• No PAS usage cutoff for dominant
  • Implement filters
    • Different Dominant, different Location
    • Filters in same loc ok
  • Compare to differencially used
  • diff dominance and discovery

Last updated: 2020-03-19

Checks: 7 0

Knit directory: Comparative_APA/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190902) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    code/chimp_log/
    Ignored:    code/human_log/
    Ignored:    data/.DS_Store
    Ignored:    data/TrialFiltersMeta.txt.sb-9845453e-R58Y0Q/
    Ignored:    data/mediation_prot/
    Ignored:    data/metadata_HCpanel.txt.sb-a5794dd2-i594qs/
    Ignored:    output/.DS_Store

Untracked files:
    Untracked:  ._.DS_Store
    Untracked:  Chimp/
    Untracked:  Human/
    Untracked:  analysis/CrossChimpThreePrime.Rmd
    Untracked:  analysis/DiffTransProtvsExpression.Rmd
    Untracked:  analysis/DiffUsedUTR.Rmd
    Untracked:  analysis/GvizPlots.Rmd
    Untracked:  analysis/HandC.TvN
    Untracked:  analysis/PhenotypeOverlap10.Rmd
    Untracked:  analysis/annotationBias.Rmd
    Untracked:  analysis/assessReadQual.Rmd
    Untracked:  analysis/diffExpressionPantro6.Rmd
    Untracked:  analysis/orthoexonAnno.Rmd
    Untracked:  analysis/pol2.Rmd
    Untracked:  code/._ClassifyLeafviz.sh
    Untracked:  code/._Config_chimp.yaml
    Untracked:  code/._Config_chimp_full.yaml
    Untracked:  code/._Config_human.yaml
    Untracked:  code/._ConvertJunc2Bed.sh
    Untracked:  code/._CountNucleotides.py
    Untracked:  code/._CrossMapChimpRNA.sh
    Untracked:  code/._CrossMapThreeprime.sh
    Untracked:  code/._DiffSplice.sh
    Untracked:  code/._DiffSplicePlots.sh
    Untracked:  code/._DiffSplicePlots_gencode.sh
    Untracked:  code/._DiffSplice_gencode.sh
    Untracked:  code/._DiffSplice_removebad.sh
    Untracked:  code/._FindIntronForDomPAS.sh
    Untracked:  code/._FindIntronForDomPAS_DF.sh
    Untracked:  code/._GetMAPQscore.py
    Untracked:  code/._GetSecondaryMap.py
    Untracked:  code/._Lift5perPAS.sh
    Untracked:  code/._LiftFinalChimpJunc2Human.sh
    Untracked:  code/._LiftOrthoPAS2chimp.sh
    Untracked:  code/._MapBadSamples.sh
    Untracked:  code/._PAS_ATTAAA.sh
    Untracked:  code/._PAS_ATTAAA_df.sh
    Untracked:  code/._PAS_seqExpanded.sh
    Untracked:  code/._PASsequences.sh
    Untracked:  code/._PASsequences_DF.sh
    Untracked:  code/._PlotNuclearUsagebySpecies.R
    Untracked:  code/._PlotNuclearUsagebySpecies_DF.R
    Untracked:  code/._QuantMergedClusters.sh
    Untracked:  code/._RNATranscriptDTplot.sh
    Untracked:  code/._ReverseLiftFilter.R
    Untracked:  code/._RunFixLeafCluster.sh
    Untracked:  code/._RunNegMCMediation.sh
    Untracked:  code/._RunNegMCMediationDF.sh
    Untracked:  code/._RunPosMCMediationDF.err
    Untracked:  code/._RunPosMCMediationDF.sh
    Untracked:  code/._SAF2Bed.py
    Untracked:  code/._Snakefile
    Untracked:  code/._SnakefilePAS
    Untracked:  code/._SnakefilePASfilt
    Untracked:  code/._SortIndexBadSamples.sh
    Untracked:  code/._assignPeak2Intronicregion
    Untracked:  code/._assignPeak2Intronicregion.sh
    Untracked:  code/._bed215upbed.py
    Untracked:  code/._bed2SAF_gen.py
    Untracked:  code/._buildIndecpantro5
    Untracked:  code/._buildIndecpantro5.sh
    Untracked:  code/._buildLeafviz.sh
    Untracked:  code/._buildLeafviz_leadAnno.sh
    Untracked:  code/._buildStarIndex.sh
    Untracked:  code/._chimpChromprder.sh
    Untracked:  code/._chooseSignalSite.py
    Untracked:  code/._cleanbed2saf.py
    Untracked:  code/._cluster.json
    Untracked:  code/._cluster2bed.py
    Untracked:  code/._clusterLiftReverse.sh
    Untracked:  code/._clusterLiftReverse_removebad.sh
    Untracked:  code/._clusterLiftprimary.sh
    Untracked:  code/._clusterLiftprimary_removebad.sh
    Untracked:  code/._converBam2Junc.sh
    Untracked:  code/._converBam2Junc_removeBad.sh
    Untracked:  code/._extraSnakefiltpas
    Untracked:  code/._extractPhyloReg.py
    Untracked:  code/._extractPhyloRegGene.py
    Untracked:  code/._extractPhylopGeneral.ph
    Untracked:  code/._extractPhylopGeneral.py
    Untracked:  code/._extractPhylopReg200down.py
    Untracked:  code/._extractPhylopReg200up.py
    Untracked:  code/._filter5percPAS.py
    Untracked:  code/._filterNumChroms.py
    Untracked:  code/._filterPASforMP.py
    Untracked:  code/._filterPostLift.py
    Untracked:  code/._fixExonFC.py
    Untracked:  code/._fixLeafCluster.py
    Untracked:  code/._fixLiftedJunc.py
    Untracked:  code/._fixUTRexonanno.py
    Untracked:  code/._formathg38Anno.py
    Untracked:  code/._formatpantro6Anno.py
    Untracked:  code/._getRNAseqMapStats.sh
    Untracked:  code/._hg19MapStats.sh
    Untracked:  code/._humanChromorder.sh
    Untracked:  code/._intersectLiftedPAS.sh
    Untracked:  code/._liftJunctionFiles.sh
    Untracked:  code/._liftPAS19to38.sh
    Untracked:  code/._liftedchimpJunc2human.sh
    Untracked:  code/._makeNuclearDapaplots.sh
    Untracked:  code/._makeNuclearDapaplots_DF.sh
    Untracked:  code/._makeSamplyGroupsHuman_TvN.py
    Untracked:  code/._mapRNAseqhg19.sh
    Untracked:  code/._mapRNAseqhg19_newPipeline.sh
    Untracked:  code/._maphg19.sh
    Untracked:  code/._maphg19_subjunc.sh
    Untracked:  code/._mediation_test.R
    Untracked:  code/._mergeChimp3prime_inhg38.sh
    Untracked:  code/._mergeandBWRNAseq.sh
    Untracked:  code/._mergedBam2BW.sh
    Untracked:  code/._nameClusters.py
    Untracked:  code/._negativeMediation_montecarlo.R
    Untracked:  code/._negativeMediation_montecarloDF.R
    Untracked:  code/._numMultimap.py
    Untracked:  code/._overlapapaQTLPAS.sh
    Untracked:  code/._parseHg38.py
    Untracked:  code/._postiveMediation_montecarlo_DF.R
    Untracked:  code/._prepareCleanLiftedFC_5perc4LC.py
    Untracked:  code/._prepareLeafvizAnno.sh
    Untracked:  code/._preparePAS4lift.py
    Untracked:  code/._primaryLift.sh
    Untracked:  code/._processhg38exons.py
    Untracked:  code/._quantJunc.sh
    Untracked:  code/._quantJunc_TEST.sh
    Untracked:  code/._quantJunc_removeBad.sh
    Untracked:  code/._quantMerged_seperatly.sh
    Untracked:  code/._recLiftchim2human.sh
    Untracked:  code/._revLiftPAShg38to19.sh
    Untracked:  code/._reverseLift.sh
    Untracked:  code/._runCheckReverseLift.sh
    Untracked:  code/._runChimpDiffIso.sh
    Untracked:  code/._runCountNucleotides.sh
    Untracked:  code/._runFilterNumChroms.sh
    Untracked:  code/._runHumanDiffIso.sh
    Untracked:  code/._runNuclearDiffIso_DF.sh
    Untracked:  code/._runNuclearDifffIso.sh
    Untracked:  code/._runTotalDiffIso.sh
    Untracked:  code/._run_chimpverifybam.sh
    Untracked:  code/._run_verifyBam.sh
    Untracked:  code/._snakemake.batch
    Untracked:  code/._snakemakePAS.batch
    Untracked:  code/._snakemakePASchimp.batch
    Untracked:  code/._snakemakePAShuman.batch
    Untracked:  code/._snakemake_chimp.batch
    Untracked:  code/._snakemake_human.batch
    Untracked:  code/._snakemakefiltPAS.batch
    Untracked:  code/._snakemakefiltPAS_chimp
    Untracked:  code/._snakemakefiltPAS_chimp.sh
    Untracked:  code/._snakemakefiltPAS_human.sh
    Untracked:  code/._spliceSite2Fasta.py
    Untracked:  code/._submit-snakemake-chimp.sh
    Untracked:  code/._submit-snakemake-human.sh
    Untracked:  code/._submit-snakemakePAS-chimp.sh
    Untracked:  code/._submit-snakemakePAS-human.sh
    Untracked:  code/._submit-snakemakefiltPAS-chimp.sh
    Untracked:  code/._submit-snakemakefiltPAS-human.sh
    Untracked:  code/._subset_diffisopheno_Nuclear_HvC.py
    Untracked:  code/._subset_diffisopheno_Nuclear_HvC_DF.py
    Untracked:  code/._subset_diffisopheno_Total_HvC.py
    Untracked:  code/._threeprimeOrthoFC.sh
    Untracked:  code/._transcriptDTplotsNuclear.sh
    Untracked:  code/._verifyBam4973.sh
    Untracked:  code/._verifyBam4973inHuman.sh
    Untracked:  code/._wrap_chimpverifybam.sh
    Untracked:  code/._wrap_verifyBam.sh
    Untracked:  code/._writeMergecode.py
    Untracked:  code/.snakemake/
    Untracked:  code/ClassifyLeafviz.sh
    Untracked:  code/Config_chimp.yaml
    Untracked:  code/Config_chimp_full.yaml
    Untracked:  code/Config_human.yaml
    Untracked:  code/ConvertJunc2Bed.err
    Untracked:  code/ConvertJunc2Bed.out
    Untracked:  code/ConvertJunc2Bed.sh
    Untracked:  code/CountNucleotides.py
    Untracked:  code/CrossMapChimpRNA.sh
    Untracked:  code/CrossMapThreeprime.sh
    Untracked:  code/CrossmapChimp3prime.err
    Untracked:  code/CrossmapChimp3prime.out
    Untracked:  code/CrossmapChimpRNA.err
    Untracked:  code/CrossmapChimpRNA.out
    Untracked:  code/DiffSplice.err
    Untracked:  code/DiffSplice.out
    Untracked:  code/DiffSplice.sh
    Untracked:  code/DiffSplicePlots.err
    Untracked:  code/DiffSplicePlots.out
    Untracked:  code/DiffSplicePlots.sh
    Untracked:  code/DiffSplicePlots_gencode.sh
    Untracked:  code/DiffSplice_gencode.sh
    Untracked:  code/DiffSplice_removebad.err
    Untracked:  code/DiffSplice_removebad.out
    Untracked:  code/DiffSplice_removebad.sh
    Untracked:  code/FilterReverseLift.err
    Untracked:  code/FilterReverseLift.out
    Untracked:  code/FindIntronForDomPAS.err
    Untracked:  code/FindIntronForDomPAS.out
    Untracked:  code/FindIntronForDomPAS.sh
    Untracked:  code/FindIntronForDomPAS_DF.sh
    Untracked:  code/GencodeDiffSplice.err
    Untracked:  code/GencodeDiffSplice.out
    Untracked:  code/GetMAPQscore.py
    Untracked:  code/GetSecondaryMap.py
    Untracked:  code/HchromOrder.err
    Untracked:  code/HchromOrder.out
    Untracked:  code/JunctionLift.err
    Untracked:  code/JunctionLift.out
    Untracked:  code/JunctionLiftFinalChimp.err
    Untracked:  code/JunctionLiftFinalChimp.out
    Untracked:  code/Lift5perPAS.sh
    Untracked:  code/Lift5perPASbed.err
    Untracked:  code/Lift5perPASbed.out
    Untracked:  code/LiftClustersFirst.err
    Untracked:  code/LiftClustersFirst.out
    Untracked:  code/LiftClustersFirst_remove.err
    Untracked:  code/LiftClustersFirst_remove.out
    Untracked:  code/LiftClustersSecond.err
    Untracked:  code/LiftClustersSecond.out
    Untracked:  code/LiftClustersSecond_remove.err
    Untracked:  code/LiftClustersSecond_remove.out
    Untracked:  code/LiftFinalChimpJunc2Human.sh
    Untracked:  code/LiftOrthoPAS2chimp.sh
    Untracked:  code/LiftorthoPAS.err
    Untracked:  code/LiftorthoPASt.out
    Untracked:  code/Log.out
    Untracked:  code/MapBadSamples.err
    Untracked:  code/MapBadSamples.out
    Untracked:  code/MapBadSamples.sh
    Untracked:  code/MapStats.err
    Untracked:  code/MapStats.out
    Untracked:  code/MaxEntCode/
    Untracked:  code/MergeClusters.err
    Untracked:  code/MergeClusters.out
    Untracked:  code/MergeClusters.sh
    Untracked:  code/PAS_ATTAAA.err
    Untracked:  code/PAS_ATTAAA.out
    Untracked:  code/PAS_ATTAAA.sh
    Untracked:  code/PAS_ATTAAADF.err
    Untracked:  code/PAS_ATTAAADF.out
    Untracked:  code/PAS_ATTAAA_df.sh
    Untracked:  code/PAS_seqExpanded.sh
    Untracked:  code/PAS_sequence.err
    Untracked:  code/PAS_sequence.out
    Untracked:  code/PAS_sequenceDF.err
    Untracked:  code/PAS_sequenceDF.out
    Untracked:  code/PASexpanded_sequenceDF.err
    Untracked:  code/PASexpanded_sequenceDF.out
    Untracked:  code/PASsequences.sh
    Untracked:  code/PASsequences_DF.sh
    Untracked:  code/PlotNuclearUsagebySpecies.R
    Untracked:  code/PlotNuclearUsagebySpecies_DF.R
    Untracked:  code/QuantMergeClusters
    Untracked:  code/QuantMergeClusters.err
    Untracked:  code/QuantMergeClusters.out
    Untracked:  code/QuantMergedClusters.sh
    Untracked:  code/RNATranscriptDTplot.err
    Untracked:  code/RNATranscriptDTplot.out
    Untracked:  code/RNATranscriptDTplot.sh
    Untracked:  code/Rev_liftoverPAShg19to38.err
    Untracked:  code/Rev_liftoverPAShg19to38.out
    Untracked:  code/ReverseLiftFilter.R
    Untracked:  code/RunFixCluster.err
    Untracked:  code/RunFixCluster.out
    Untracked:  code/RunFixLeafCluster.sh
    Untracked:  code/RunNegMCMediation.err
    Untracked:  code/RunNegMCMediation.sh
    Untracked:  code/RunNegMCMediationDF.err
    Untracked:  code/RunNegMCMediationDF.out
    Untracked:  code/RunNegMCMediationDF.sh
    Untracked:  code/RunNegMCMediationr.out
    Untracked:  code/RunPosMCMediation.err
    Untracked:  code/RunPosMCMediation.sh
    Untracked:  code/RunPosMCMediationDF.err
    Untracked:  code/RunPosMCMediationDF.out
    Untracked:  code/RunPosMCMediationDF.sh
    Untracked:  code/RunPosMCMediationr.out
    Untracked:  code/SAF215upbed_gen.py
    Untracked:  code/SAF2Bed.py
    Untracked:  code/Snakefile
    Untracked:  code/SnakefilePAS
    Untracked:  code/SnakefilePASfilt
    Untracked:  code/SortIndexBadSamples.err
    Untracked:  code/SortIndexBadSamples.out
    Untracked:  code/SortIndexBadSamples.sh
    Untracked:  code/TotalTranscriptDTplot.err
    Untracked:  code/TotalTranscriptDTplot.out
    Untracked:  code/Upstream10Bases_general.py
    Untracked:  code/apaQTLsnake.err
    Untracked:  code/apaQTLsnake.out
    Untracked:  code/apaQTLsnakePAS.err
    Untracked:  code/apaQTLsnakePAS.out
    Untracked:  code/apaQTLsnakePAShuman.err
    Untracked:  code/assignPeak2Intronicregion.err
    Untracked:  code/assignPeak2Intronicregion.out
    Untracked:  code/assignPeak2Intronicregion.sh
    Untracked:  code/bam2junc.err
    Untracked:  code/bam2junc.out
    Untracked:  code/bam2junc_remove.err
    Untracked:  code/bam2junc_remove.out
    Untracked:  code/bed215upbed.py
    Untracked:  code/bed2SAF_gen.py
    Untracked:  code/bed2saf.py
    Untracked:  code/bg_to_cov.py
    Untracked:  code/buildIndecpantro5
    Untracked:  code/buildIndecpantro5.sh
    Untracked:  code/buildLeafviz.err
    Untracked:  code/buildLeafviz.out
    Untracked:  code/buildLeafviz.sh
    Untracked:  code/buildLeafviz_leadAnno.sh
    Untracked:  code/buildLeafviz_leafanno.err
    Untracked:  code/buildLeafviz_leafanno.out
    Untracked:  code/buildStarIndex.sh
    Untracked:  code/callPeaksYL.py
    Untracked:  code/chimpChromprder.sh
    Untracked:  code/chooseAnno2Bed.py
    Untracked:  code/chooseAnno2SAF.py
    Untracked:  code/chooseSignalSite.py
    Untracked:  code/chromOrder.err
    Untracked:  code/chromOrder.out
    Untracked:  code/classifyLeafviz.err
    Untracked:  code/classifyLeafviz.out
    Untracked:  code/cleanbed2saf.py
    Untracked:  code/cluster.json
    Untracked:  code/cluster2bed.py
    Untracked:  code/clusterLiftReverse.sh
    Untracked:  code/clusterLiftReverse_removebad.sh
    Untracked:  code/clusterLiftprimary.sh
    Untracked:  code/clusterLiftprimary_removebad.sh
    Untracked:  code/clusterPAS.json
    Untracked:  code/clusterfiltPAS.json
    Untracked:  code/comands2Mege.sh
    Untracked:  code/converBam2Junc.sh
    Untracked:  code/converBam2Junc_removeBad.sh
    Untracked:  code/convertNumeric.py
    Untracked:  code/environment.yaml
    Untracked:  code/extraSnakefiltpas
    Untracked:  code/extractPhyloReg.py
    Untracked:  code/extractPhyloRegGene.py
    Untracked:  code/extractPhylopGeneral.py
    Untracked:  code/extractPhylopReg200down.py
    Untracked:  code/extractPhylopReg200up.py
    Untracked:  code/filter5perc.R
    Untracked:  code/filter5percPAS.py
    Untracked:  code/filter5percPheno.py
    Untracked:  code/filterBamforMP.pysam2_gen.py
    Untracked:  code/filterJuncChroms.err
    Untracked:  code/filterJuncChroms.out
    Untracked:  code/filterMissprimingInNuc10_gen.py
    Untracked:  code/filterNumChroms.py
    Untracked:  code/filterPASforMP.py
    Untracked:  code/filterPostLift.py
    Untracked:  code/filterSAFforMP_gen.py
    Untracked:  code/filterSortBedbyCleanedBed_gen.R
    Untracked:  code/filterpeaks.py
    Untracked:  code/fixExonFC.py
    Untracked:  code/fixFChead.py
    Untracked:  code/fixFChead_bothfrac.py
    Untracked:  code/fixLeafCluster.py
    Untracked:  code/fixLiftedJunc.py
    Untracked:  code/fixUTRexonanno.py
    Untracked:  code/formathg38Anno.py
    Untracked:  code/generateStarIndex.err
    Untracked:  code/generateStarIndex.out
    Untracked:  code/generateStarIndexHuman.err
    Untracked:  code/generateStarIndexHuman.out
    Untracked:  code/getRNAseqMapStats.sh
    Untracked:  code/hg19MapStats.err
    Untracked:  code/hg19MapStats.out
    Untracked:  code/hg19MapStats.sh
    Untracked:  code/humanChromorder.sh
    Untracked:  code/humanFiles
    Untracked:  code/intersectAnno.err
    Untracked:  code/intersectAnno.out
    Untracked:  code/intersectAnnoExt.err
    Untracked:  code/intersectAnnoExt.out
    Untracked:  code/intersectLiftedPAS.sh
    Untracked:  code/leafcutter_merge_regtools_redo.py
    Untracked:  code/liftJunctionFiles.sh
    Untracked:  code/liftPAS19to38.sh
    Untracked:  code/liftoverPAShg19to38.err
    Untracked:  code/liftoverPAShg19to38.out
    Untracked:  code/log/
    Untracked:  code/make5percPeakbed.py
    Untracked:  code/makeFileID.py
    Untracked:  code/makeNuclearDapaplots.sh
    Untracked:  code/makeNuclearDapaplots_DF.sh
    Untracked:  code/makeNuclearPlots.err
    Untracked:  code/makeNuclearPlots.out
    Untracked:  code/makeNuclearPlotsDF.err
    Untracked:  code/makeNuclearPlotsDF.out
    Untracked:  code/makePheno.py
    Untracked:  code/makeSamplyGroupsChimp_TvN.py
    Untracked:  code/makeSamplyGroupsHuman_TvN.py
    Untracked:  code/mapRNAseqhg19.sh
    Untracked:  code/mapRNAseqhg19_newPipeline.sh
    Untracked:  code/maphg19.err
    Untracked:  code/maphg19.out
    Untracked:  code/maphg19.sh
    Untracked:  code/maphg19_new.err
    Untracked:  code/maphg19_new.out
    Untracked:  code/maphg19_sub.err
    Untracked:  code/maphg19_sub.out
    Untracked:  code/maphg19_subjunc.sh
    Untracked:  code/mediation_test.R
    Untracked:  code/merge.err
    Untracked:  code/mergeChimp3prime_inhg38.sh
    Untracked:  code/merge_leafcutter_clusters_redo.py
    Untracked:  code/mergeandBWRNAseq.sh
    Untracked:  code/mergeandsort_ChimpinHuman.err
    Untracked:  code/mergeandsort_ChimpinHuman.out
    Untracked:  code/mergedBam2BW.sh
    Untracked:  code/mergedbam2bw.err
    Untracked:  code/mergedbam2bw.out
    Untracked:  code/mergedbamRNAand2bw.err
    Untracked:  code/mergedbamRNAand2bw.out
    Untracked:  code/nameClusters.py
    Untracked:  code/namePeaks.py
    Untracked:  code/negativeMediation_montecarlo.R
    Untracked:  code/negativeMediation_montecarloDF.R
    Untracked:  code/nuclearTranscriptDTplot.err
    Untracked:  code/nuclearTranscriptDTplot.out
    Untracked:  code/numMultimap.py
    Untracked:  code/overlapPAS.err
    Untracked:  code/overlapPAS.out
    Untracked:  code/overlapapaQTLPAS.sh
    Untracked:  code/overlapapaQTLPAS_extended.sh
    Untracked:  code/overlapapaQTLPAS_samples.sh
    Untracked:  code/parseHg38.py
    Untracked:  code/peak2PAS.py
    Untracked:  code/pheno2countonly.R
    Untracked:  code/postiveMediation_montecarlo.R
    Untracked:  code/postiveMediation_montecarlo_DF.R
    Untracked:  code/prepareAnnoLeafviz.err
    Untracked:  code/prepareAnnoLeafviz.out
    Untracked:  code/prepareCleanLiftedFC_5perc4LC.py
    Untracked:  code/prepareLeafvizAnno.sh
    Untracked:  code/preparePAS4lift.py
    Untracked:  code/prepare_phenotype_table.py
    Untracked:  code/primaryLift.err
    Untracked:  code/primaryLift.out
    Untracked:  code/primaryLift.sh
    Untracked:  code/processhg38exons.py
    Untracked:  code/quantJunc.sh
    Untracked:  code/quantJunc_TEST.sh
    Untracked:  code/quantJunc_removeBad.sh
    Untracked:  code/quantLiftedPAS.err
    Untracked:  code/quantLiftedPAS.out
    Untracked:  code/quantLiftedPAS.sh
    Untracked:  code/quatJunc.err
    Untracked:  code/quatJunc.out
    Untracked:  code/recChimpback2Human.err
    Untracked:  code/recChimpback2Human.out
    Untracked:  code/recLiftchim2human.sh
    Untracked:  code/revLift.err
    Untracked:  code/revLift.out
    Untracked:  code/revLiftPAShg38to19.sh
    Untracked:  code/reverseLift.sh
    Untracked:  code/runCheckReverseLift.sh
    Untracked:  code/runChimpDiffIso.sh
    Untracked:  code/runChimpDiffIsoDF.sh
    Untracked:  code/runCountNucleotides.err
    Untracked:  code/runCountNucleotides.out
    Untracked:  code/runCountNucleotides.sh
    Untracked:  code/runCountNucleotidesPantro6.err
    Untracked:  code/runCountNucleotidesPantro6.out
    Untracked:  code/runCountNucleotides_pantro6.sh
    Untracked:  code/runFilterNumChroms.sh
    Untracked:  code/runHumanDiffIso.sh
    Untracked:  code/runHumanDiffIsoDF.sh
    Untracked:  code/runNuclearDiffIso_DF.sh
    Untracked:  code/runNuclearDifffIso.sh
    Untracked:  code/runTotalDiffIso.sh
    Untracked:  code/run_Chimpleafcutter_ds.err
    Untracked:  code/run_Chimpleafcutter_ds.out
    Untracked:  code/run_Chimpverifybam.err
    Untracked:  code/run_Chimpverifybam.out
    Untracked:  code/run_Humanleafcutter_dF.err
    Untracked:  code/run_Humanleafcutter_dF.out
    Untracked:  code/run_Humanleafcutter_ds.err
    Untracked:  code/run_Humanleafcutter_ds.out
    Untracked:  code/run_Nuclearleafcutter_ds.err
    Untracked:  code/run_Nuclearleafcutter_ds.out
    Untracked:  code/run_Nuclearleafcutter_dsDF.err
    Untracked:  code/run_Nuclearleafcutter_dsDF.out
    Untracked:  code/run_Totalleafcutter_ds.err
    Untracked:  code/run_Totalleafcutter_ds.out
    Untracked:  code/run_chimpverifybam.sh
    Untracked:  code/run_verifyBam.sh
    Untracked:  code/run_verifybam.err
    Untracked:  code/run_verifybam.out
    Untracked:  code/slurm-62824013.out
    Untracked:  code/slurm-62825841.out
    Untracked:  code/slurm-62826116.out
    Untracked:  code/slurm-64108209.out
    Untracked:  code/slurm-64108521.out
    Untracked:  code/slurm-64108557.out
    Untracked:  code/snakePASChimp.err
    Untracked:  code/snakePASChimp.out
    Untracked:  code/snakePAShuman.out
    Untracked:  code/snakemake.batch
    Untracked:  code/snakemakeChimp.err
    Untracked:  code/snakemakeChimp.out
    Untracked:  code/snakemakeHuman.err
    Untracked:  code/snakemakeHuman.out
    Untracked:  code/snakemakePAS.batch
    Untracked:  code/snakemakePASFiltChimp.err
    Untracked:  code/snakemakePASFiltChimp.out
    Untracked:  code/snakemakePASFiltHuman.err
    Untracked:  code/snakemakePASFiltHuman.out
    Untracked:  code/snakemakePASchimp.batch
    Untracked:  code/snakemakePAShuman.batch
    Untracked:  code/snakemake_chimp.batch
    Untracked:  code/snakemake_human.batch
    Untracked:  code/snakemakefiltPAS.batch
    Untracked:  code/snakemakefiltPAS_chimp.sh
    Untracked:  code/snakemakefiltPAS_human.sh
    Untracked:  code/spliceSite2Fasta.py
    Untracked:  code/submit-snakemake-chimp.sh
    Untracked:  code/submit-snakemake-human.sh
    Untracked:  code/submit-snakemakePAS-chimp.sh
    Untracked:  code/submit-snakemakePAS-human.sh
    Untracked:  code/submit-snakemakefiltPAS-chimp.sh
    Untracked:  code/submit-snakemakefiltPAS-human.sh
    Untracked:  code/subset_diffisopheno.py
    Untracked:  code/subset_diffisopheno_Chimp_tvN.py
    Untracked:  code/subset_diffisopheno_Chimp_tvN_DF.py
    Untracked:  code/subset_diffisopheno_Huma_tvN.py
    Untracked:  code/subset_diffisopheno_Huma_tvN_DF.py
    Untracked:  code/subset_diffisopheno_Nuclear_HvC.py
    Untracked:  code/subset_diffisopheno_Nuclear_HvC_DF.py
    Untracked:  code/subset_diffisopheno_Total_HvC.py
    Untracked:  code/test
    Untracked:  code/test.txt
    Untracked:  code/threeprimeOrthoFC.out
    Untracked:  code/threeprimeOrthoFC.sh
    Untracked:  code/threeprimeOrthoFCcd.err
    Untracked:  code/transcriptDTplotsNuclear.sh
    Untracked:  code/transcriptDTplotsTotal.sh
    Untracked:  code/verifyBam4973.sh
    Untracked:  code/verifyBam4973inHuman.sh
    Untracked:  code/verifybam4973.err
    Untracked:  code/verifybam4973.out
    Untracked:  code/verifybam4973HumanMap.err
    Untracked:  code/verifybam4973HumanMap.out
    Untracked:  code/wrap_Chimpverifybam.err
    Untracked:  code/wrap_Chimpverifybam.out
    Untracked:  code/wrap_chimpverifybam.sh
    Untracked:  code/wrap_verifyBam.sh
    Untracked:  code/wrap_verifybam.err
    Untracked:  code/wrap_verifybam.out
    Untracked:  code/writeMergecode.py
    Untracked:  data/._.DS_Store
    Untracked:  data/._HC_filenames.txt
    Untracked:  data/._HC_filenames.txt.sb-4426323c-IKIs0S
    Untracked:  data/._HC_filenames.xlsx
    Untracked:  data/._MapPantro6_meta.txt
    Untracked:  data/._MapPantro6_meta.txt.sb-a5794dd2-Cskmlm
    Untracked:  data/._MapPantro6_meta.xlsx
    Untracked:  data/._OppositeSpeciesMap.txt
    Untracked:  data/._OppositeSpeciesMap.txt.sb-a5794dd2-mayWJf
    Untracked:  data/._OppositeSpeciesMap.xlsx
    Untracked:  data/._RNASEQ_metadata.txt
    Untracked:  data/._RNASEQ_metadata.txt.sb-4426323c-TE4ns3
    Untracked:  data/._RNASEQ_metadata.txt.sb-51f67ae1-HXp7Gq
    Untracked:  data/._RNASEQ_metadata_2Removed.txt
    Untracked:  data/._RNASEQ_metadata_2Removed.txt.sb-4426323c-a4lBwx
    Untracked:  data/._RNASEQ_metadata_2Removed.xlsx
    Untracked:  data/._RNASEQ_metadata_stranded.txt
    Untracked:  data/._RNASEQ_metadata_stranded.txt.sb-a5794dd2-D659m2
    Untracked:  data/._RNASEQ_metadata_stranded.txt.sb-a5794dd2-ImNMoY
    Untracked:  data/._RNASEQ_metadata_stranded.txt.sb-e4bf31f0-ZGnGgl
    Untracked:  data/._RNASEQ_metadata_stranded.xlsx
    Untracked:  data/._TrialFiltersMeta.txt
    Untracked:  data/._TrialFiltersMeta.txt.sb-9845453e-R58Y0Q
    Untracked:  data/._metadata_HCpanel.txt
    Untracked:  data/._metadata_HCpanel.txt.sb-a3d92a2d-b9cYoF
    Untracked:  data/._metadata_HCpanel.txt.sb-a5794dd2-i594qs
    Untracked:  data/._metadata_HCpanel.txt.sb-f4823d1e-qihGek
    Untracked:  data/._metadata_HCpanel.xlsx
    Untracked:  data/._metadata_HCpanel_frompantro5.xlsx
    Untracked:  data/._~$RNASEQ_metadata.xlsx
    Untracked:  data/._~$metadata_HCpanel.xlsx
    Untracked:  data/._.xlsx
    Untracked:  data/BaseComp/
    Untracked:  data/CompapaQTLpas/
    Untracked:  data/DNDS/
    Untracked:  data/DTmatrix/
    Untracked:  data/DiffExpression/
    Untracked:  data/DiffIso_Nuclear/
    Untracked:  data/DiffIso_Nuclear_DF/
    Untracked:  data/DiffIso_Total/
    Untracked:  data/DiffSplice/
    Untracked:  data/DiffSplice_liftedJunc/
    Untracked:  data/DiffSplice_removeBad/
    Untracked:  data/DominantPAS/
    Untracked:  data/DominantPAS_DF/
    Untracked:  data/EvalPantro5/
    Untracked:  data/HC_filenames.txt
    Untracked:  data/HC_filenames.xlsx
    Untracked:  data/Khan_prot/
    Untracked:  data/Li_eqtls/
    Untracked:  data/MapPantro6_meta.txt
    Untracked:  data/MapPantro6_meta.xlsx
    Untracked:  data/MapStats/
    Untracked:  data/NormalizedClusters/
    Untracked:  data/NuclearHvC/
    Untracked:  data/NuclearHvC_DF/
    Untracked:  data/OppositeSpeciesMap.txt
    Untracked:  data/OppositeSpeciesMap.xlsx
    Untracked:  data/OrthoExonBed/
    Untracked:  data/OverlapBenchmark/
    Untracked:  data/OverlappingPAS/
    Untracked:  data/PAS/
    Untracked:  data/PAS_doubleFilter/
    Untracked:  data/Peaks_5perc/
    Untracked:  data/Pheno_5perc/
    Untracked:  data/Pheno_5perc_DF_nuclear/
    Untracked:  data/Pheno_5perc_nuclear/
    Untracked:  data/Pheno_5perc_nuclear_old/
    Untracked:  data/Pheno_5perc_total/
    Untracked:  data/PhyloP/
    Untracked:  data/RNASEQ_metadata.txt
    Untracked:  data/RNASEQ_metadata_2Removed.txt
    Untracked:  data/RNASEQ_metadata_2Removed.xlsx
    Untracked:  data/RNASEQ_metadata_stranded.txt
    Untracked:  data/RNASEQ_metadata_stranded.txt.sb-e4bf31f0-ZGnGgl/
    Untracked:  data/RNASEQ_metadata_stranded.xlsx
    Untracked:  data/SignalSites/
    Untracked:  data/SignalSites_doublefilter/
    Untracked:  data/SpliceSite/
    Untracked:  data/Threeprime2Ortho/
    Untracked:  data/TotalHvC/
    Untracked:  data/TrialFiltersMeta.txt
    Untracked:  data/TwoBadSampleAnalysis/
    Untracked:  data/Wang_ribo/
    Untracked:  data/apaQTLGenes/
    Untracked:  data/bioGRID/
    Untracked:  data/chainFiles/
    Untracked:  data/cleanPeaks_anno/
    Untracked:  data/cleanPeaks_byspecies/
    Untracked:  data/cleanPeaks_lifted/
    Untracked:  data/files4viz_nuclear/
    Untracked:  data/files4viz_nuclear_DF/
    Untracked:  data/gviz/
    Untracked:  data/leafviz/
    Untracked:  data/liftover_files/
    Untracked:  data/mediation/
    Untracked:  data/mediation_DF/
    Untracked:  data/metadata_HCpanel.txt
    Untracked:  data/metadata_HCpanel.xlsx
    Untracked:  data/metadata_HCpanel_frompantro5.txt
    Untracked:  data/metadata_HCpanel_frompantro5.xlsx
    Untracked:  data/primaryLift/
    Untracked:  data/reverseLift/
    Untracked:  data/~$RNASEQ_metadata.xlsx
    Untracked:  data/~$metadata_HCpanel.xlsx
    Untracked:  data/.xlsx
    Untracked:  output/._.DS_Store
    Untracked:  output/dtPlots/
    Untracked:  projectNotes.Rmd
    Untracked:  proteinModelSet.Rmd

Unstaged changes:
    Modified:   analysis/DiffUsedIntronic.Rmd
    Modified:   analysis/ExploredAPA.Rmd
    Modified:   analysis/ExploredAPA_DF.Rmd
    Modified:   analysis/OppositeMap.Rmd
    Modified:   analysis/SpliceSiteStrength.Rmd
    Modified:   analysis/TotalVNuclearBothSpecies.Rmd
    Modified:   analysis/annotationInfo.Rmd
    Modified:   analysis/changeMisprimcut.Rmd
    Modified:   analysis/comp2apaQTLPAS.Rmd
    Modified:   analysis/correlationPhenos.Rmd
    Modified:   analysis/dAPAandapaQTL_DF.Rmd
    Modified:   analysis/establishCutoffs.Rmd
    Modified:   analysis/investigatePantro5.Rmd
    Modified:   analysis/multiMap.Rmd
    Modified:   analysis/speciesSpecific.Rmd
    Modified:   analysis/speciesSpecific_DF.Rmd
    Modified:   analysis/upsetter_DF.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd 06ad3f9 brimittleman 2020-03-19 look at counts
html d8ae388 brimittleman 2020-03-18 Build site.
Rmd 565dd6a brimittleman 2020-03-18 show dom enrich not factor of usage
html 86238eb brimittleman 2020-03-16 Build site.
Rmd 164c237 brimittleman 2020-03-16 ask about anno bias

I want to see if the most used PAS are also the differentially used.

library(tidyverse)
── Attaching packages ─────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.1.1       ✔ purrr   0.3.2  
✔ tibble  2.1.1       ✔ dplyr   0.8.0.1
✔ tidyr   0.8.3       ✔ stringr 1.3.1  
✔ readr   1.3.1       ✔ forcats 0.3.0  
── Conflicts ────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
library(workflowr)
This is workflowr version 1.6.0
Run ?workflowr for help getting started
library(cowplot)

Attaching package: 'cowplot'
The following object is masked from 'package:ggplot2':

    ggsave

Caveat- ties.

Dominant PAS

allPAS= read.table("../data/PAS_doubleFilter/PAS_10perc_either_HumanCoord_BothUsage_meta_doubleFilter.txt", header = T) 
ChimpPASwMean =allPAS %>% dplyr::select(-Human)
HumanPASwMean =allPAS %>% dplyr::select(-Chimp)


Chimp_Dom= ChimpPASwMean %>%
  group_by(gene) %>%
  arrange(desc(Chimp)) %>% 
  slice(1) %>% 
  group_by(gene) %>% 
  mutate(npas=n()) %>% 
  dplyr::select(gene,loc,PAS,Chimp) %>% 
  rename(ChimpLoc=loc, ChimpPAS=PAS)


Chimp_Dom2= ChimpPASwMean %>%
  group_by(gene) %>%
  top_n(1,Chimp) %>% 
  mutate(nPer=n()) 
nrow(Chimp_Dom2%>% filter(nPer>1) )
[1] 198
Human_Dom= HumanPASwMean %>%
  group_by(gene) %>%
  arrange(desc(Human)) %>% 
  slice(1) %>% 
  group_by(gene) %>% 
  mutate(npas=n()) %>% 
  dplyr::select(gene,loc,PAS,Human) %>% 
  rename(HumanLoc=loc, HumanPAS=PAS)

Human_Dom2= HumanPASwMean %>%
  group_by(gene) %>%
  top_n(1,Human) %>% 
  mutate(nPer=n()) 

nrow(Human_Dom2 %>% filter(nPer>1) )
[1] 161

198 genes with a tie in chimp and 161 with a tie in human. Picks top for both for analysis.

No PAS usage cutoff for dominant

BothDom= Chimp_Dom %>% inner_join(Human_Dom,by="gene")

SameDom= BothDom %>% filter(ChimpPAS==HumanPAS,HumanLoc!="008559")
nrow(SameDom)
[1] 7718
SameDom_g= SameDom %>% select(gene, ChimpLoc, HumanLoc) %>% gather("Species", "Location", -gene)
ggplot(SameDom_g, aes(x=Location, by=Species, fill=Species))+ geom_bar(stat="count",position = "Dodge") + labs(x="Location", y="Number of Genes", title="Dominant PAS for genes with matching by species")

Version Author Date
86238eb brimittleman 2020-03-16
ggplot(SameDom, aes(x=HumanLoc))+ geom_bar(stat="count") + labs(x="Location", y="Number of Genes", title="Dominant PAS for genes with matching by species")

Version Author Date
86238eb brimittleman 2020-03-16
DiffDom=BothDom %>% filter(ChimpPAS!=HumanPAS,HumanLoc!="008559")
nrow(DiffDom)
[1] 2092
DiffDom_g= DiffDom %>% select(gene, ChimpLoc, HumanLoc) %>% gather("Species", "Location", -gene)


plotnones=ggplot(DiffDom_g,aes(by=Species, x=Location, fill=Species))+ geom_histogram(stat="count",position = "dodge") + labs(x="Location", y="Number of Genes", title="Different Dominant PAS") + scale_fill_brewer(palette = "Dark2")
Warning: Ignoring unknown parameters: binwidth, bins, pad

Diff dominant different locations:

DiffDomDiffLoc=BothDom %>% filter(ChimpPAS!=HumanPAS,HumanLoc!="008559", ChimpLoc!=HumanLoc)
nrow(DiffDomDiffLoc)
[1] 1095
DiffDomDiffLoc_g= DiffDomDiffLoc %>% select(gene, ChimpLoc, HumanLoc) %>% gather("Species", "Location", -gene)


plotnone=ggplot(DiffDomDiffLoc_g,aes(by=Species, x=Location, fill=Species))+ geom_bar(stat="count",position = "dodge") + labs(x="Location", y="Number of Genes", title="Dominant PAS in different locations") + scale_fill_brewer(palette = "Dark2")

Implement filters

I want to filter these and see if these distribution changes. First I will say the most used has to be over 50% in both species.

BothDom_50= BothDom %>% filter(Chimp>=.5, Human>.5)
nrow(BothDom_50)
[1] 3526
BothDom_40= BothDom %>% filter(Chimp>=.4, Human>.4)
nrow(BothDom_40)
[1] 4555
BothDom_30= BothDom %>% filter(Chimp>=.3, Human>.3)
nrow(BothDom_30)
[1] 5879
BothDom_20= BothDom %>% filter(Chimp>=.2, Human>.2)
nrow(BothDom_20)
[1] 7584
BothDom_10= BothDom %>% filter(Chimp>=.1, Human>.1)
nrow(BothDom_10)
[1] 9324
cutoffs=c(".5",'.4','.3','.2','.1', "0")
nPAS=c(nrow(BothDom_50),nrow(BothDom_40),nrow(BothDom_30),nrow(BothDom_20),nrow(BothDom_10), nrow(BothDom))
nPAS
[1] 3526 4555 5879 7584 9324 9810

Different Dominant, different Location

BothDom_50_diff=BothDom_50%>% filter(ChimpPAS!=HumanPAS,HumanLoc!="008559", ChimpLoc!=HumanLoc)
nrow(BothDom_50_diff)
[1] 33
BothDom_50_diff_g= BothDom_50_diff %>% select(gene, ChimpLoc, HumanLoc) %>% gather("Species", "Location", -gene)


plot50=ggplot(BothDom_50_diff_g,aes(by=Species, x=Location, fill=Species))+ geom_bar(stat="count",position = "dodge") + labs(x="Location", y="Number of Genes", title="Dominant PAS in different locations (50%)") + scale_fill_brewer(palette = "Dark2")
BothDom_40_diff=BothDom_40%>% filter(ChimpPAS!=HumanPAS,HumanLoc!="008559", ChimpLoc!=HumanLoc)
nrow(BothDom_40_diff)
[1] 85
BothDom_40_diff_g= BothDom_40_diff %>% select(gene, ChimpLoc, HumanLoc) %>% gather("Species", "Location", -gene)


plot40=ggplot(BothDom_40_diff_g,aes(by=Species, x=Location, fill=Species))+ geom_bar(stat="count",position = "dodge") + labs(x="Location", y="Number of Genes", title="Dominant PAS in different locations (40%)") + scale_fill_brewer(palette = "Dark2")
BothDom_30_diff=BothDom_30%>% filter(ChimpPAS!=HumanPAS,HumanLoc!="008559", ChimpLoc!=HumanLoc)
nrow(BothDom_30_diff)
[1] 211
BothDom_30_diff_g= BothDom_30_diff %>% select(gene, ChimpLoc, HumanLoc) %>% gather("Species", "Location", -gene)


plot30=ggplot(BothDom_30_diff_g,aes(by=Species, x=Location, fill=Species))+ geom_bar(stat="count",position = "dodge") + labs(x="Location", y="Number of Genes", title="Dominant PAS in different locations (30%)") + scale_fill_brewer(palette = "Dark2")
BothDom_20_diff=BothDom_20%>% filter(ChimpPAS!=HumanPAS,HumanLoc!="008559", ChimpLoc!=HumanLoc)
nrow(BothDom_20_diff)
[1] 481
BothDom_20_diff_g= BothDom_20_diff %>% select(gene, ChimpLoc, HumanLoc) %>% gather("Species", "Location", -gene)


plot20=ggplot(BothDom_20_diff_g,aes(by=Species, x=Location, fill=Species))+ geom_bar(stat="count",position = "dodge") + labs(x="Location", y="Number of Genes", title="Dominant PAS in different locations (20%)") + scale_fill_brewer(palette = "Dark2")
BothDom_10_diff=BothDom_10%>% filter(ChimpPAS!=HumanPAS,HumanLoc!="008559", ChimpLoc!=HumanLoc)
nrow(BothDom_10_diff)
[1] 931
BothDom_10_diff_g= BothDom_10_diff %>% select(gene, ChimpLoc, HumanLoc) %>% gather("Species", "Location", -gene)


plot10=ggplot(BothDom_10_diff_g,aes(by=Species, x=Location, fill=Species))+ geom_bar(stat="count",position = "dodge") + labs(x="Location", y="Number of Genes", title="Dominant PAS in different locations (10%)") + scale_fill_brewer(palette = "Dark2")
plot_grid(plot50, plot40, plot30, plot20, plot10,plotnone)

Version Author Date
86238eb brimittleman 2020-03-16

Filters in same loc ok

BothDom_50_same=BothDom_50%>% filter(ChimpPAS!=HumanPAS,HumanLoc!="008559")
nrow(BothDom_50_same)
[1] 74
BothDom_50_same_g= BothDom_50_same %>% select(gene, ChimpLoc, HumanLoc) %>% gather("Species", "Location", -gene)


plot50s=ggplot(BothDom_50_same_g,aes(by=Species, x=Location, fill=Species))+ geom_bar(stat="count",position = "dodge") + labs(x="Location", y="Number of Genes", title="Different Dominant (50%)") + scale_fill_brewer(palette = "Dark2")
BothDom_40_same=BothDom_40%>% filter(ChimpPAS!=HumanPAS,HumanLoc!="008559")
nrow(BothDom_40_same)
[1] 223
BothDom_40_same_g= BothDom_40_same %>% select(gene, ChimpLoc, HumanLoc) %>% gather("Species", "Location", -gene)


plot40s=ggplot(BothDom_40_same_g,aes(by=Species, x=Location, fill=Species))+ geom_bar(stat="count",position = "dodge") + labs(x="Location", y="Number of Genes", title="Different Dominant (40%)") + scale_fill_brewer(palette = "Dark2")
BothDom_30_same=BothDom_30%>% filter(ChimpPAS!=HumanPAS,HumanLoc!="008559")
nrow(BothDom_30_same)
[1] 480
BothDom_30_same_g= BothDom_30_same %>% select(gene, ChimpLoc, HumanLoc) %>% gather("Species", "Location", -gene)


plot30s=ggplot(BothDom_30_same_g,aes(by=Species, x=Location, fill=Species))+ geom_bar(stat="count",position = "dodge") + labs(x="Location", y="Number of Genes", title="Different Dominant (30%)") + scale_fill_brewer(palette = "Dark2")
BothDom_20_same=BothDom_20%>% filter(ChimpPAS!=HumanPAS,HumanLoc!="008559")
nrow(BothDom_20_same)
[1] 1011
BothDom_20_same_g= BothDom_20_same %>% select(gene, ChimpLoc, HumanLoc) %>% gather("Species", "Location", -gene)


plot20s=ggplot(BothDom_20_same_g,aes(by=Species, x=Location, fill=Species))+ geom_bar(stat="count",position = "dodge") + labs(x="Location", y="Number of Genes", title="Different Dominant (20%)") + scale_fill_brewer(palette = "Dark2")
BothDom_10_same=BothDom_10%>% filter(ChimpPAS!=HumanPAS,HumanLoc!="008559")
nrow(BothDom_10_same)
[1] 1810
BothDom_10_same_g= BothDom_10_same %>% select(gene, ChimpLoc, HumanLoc) %>% gather("Species", "Location", -gene)


plot10s=ggplot(BothDom_10_same_g,aes(by=Species, x=Location, fill=Species))+ geom_bar(stat="count",position = "dodge") + labs(x="Location", y="Number of Genes", title="Different Dominant (10%)") + scale_fill_brewer(palette = "Dark2")
plot_grid(plot50s, plot40s, plot30s, plot20s, plot10s,plotnones)

Version Author Date
86238eb brimittleman 2020-03-16

Plot numbers:

cutoffs=c("0.5",'0.4','0.3','0.2','0.1', "0")
#nPAS=c(nrow(BothDom_50),nrow(BothDom_40),nrow(BothDom_30),nrow(BothDom_20),nrow(BothDom_10), nrow(BothDom))
nPASDiff=c(nrow(BothDom_50_diff),nrow(BothDom_40_diff),nrow(BothDom_30_diff),nrow(BothDom_20_diff),nrow(BothDom_10_diff), nrow(DiffDomDiffLoc))
nPASSameLoc=c(nrow(BothDom_50_same),nrow(BothDom_40_same),nrow(BothDom_30_same),nrow(BothDom_20_same),nrow(BothDom_10_same), nrow(DiffDom))

NumberDF= as.data.frame(cbind(cutoffs, Genes=nPAS, DifferentPASandLoc=nPASDiff, DifferentPAS=nPASSameLoc)) %>% gather("Set", "count",-cutoffs )
Warning: attributes are not identical across measure variables;
they will be dropped
NumberDF$count=as.numeric(NumberDF$count)

ggplot(NumberDF,aes(x=cutoffs, y=count, by=Set, fill=Set)) + geom_bar(stat="identity",position = "dodge" ) +geom_text(stat='identity', aes(label=count), vjust=0,position = position_dodge(width = 1)) + labs(x="Cutoff for PAS to be dominant (Both Species)", y="Number of genes")+ scale_fill_brewer(palette = "Dark2", labels=c("Different PAS Same Location", "Different PAS and Location", "All Genes"),name="") + theme(legend.position = "top")

Version Author Date
86238eb brimittleman 2020-03-16

Compare to differencially used

PASMeta=read.table("../data/PAS_doubleFilter/PAS_10perc_either_HumanCoord_BothUsage_meta_doubleFilter.txt", header = T, stringsAsFactors = F) %>% select(PAS, gene, chr, start,end,loc)

DiffIso=read.table("../data/DiffIso_Nuclear_DF/AllPAS_withGeneSig.txt",header = T, stringsAsFactors = F) %>% inner_join(PASMeta, by=c("chr",'start','end',"gene"))

DiffIso_sig= DiffIso %>% filter(SigPAU2=="Yes") 


DiffIsowDom=DiffIso %>% mutate(ChimpDom=ifelse(PAS %in% Chimp_Dom2$PAS, "Yes", "No"),HumanDom=ifelse(PAS %in% Human_Dom2$PAS, "Yes", "No") ) 


ggplot(DiffIsowDom,aes(x=loc,fill=ChimpDom)) + geom_bar(stat = "count") + facet_grid(~SigPAU2) +labs(x="", y="Number of PAS", title="Differentially used PAS colored by Dominant Status in Chimp")+ scale_fill_brewer(palette = "Dark2",name="Is PAS Dominant in Chimp") + theme(legend.position = "top")

Version Author Date
86238eb brimittleman 2020-03-16
ggplot(DiffIsowDom,aes(x=loc,fill=HumanDom)) + geom_bar(stat = "count") + facet_grid(~SigPAU2) +labs(x="", y="Number of PAS", title="Differentially used PAS colored by Dominant Status in Human")+ scale_fill_brewer(palette = "Dark2",name="Is PAS Dominant in Chimp") + theme(legend.position = "top")

Version Author Date
86238eb brimittleman 2020-03-16

Of the 3076 how many are in the dominant set.

I need to use the set that includes ties here:

SiginChimp_Dom2= Chimp_Dom2 %>% ungroup %>% select(PAS) %>% inner_join(DiffIso_sig, by="PAS")
Warning: Column `PAS` joining factor and character vector, coercing into
character vector
nrow(SiginChimp_Dom2)
[1] 1549
SiginHuman_Dom2= Human_Dom2 %>% ungroup %>% select(PAS) %>% inner_join(DiffIso_sig, by="PAS")
Warning: Column `PAS` joining factor and character vector, coercing into
character vector
nrow(SiginHuman_Dom2)
[1] 1514

Enrichemnt:

EnrichChimp=c()
PvalueChimp=c()

for (i in c('cds', 'end', 'intron', 'utr3', 'utr5')){
  x=nrow(DiffIsowDom %>% filter(ChimpDom=="Yes", SigPAU2=="Yes", loc==i))
  m=nrow(DiffIsowDom %>% filter(SigPAU2=="Yes", loc==i))
  n=nrow(DiffIsowDom %>% filter(SigPAU2=="No", loc==i))
  k=nrow(DiffIsowDom %>% filter(loc==i,ChimpDom=="Yes"))
  N=nrow(DiffIsowDom %>% filter(loc==i))
  PvalueChimp=c(PvalueChimp, phyper(x,m,n,k,lower.tail=F))
  enrich=(x/k)/(m/N)
  EnrichChimp=c(EnrichChimp, round(enrich,2))
}


EnrichHuman=c()
PvalueHuman=c()

for (i in c('cds', 'end', 'intron', 'utr3', 'utr5')){
  x=nrow(DiffIsowDom %>% filter(HumanDom=="Yes", SigPAU2=="Yes", loc==i))
  m=nrow(DiffIsowDom %>% filter(SigPAU2=="Yes", loc==i))
  n=nrow(DiffIsowDom %>% filter(SigPAU2=="No", loc==i))
  k=nrow(DiffIsowDom %>% filter(loc==i,HumanDom=="Yes"))
  N=nrow(DiffIsowDom %>% filter(loc==i))
  PvalueHuman=c(PvalueHuman, phyper(x,m,n,k,lower.tail=F))
  enrich=(x/k)/(m/N)
  EnrichHuman=c(EnrichHuman, round(enrich,2))
}

locations=c('cds', 'end', 'intron', 'utr3', 'utr5')


EnrichDF=as.data.frame(cbind(locations, EnrichChimp,EnrichHuman ))
colnames(EnrichDF)=c("GenicLoc", "Chimp", "Human")

EnrichDF
  GenicLoc Chimp Human
1      cds  2.64   2.5
2      end  2.51  2.92
3   intron  2.62  3.41
4     utr3  1.95  1.83
5     utr5  2.79   2.4

Compare this result to a set of PAS by usage:

For this I will use dominant at 30%, I will then use, used at 30%

SiginChimp_Dom2_30= Chimp_Dom2 %>% ungroup%>% filter(Chimp>=.3)  %>% select(PAS) %>% inner_join(DiffIso_sig, by="PAS")
Warning: Column `PAS` joining factor and character vector, coercing into
character vector
nrow(SiginChimp_Dom2)
[1] 1549
SiginHuman_Dom2_30= Human_Dom2 %>% ungroup %>% filter(Human>=.3) %>% select(PAS) %>% inner_join(DiffIso_sig, by="PAS")
Warning: Column `PAS` joining factor and character vector, coercing into
character vector
nrow(SiginHuman_Dom2)
[1] 1514
HumanUsed30= allPAS %>% filter(Human>=.3)
nrow(HumanUsed30)
[1] 6896
ChimpUsed30= allPAS %>% filter(Chimp>=.3)
nrow(ChimpUsed30)
[1] 7456
allPAS_anno= allPAS %>% select(PAS,loc) %>% mutate(SigDPAU=ifelse(PAS %in% DiffIso_sig$PAS, "Yes","No"), HumanUse30=ifelse(PAS %in% HumanUsed30$PAS, "Yes", "No"), ChimpUse30=ifelse(PAS %in% ChimpUsed30$PAS, "Yes","No"), DomHuman=ifelse(PAS %in% SiginHuman_Dom2_30$PAS, "Yes", "No"), DomChimp=ifelse(PAS %in%SiginChimp_Dom2_30$PAS, "Yes", "No" ))

Enrichment of dominant in diff used human:

x=nrow(allPAS_anno %>% filter(DomHuman=="Yes", SigDPAU=="Yes"))
m=nrow(allPAS_anno %>% filter(SigDPAU=="Yes"))
n=nrow(allPAS_anno %>% filter(SigDPAU=="No"))
k=nrow(allPAS_anno %>% filter(DomHuman=="Yes"))
N=nrow(allPAS_anno)
phyper(x,m,n,k,lower.tail=F)
[1] 0
enrich=(x/k)/(m/N)
enrich
[1] 13.75748

Compare to human just used at 30%

x=nrow(allPAS_anno %>% filter(HumanUse30=="Yes", SigDPAU=="Yes"))
m=nrow(allPAS_anno %>% filter(SigDPAU=="Yes"))
n=nrow(allPAS_anno %>% filter(SigDPAU=="No"))
k=nrow(allPAS_anno %>% filter(HumanUse30=="Yes"))
N=nrow(allPAS_anno)
phyper(x,m,n,k,lower.tail=F)
[1] 4.329756e-180
enrich=(x/k)/(m/N)
enrich
[1] 2.248358

Enrichment of dominant in diff used chimp:

x=nrow(allPAS_anno %>% filter(DomChimp=="Yes", SigDPAU=="Yes"))
m=nrow(allPAS_anno %>% filter(SigDPAU=="Yes"))
n=nrow(allPAS_anno %>% filter(SigDPAU=="No"))
k=nrow(allPAS_anno %>% filter(DomChimp=="Yes"))
N=nrow(allPAS_anno)
phyper(x,m,n,k,lower.tail=F)
[1] 0
enrich=(x/k)/(m/N)
enrich
[1] 13.75748

Enrichment of used at 30%

x=nrow(allPAS_anno %>% filter(ChimpUse30=="Yes", SigDPAU=="Yes"))
m=nrow(allPAS_anno %>% filter(SigDPAU=="Yes"))
n=nrow(allPAS_anno %>% filter(SigDPAU=="No"))
k=nrow(allPAS_anno %>% filter(ChimpUse30=="Yes"))
N=nrow(allPAS_anno)
phyper(x,m,n,k,lower.tail=F)
[1] 4.169482e-274
enrich=(x/k)/(m/N)
enrich
[1] 2.485424

At the 30% cutoff in the domiant PAS has 13.8X enrichement and 30% used has 2.49X enrichment. Is this based on the dominant at 30% always being in the other set?

Do by location:

EnrichChimpDom=c()
PvalueChimpDom=c()

for (i in c('cds', 'end', 'intron', 'utr3', 'utr5')){
  x=nrow(allPAS_anno %>% filter(DomChimp=="Yes", SigDPAU=="Yes", loc==i))
  m=nrow(allPAS_anno %>% filter(SigDPAU=="Yes", loc==i))
  n=nrow(allPAS_anno %>% filter(SigDPAU=="No", loc==i))
  k=nrow(allPAS_anno %>% filter(loc==i,DomChimp=="Yes"))
  N=nrow(allPAS_anno %>% filter(loc==i))
  PvalueChimpDom=c(PvalueChimpDom, phyper(x,m,n,k,lower.tail=F))
  enrich=(x/k)/(m/N)
  EnrichChimpDom=c(EnrichChimpDom, round(enrich,2))
}

EnrichChimp30=c()
PvalueChimp30=c()
for (i in c('cds', 'end', 'intron', 'utr3', 'utr5')){
  x=nrow(allPAS_anno %>% filter(ChimpUse30=="Yes", SigDPAU=="Yes", loc==i))
  m=nrow(allPAS_anno %>% filter(SigDPAU=="Yes", loc==i))
  n=nrow(allPAS_anno %>% filter(SigDPAU=="No", loc==i))
  k=nrow(allPAS_anno %>% filter(loc==i,ChimpUse30=="Yes"))
  N=nrow(allPAS_anno %>% filter(loc==i))
  PvalueChimp30=c(PvalueChimp30, phyper(x,m,n,k,lower.tail=F))
  enrich=(x/k)/(m/N)
  EnrichChimp30=c(EnrichChimp30, round(enrich,2))
}
EnrichHumanDom=c()
PvalueHumanDom=c()

for (i in c('cds', 'end', 'intron', 'utr3', 'utr5')){
  x=nrow(allPAS_anno %>% filter(DomHuman=="Yes", SigDPAU=="Yes", loc==i))
  m=nrow(allPAS_anno %>% filter(SigDPAU=="Yes", loc==i))
  n=nrow(allPAS_anno %>% filter(SigDPAU=="No", loc==i))
  k=nrow(allPAS_anno %>% filter(loc==i,DomHuman=="Yes"))
  N=nrow(allPAS_anno %>% filter(loc==i))
  PvalueHumanDom=c(PvalueHumanDom, phyper(x,m,n,k,lower.tail=F))
  enrich=(x/k)/(m/N)
  EnrichHumanDom=c(EnrichHumanDom, round(enrich,2))
}

EnrichHuman30=c()
PvalueHuman30=c()
for (i in c('cds', 'end', 'intron', 'utr3', 'utr5')){
  x=nrow(allPAS_anno %>% filter(HumanUse30=="Yes", SigDPAU=="Yes", loc==i))
  m=nrow(allPAS_anno %>% filter(SigDPAU=="Yes", loc==i))
  n=nrow(allPAS_anno %>% filter(SigDPAU=="No", loc==i))
  k=nrow(allPAS_anno %>% filter(loc==i,HumanUse30=="Yes"))
  N=nrow(allPAS_anno %>% filter(loc==i))
  PvalueHuman30=c(PvalueHuman30, phyper(x,m,n,k,lower.tail=F))
  enrich=(x/k)/(m/N)
  EnrichHuman30=c(EnrichHuman30, round(enrich,2))
}
EnrichDataDFHuman=as.data.frame(cbind(loc=c('cds', 'end', 'intron', 'utr3', 'utr5'), Used30= EnrichHuman30,Dominant=EnrichHumanDom)) %>% gather("Set", "Enrichment", -loc)%>% mutate(species="Human")
Warning: attributes are not identical across measure variables;
they will be dropped
EnrichDataDFChimp=as.data.frame(cbind(loc=c('cds', 'end', 'intron', 'utr3', 'utr5'), Used30= EnrichChimp30,Dominant=EnrichChimpDom)) %>% gather("Set", "Enrichment", -loc) %>% mutate(species="Chimp")
Warning: attributes are not identical across measure variables;
they will be dropped
EnrichDataDFBoth= EnrichDataDFHuman %>% bind_rows(EnrichDataDFChimp)


EnrichDataDFBoth$Enrichment=as.numeric(EnrichDataDFBoth$Enrichment)
EnrichDataDFBoth$Set=as.factor(EnrichDataDFBoth$Set)




ggplot(EnrichDataDFBoth, aes(x=loc, y=Enrichment, by=Set, fill=Set)) + geom_bar(stat="identity", position="dodge") + geom_hline(yintercept = 1) + facet_grid(~species)+ scale_fill_brewer(palette = "Dark2",name="") + theme(legend.position = "bottom") + labs(x="Genic Location", title="Dominant PAS are more enriched for dPAS \nthan all PAS used at same level") 

Version Author Date
d8ae388 brimittleman 2020-03-18

test opposite

EnrichChimpDomOpp=c()
for (i in c('cds', 'end', 'intron', 'utr3', 'utr5')){
  x=nrow(allPAS_anno %>% filter(DomChimp=="Yes", SigDPAU=="Yes", loc==i))
  m=nrow(allPAS_anno %>% filter(DomChimp=="Yes", loc==i))
  n=nrow(allPAS_anno %>% filter(DomChimp=="No", loc==i))
  k=nrow(allPAS_anno %>% filter(loc==i,SigDPAU=="Yes"))
  N=nrow(allPAS_anno %>% filter(loc==i))
  enrich=(x/k)/(m/N)
  EnrichChimpDomOpp=c(EnrichChimpDomOpp, round(enrich,2))
}

EnrichChimpDomOpp
[1] 22.54 15.80 15.40 10.98 13.32
EnrichChimpDom
[1] 22.54 15.80 15.40 10.98 13.32

ok test. its the same.

Make sure this isnt driven by counts:

I can do this with raw counts.

#allPAS_anno= allPAS %>% select(PAS,loc) %>% mutate(SigDPAU=ifelse(PAS %in% DiffIso_sig$PAS, "Yes","No"), HumanUse30=ifelse(PAS %in% HumanUsed30$PAS, "Yes", "No"), ChimpUse30=ifelse(PAS %in% ChimpUsed30$PAS, "Yes","No"), DomHuman=ifelse(PAS %in% SiginHuman_Dom2_30$PAS, "Yes", "No"), DomChimp=ifelse(PAS %in%SiginChimp_Dom2_30$PAS, "Yes", "No" ))
PASMetaloc= PASMeta %>% select(PAS,loc)


HumanCounts=read.table("../Human/data/CleanLiftedPeaks_FC/ALLPAS_postLift_LocParsed_Human_fixed.fc", header = T)%>% separate(Geneid, into=c("disc", "PAS", "chr2", "start2", "end2", 'strand', 'geneid'), sep=":")  %>% select(PAS, contains("_N"))  %>% gather("ind", "count", -PAS) %>% group_by(PAS) %>% summarise(meanCount=mean(count))

HumanCounts_use30= HumanCounts %>% filter(PAS %in% HumanUsed30$PAS) %>% mutate(Set="Use30", species="Human") %>% inner_join(PASMetaloc, by="PAS")
HumanCounts_Dom= HumanCounts %>% filter(PAS %in% SiginHuman_Dom2_30$PAS)  %>% mutate(Set="Dominant", species="Human") %>% inner_join(PASMetaloc, by="PAS")

ChimpCounts=read.table("../Chimp/data/CleanLiftedPeaks_FC/ALLPAS_postLift_LocParsed_Chimp_fixed.fc", header = T)%>% separate(Geneid, into=c("disc", "PAS", "chr2", "start2", "end2", 'strand', 'geneid'), sep=":")  %>% select(PAS, contains("_N"))  %>% gather("ind", "count", -PAS) %>% group_by(PAS) %>% summarise(meanCount=mean(count))


ChimpCounts_use30= ChimpCounts %>% filter(PAS %in%ChimpUsed30$PAS) %>% mutate(Set="Use30", species="Chimp") %>% inner_join(PASMetaloc, by="PAS")
ChimpCounts_Dom= ChimpCounts %>% filter(PAS %in% SiginChimp_Dom2_30$PAS)  %>% mutate(Set="Dominant", species="Chimp") %>% inner_join(PASMetaloc, by="PAS")


AllCountsDF= HumanCounts_use30 %>% bind_rows(HumanCounts_Dom) %>% bind_rows(ChimpCounts_use30) %>% bind_rows(ChimpCounts_Dom)
ggplot(AllCountsDF, aes(y=log10(meanCount), x=Set, fill=Set)) +geom_boxplot() +facet_grid(~species) +scale_fill_brewer(palette = "Dark2",name="") + theme(legend.position = "none") + labs(title="Counts for Dominant PAS at 30% vs Usage at 30%", y="log10(Mean Counts)") 

Version Author Date
d8ae388 brimittleman 2020-03-18
ggplot(AllCountsDF, aes(y=log10(meanCount), by=Set, fill=Set, x=loc)) +geom_boxplot() +facet_grid(~species) +scale_fill_brewer(palette = "Dark2",name="") + theme(legend.position = "none") + labs(title="Counts for Dominant PAS at 30% vs Usage at 30%", y="log10(Mean Counts)") 

Version Author Date
d8ae388 brimittleman 2020-03-18

diff dominance and discovery

DiffDom

SamDomLoc=SameDom %>% ungroup() %>% select(ChimpPAS) %>% rename("PAS"=ChimpPAS) %>% inner_join(allPAS, by="PAS")
ggplot(SamDomLoc, aes(x=disc, fill=disc)) +geom_bar(stat="count") + labs(title="Same dominant")

Version Author Date
d8ae388 brimittleman 2020-03-18
DiffDomChimp= DiffDom %>% ungroup() %>% select(ChimpPAS) %>% rename("PAS"=ChimpPAS) %>% inner_join(allPAS, by="PAS")

ggplot(DiffDomChimp, aes(x=disc, fill=disc)) +geom_bar(stat="count") + labs(title="Different dominant, Chimp PAS")

Version Author Date
d8ae388 brimittleman 2020-03-18
DiffDomHuman= DiffDom %>% ungroup() %>% select(HumanPAS) %>% rename("PAS"=HumanPAS) %>% inner_join(allPAS, by="PAS")

ggplot(DiffDomHuman, aes(x=disc, fill=disc)) +geom_bar(stat="count") +  labs(title="Different dominant, Human PAS")

#DiffDomDiffLoc

DiffDomDiffLocChimp= DiffDomDiffLoc %>% ungroup() %>% select(ChimpPAS) %>% rename("PAS"=ChimpPAS) %>% inner_join(allPAS, by="PAS")

ggplot(DiffDomDiffLocChimp, aes(x=disc, fill=disc)) +geom_bar(stat="count") +  labs(title="Different dominant, different Loc, Chimp PAS")

DiffDomDiffLocHuman= DiffDomDiffLoc %>% ungroup() %>% select(HumanPAS) %>% rename("PAS"=HumanPAS) %>% inner_join(allPAS, by="PAS")

ggplot(DiffDomDiffLocHuman, aes(x=disc, fill=disc)) +geom_bar(stat="count") +  labs(title="Different dominant, different Loc, Human PAS")

Does this go away if we say has to be 50%

DiffDomChimp50= BothDom_50_same %>% ungroup() %>% select(ChimpPAS) %>% rename("PAS"=ChimpPAS) %>% inner_join(allPAS, by="PAS")

ggplot(DiffDomChimp50, aes(x=disc, fill=disc)) +geom_bar(stat="count") + labs(title="Different dominant, Chimp PAS")

DiffDomHuman50= BothDom_50_same %>% ungroup() %>% select(HumanPAS) %>% rename("PAS"=HumanPAS) %>% inner_join(allPAS, by="PAS")

ggplot(DiffDomHuman50, aes(x=disc, fill=disc)) +geom_bar(stat="count") +  labs(title="Different dominant, Human PAS")

Problems:

  • snorna (need to be removed)
  • mispriming?
  • why not disovered in the right species

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] cowplot_0.9.4   workflowr_1.6.0 forcats_0.3.0   stringr_1.3.1  
 [5] dplyr_0.8.0.1   purrr_0.3.2     readr_1.3.1     tidyr_0.8.3    
 [9] tibble_2.1.1    ggplot2_3.1.1   tidyverse_1.2.1

loaded via a namespace (and not attached):
 [1] tidyselect_0.2.5   reshape2_1.4.3     haven_1.1.2       
 [4] lattice_0.20-38    colorspace_1.3-2   generics_0.0.2    
 [7] htmltools_0.3.6    yaml_2.2.0         rlang_0.4.0       
[10] later_0.7.5        pillar_1.3.1       glue_1.3.0        
[13] withr_2.1.2        RColorBrewer_1.1-2 modelr_0.1.2      
[16] readxl_1.1.0       plyr_1.8.4         munsell_0.5.0     
[19] gtable_0.2.0       cellranger_1.1.0   rvest_0.3.2       
[22] evaluate_0.12      labeling_0.3       knitr_1.20        
[25] httpuv_1.4.5       broom_0.5.1        Rcpp_1.0.2        
[28] promises_1.0.1     scales_1.0.0       backports_1.1.2   
[31] jsonlite_1.6       fs_1.3.1           hms_0.4.2         
[34] digest_0.6.18      stringi_1.2.4      grid_3.5.1        
[37] rprojroot_1.3-2    cli_1.1.0          tools_3.5.1       
[40] magrittr_1.5       lazyeval_0.2.1     crayon_1.3.4      
[43] whisker_0.3-2      pkgconfig_2.0.2    xml2_1.2.0        
[46] lubridate_1.7.4    assertthat_0.2.0   rmarkdown_1.10    
[49] httr_1.3.1         rstudioapi_0.10    R6_2.3.0          
[52] nlme_3.1-137       git2r_0.26.1       compiler_3.5.1