteredRes %>% gather(key="set", value="overlap",-Cutoff)
filteredbench=ggplot(FilteredRes_gather,aes(x=Cutoff,y=overlap, by=set, col=set))+ geom_line() + labs(title="Benchmark results with 3 sets of 6 samples\n filtered gene expresssion") + geom_vline(xintercept=.05,col="red")+ geom_vline(xintercept=.1,col="blue")

filteredbench

Version Author Date
42c66a9 brimittleman 2020-01-21
c211e21 brimittleman 2020-01-18

Last step is to remove the PAS that were discovered originally in chimp.

PASdisc=read.table("../data/PAS/PAS_5perc_either_HumanCoord_BothUsage_meta.txt", header = T, stringsAsFactors = F) %>% filter(disc!="Chimp")

Filter and rerun loop for percent overlap. Only the actual need to be updated for this.

AllwOinfoExt_noChimp =AllwOinfoExt %>% filter(PAS %in% PASdisc$PAS)

Rerun:

overlapFiltActualnoChimp=c()
for (i in seq_usage){
  x=AllwOinfoExt_noChimp %>% filter(Human>i) %>% group_by(overlap) %>% summarise(n=n())
  yes=as.numeric(x[2,2])
  total=as.numeric(x[2,2])+ as.numeric(x[1,2])
  prop=yes/total
  overlapFiltActualnoChimp=c(overlapFiltActualnoChimp,prop)
}

FilteredResNochimp=as.data.frame(cbind(seq_usage,overlapFilt1,overlapFilt2,overlapFilt3,overlapFiltActualnoChimp))
colnames(FilteredResNochimp)= c("Cutoff","Sample1", "Sample2", "Sample3", "CompPAS")  

FilteredResNochimp_gather=FilteredResNochimp %>% gather(key="set", value="overlap",-Cutoff)
filteredbencnoChimop=ggplot(FilteredResNochimp_gather,aes(x=Cutoff,y=overlap, by=set, col=set))+ geom_line() + labs(title="Benchmark results with 3 sets of 6 samples\n filtered gene expresssion, remove discovered in Chimp") + geom_vline(xintercept=.05,col="red")+ geom_vline(xintercept=.1,col="blue")

filteredbencnoChimop

Version Author Date
42c66a9 brimittleman 2020-01-21

Plot together:

plot_grid(bench,filteredbench,filteredbencnoChimop)

Version Author Date
a9924fb brimittleman 2020-01-21
42c66a9 brimittleman 2020-01-21

Looks like using a 10% usage and this expression cuttoff is pretty good.

I will write out the list of PAS and call them DoubleFilter

I will put in the PAS meta data one more time and filter human or chimp 10% and the genes in the passing list.

mkdir ../data/PAS_doubleFilter  
PAS=read.table("../data/PAS/PAS_5perc_either_HumanCoord_BothUsage_meta.txt",header = T,stringsAsFactors = F) %>% filter(gene %in% PassingGenes$genes) %>% filter(Chimp >=.1 || Human >= .1)

This brings it to 42K PAS.

write.table(PAS, "../data/PAS_doubleFilter/PAS_10perc_either_HumanCoord_BothUsage_meta_doubleFilter.txt",col.names = T,row.names = F, quote = F)

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] cowplot_0.9.4   forcats_0.3.0   stringr_1.3.1   dplyr_0.8.0.1  
 [5] purrr_0.3.2     readr_1.3.1     tidyr_0.8.3     tibble_2.1.1   
 [9] ggplot2_3.1.1   tidyverse_1.2.1

loaded via a namespace (and not attached):
 [1] tidyselect_0.2.5 haven_1.1.2      lattice_0.20-38  colorspace_1.3-2
 [5] generics_0.0.2   htmltools_0.3.6  yaml_2.2.0       rlang_0.4.0     
 [9] later_0.7.5      pillar_1.3.1     glue_1.3.0       withr_2.1.2     
[13] modelr_0.1.2     readxl_1.1.0     plyr_1.8.4       munsell_0.5.0   
[17] gtable_0.2.0     workflowr_1.5.0  cellranger_1.1.0 rvest_0.3.2     
[21] evaluate_0.12    labeling_0.3     knitr_1.20       httpuv_1.4.5    
[25] broom_0.5.1      Rcpp_1.0.2       promises_1.0.1   scales_1.0.0    
[29] backports_1.1.2  jsonlite_1.6     fs_1.3.1         hms_0.4.2       
[33] digest_0.6.18    stringi_1.2.4    grid_3.5.1       rprojroot_1.3-2 
[37] cli_1.1.0        tools_3.5.1      magrittr_1.5     lazyeval_0.2.1  
[41] crayon_1.3.4     whisker_0.3-2    pkgconfig_2.0.2  xml2_1.2.0      
[45] lubridate_1.7.4  assertthat_0.2.0 rmarkdown_1.10   httr_1.3.1      
[49] rstudioapi_0.10  R6_2.3.0         nlme_3.1-137     git2r_0.26.1    
[53] compiler_3.5.1