Last updated: 2019-10-04

Checks: 7 0

Knit directory: Comparative_APA/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.4.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190902) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    code/chimp_log/
    Ignored:    code/human_log/
    Ignored:    data/metadata_HCpanel.txt.sb-f4823d1e-qihGek/

Untracked files:
    Untracked:  ._.DS_Store
    Untracked:  Chimp/
    Untracked:  Human/
    Untracked:  code/._Config_chimp.yaml
    Untracked:  code/._Config_human.yaml
    Untracked:  code/._LiftOrthoPAS2chimp.sh
    Untracked:  code/._Snakefile
    Untracked:  code/._SnakefilePAS
    Untracked:  code/._SnakefilePASfilt
    Untracked:  code/._bed215upbed.py
    Untracked:  code/._bed2SAF_gen.py
    Untracked:  code/._buildStarIndex.sh
    Untracked:  code/._cleanbed2saf.py
    Untracked:  code/._cluster.json
    Untracked:  code/._extraSnakefiltpas
    Untracked:  code/._filterPASforMP.py
    Untracked:  code/._filterPostLift.py
    Untracked:  code/._fixUTRexonanno.py
    Untracked:  code/._formathg38Anno.py
    Untracked:  code/._formatpantro6Anno.py
    Untracked:  code/._intersectLiftedPAS.sh
    Untracked:  code/._liftPAS19to38.sh
    Untracked:  code/._maphg19.sh
    Untracked:  code/._maphg19_subjunc.sh
    Untracked:  code/._preparePAS4lift.py
    Untracked:  code/._primaryLift.sh
    Untracked:  code/._recLiftchim2human.sh
    Untracked:  code/._revLiftPAShg38to19.sh
    Untracked:  code/._reverseLift.sh
    Untracked:  code/._snakemake.batch
    Untracked:  code/._snakemakePAS.batch
    Untracked:  code/._snakemakePASchimp.batch
    Untracked:  code/._snakemakePAShuman.batch
    Untracked:  code/._snakemake_chimp.batch
    Untracked:  code/._snakemake_human.batch
    Untracked:  code/._snakemakefiltPAS.batch
    Untracked:  code/._snakemakefiltPAS_chimp
    Untracked:  code/._snakemakefiltPAS_chimp.sh
    Untracked:  code/._snakemakefiltPAS_human.sh
    Untracked:  code/._submit-snakemake-chimp.sh
    Untracked:  code/._submit-snakemake-human.sh
    Untracked:  code/._submit-snakemakePAS-chimp.sh
    Untracked:  code/._submit-snakemakePAS-human.sh
    Untracked:  code/._submit-snakemakefiltPAS-chimp.sh
    Untracked:  code/._submit-snakemakefiltPAS-human.sh
    Untracked:  code/.snakemake/
    Untracked:  code/Config_chimp.yaml
    Untracked:  code/Config_human.yaml
    Untracked:  code/LiftOrthoPAS2chimp.sh
    Untracked:  code/LiftorthoPAS.err
    Untracked:  code/LiftorthoPASt.out
    Untracked:  code/Log.out
    Untracked:  code/Rev_liftoverPAShg19to38.err
    Untracked:  code/Rev_liftoverPAShg19to38.out
    Untracked:  code/SAF215upbed_gen.py
    Untracked:  code/Snakefile
    Untracked:  code/SnakefilePAS
    Untracked:  code/SnakefilePASfilt
    Untracked:  code/Upstream10Bases_general.py
    Untracked:  code/apaQTLsnake.err
    Untracked:  code/apaQTLsnake.out
    Untracked:  code/apaQTLsnakePAS.err
    Untracked:  code/apaQTLsnakePAS.out
    Untracked:  code/apaQTLsnakePAShuman.err
    Untracked:  code/bed215upbed.py
    Untracked:  code/bed2SAF_gen.py
    Untracked:  code/bed2saf.py
    Untracked:  code/bg_to_cov.py
    Untracked:  code/buildStarIndex.sh
    Untracked:  code/callPeaksYL.py
    Untracked:  code/chooseAnno2Bed.py
    Untracked:  code/chooseAnno2SAF.py
    Untracked:  code/cleanbed2saf.py
    Untracked:  code/cluster.json
    Untracked:  code/clusterPAS.json
    Untracked:  code/clusterfiltPAS.json
    Untracked:  code/convertNumeric.py
    Untracked:  code/extraSnakefiltpas
    Untracked:  code/filter5perc.R
    Untracked:  code/filter5percPheno.py
    Untracked:  code/filterBamforMP.pysam2_gen.py
    Untracked:  code/filterMissprimingInNuc10_gen.py
    Untracked:  code/filterPASforMP.py
    Untracked:  code/filterPostLift.py
    Untracked:  code/filterSAFforMP_gen.py
    Untracked:  code/filterSortBedbyCleanedBed_gen.R
    Untracked:  code/filterpeaks.py
    Untracked:  code/fixFChead.py
    Untracked:  code/fixFChead_bothfrac.py
    Untracked:  code/fixUTRexonanno.py
    Untracked:  code/formathg38Anno.py
    Untracked:  code/generateStarIndex.err
    Untracked:  code/generateStarIndex.out
    Untracked:  code/intersectLiftedPAS.sh
    Untracked:  code/liftPAS19to38.sh
    Untracked:  code/liftoverPAShg19to38.err
    Untracked:  code/liftoverPAShg19to38.out
    Untracked:  code/log/
    Untracked:  code/make5percPeakbed.py
    Untracked:  code/makeFileID.py
    Untracked:  code/makePheno.py
    Untracked:  code/maphg19.err
    Untracked:  code/maphg19.out
    Untracked:  code/maphg19.sh
    Untracked:  code/maphg19_sub.err
    Untracked:  code/maphg19_sub.out
    Untracked:  code/maphg19_subjunc.sh
    Untracked:  code/namePeaks.py
    Untracked:  code/overlapPAS.err
    Untracked:  code/overlapPAS.out
    Untracked:  code/peak2PAS.py
    Untracked:  code/pheno2countonly.R
    Untracked:  code/preparePAS4lift.py
    Untracked:  code/primaryLift.err
    Untracked:  code/primaryLift.out
    Untracked:  code/primaryLift.sh
    Untracked:  code/quantLiftedPAS.err
    Untracked:  code/quantLiftedPAS.out
    Untracked:  code/quantLiftedPAS.sh
    Untracked:  code/recChimpback2Human.err
    Untracked:  code/recChimpback2Human.out
    Untracked:  code/recLiftchim2human.sh
    Untracked:  code/revLift.err
    Untracked:  code/revLift.out
    Untracked:  code/revLiftPAShg38to19.sh
    Untracked:  code/reverseLift.sh
    Untracked:  code/slurm-62824013.out
    Untracked:  code/slurm-62825841.out
    Untracked:  code/slurm-62826116.out
    Untracked:  code/snakePASChimp.err
    Untracked:  code/snakePASChimp.out
    Untracked:  code/snakePAShuman.out
    Untracked:  code/snakemake.batch
    Untracked:  code/snakemakePAS.batch
    Untracked:  code/snakemakePASFiltChimp.err
    Untracked:  code/snakemakePASFiltChimp.out
    Untracked:  code/snakemakePASFiltHuman.err
    Untracked:  code/snakemakePASFiltHuman.out
    Untracked:  code/snakemakePASchimp.batch
    Untracked:  code/snakemakePAShuman.batch
    Untracked:  code/snakemake_chimp.batch
    Untracked:  code/snakemake_human.batch
    Untracked:  code/snakemakefiltPAS.batch
    Untracked:  code/snakemakefiltPAS_chimp.sh
    Untracked:  code/snakemakefiltPAS_human.sh
    Untracked:  code/submit-snakemake-chimp.sh
    Untracked:  code/submit-snakemake-human.sh
    Untracked:  code/submit-snakemakePAS-chimp.sh
    Untracked:  code/submit-snakemakePAS-human.sh
    Untracked:  code/submit-snakemakefiltPAS-chimp.sh
    Untracked:  code/submit-snakemakefiltPAS-human.sh
    Untracked:  data/._metadata_HCpanel.txt
    Untracked:  data/._metadata_HCpanel.txt.sb-f4823d1e-qihGek
    Untracked:  data/._metadata_HCpanel.xlsx
    Untracked:  data/chainFiles/
    Untracked:  data/cleanPeaks_anno/
    Untracked:  data/cleanPeaks_byspecies/
    Untracked:  data/cleanPeaks_lifted/
    Untracked:  data/liftover_files/
    Untracked:  data/metadata_HCpanel.txt
    Untracked:  data/metadata_HCpanel.xlsx
    Untracked:  data/primaryLift/
    Untracked:  data/reverseLift/

Unstaged changes:
    Modified:   analysis/annotatePAS.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd 00c308a brimittleman 2019-10-04 fix overlap
html e0ac227 brimittleman 2019-10-03 Build site.
Rmd e3f0cdf brimittleman 2019-10-03 add annotation analysis
html 5fbf02b brimittleman 2019-10-02 Build site.
Rmd 1c6c5e2 brimittleman 2019-10-02 add results for full set
html 8dd5eec brimittleman 2019-10-02 Build site.
Rmd 558afe6 brimittleman 2019-10-02 add liftover res
html b5edd8e brimittleman 2019-10-01 Build site.
Rmd b5a2151 brimittleman 2019-10-01 add analysis for liftover

library(tidyverse)
── Attaching packages ─────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.1.1       ✔ purrr   0.3.2  
✔ tibble  2.1.1       ✔ dplyr   0.8.0.1
✔ tidyr   0.8.3       ✔ stringr 1.3.1  
✔ readr   1.3.1       ✔ forcats 0.3.0  
── Conflicts ────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()

Next step will be to prepare these for liftover. I will get the PAS as the furthest downstream base. I will liftover the regions 100bp upstream and 100bp downstream of the PAS.

As of now the PAS are still on the opposite strand.

Pos strand: pas is the end - start_new= end-100 - end_new=end + 100

neg strand: pas is the start - start_new= start-100 - end_new= start + 100

human: /project2/gilad/briana/Comparative_APA/Human/data/cleanPeaks/human_APApeaks.ALLChrom.Filtered.Named.Cleaned.bed chimp: /project2/gilad/briana/Comparative_APA/Chimp/data/cleanPeaks/chimp_APApeaks.ALLChrom.Filtered.Named.Cleaned.bed

Output:

mkdir ../data/cleanPeaks_byspecies/

python preparePAS4lift.py ../Human/data/cleanPeaks/human_APApeaks.ALLChrom.Filtered.Named.Cleaned.bed ../data/cleanPeaks_byspecies/human_APApeaks.ALLChrom.Filtered.Named.Cleaned_100bpreg.bed

python preparePAS4lift.py ../Chimp/data/cleanPeaks/chimp_APApeaks.ALLChrom.Filtered.Named.Cleaned.bed ../data/cleanPeaks_byspecies/chimp_APApeaks.ALLChrom.Filtered.Named.Cleaned_100bpreg.bed

Chain files from: http://hgdownload.soe.ucsc.edu/downloads.html#chimp dowload to ../data/chainFiles/

Liftover pipeline:

start with human- lift to chimp and back start with chimp- lift to human and back

mkdir ../data/primaryLift
mkdir ../data/reverseLift

sbatch primaryLift.sh

Results from primary lift:

unliftedH=read.table("../data/primaryLift/human_APApeaks_primarylift2Chimp_UNLIFTED.bed",stringsAsFactors = F) %>% nrow()
unliftedC=read.table("../data/primaryLift/chimp_APApeaks_primarylift2Human_UNLIFTED.bed",stringsAsFactors = F) %>% nrow()

liftedH=read.table("../data/primaryLift/human_APApeaks_primarylift2Chimp.bed",stringsAsFactors = F) %>% nrow()
liftedC=read.table("../data/primaryLift/chimp_APApeaks_primarylift2Human.bed",stringsAsFactors = F) %>% nrow()

primaryUnC=c("Chimp","Unlifted", unliftedC)
primaryUnH=c("Human","Unlifted", unliftedH)

primaryLH=c("Human","Lifted", liftedH)
primaryLC=c("Chimp","Lifted", liftedC)

header=c("species", "liftStat", "PAS")
primaryDF= as.data.frame(rbind(primaryLH,primaryLC, primaryUnH,primaryUnC)) 
colnames(primaryDF)=header


primaryDF$PAS=as.numeric(as.character(primaryDF$PAS)) 



primaryDF= primaryDF %>% group_by(species) %>% mutate(nPAS=sum(PAS)) %>% ungroup() %>% mutate(proportion=PAS/nPAS)
ggplot(primaryDF,aes(x=species, y=PAS, fill=liftStat)) + geom_bar(stat="identity",position = "dodge") + scale_fill_brewer(palette = "Dark2") + labs(title="Primary Liftover Results")

Version Author Date
8dd5eec brimittleman 2019-10-02
ggplot(primaryDF,aes(x=species, y=proportion, fill=liftStat)) + geom_bar(stat="identity",position = "dodge") + scale_fill_brewer(palette = "Dark2") + labs(title="Primary Liftover Results")

Version Author Date
8dd5eec brimittleman 2019-10-02

Reverse lift:

re_unliftedH=read.table("../data/reverseLift/human_APApeaks_primarylift2Human_rev2Human_UNLIFTED.bed",stringsAsFactors = F) %>% nrow()
re_unliftedC=read.table("../data/reverseLift/chimp_APApeaks_primarylift2Human_rev2Chimp_UNLIFTED.bed",stringsAsFactors = F) %>% nrow()

re_liftedH=read.table("../data/reverseLift/human_APApeaks_primarylift2Chimp_rev2Human.bed",stringsAsFactors = F) %>% nrow()
re_liftedC=read.table("../data/reverseLift/chimp_APApeaks_primarylift2Human_rev2Chimp.bed",stringsAsFactors = F) %>% nrow()

re_UnC=c("Chimp","Unlifted", re_unliftedC)
re_UnH=c("Human","Unlifted", re_unliftedH)

re_LH=c("Human","Lifted", re_liftedH)
re_LC=c("Chimp","Lifted", re_liftedC)

header=c("species", "liftStat", "PAS")
re_DF= as.data.frame(rbind(re_LH,re_LC, re_UnH,re_UnC)) 
colnames(re_DF)=header


re_DF$PAS=as.numeric(as.character(re_DF$PAS)) 



re_DF= re_DF %>% group_by(species) %>% mutate(nPAS=sum(PAS)) %>% ungroup() %>% mutate(proportion=PAS/nPAS)
ggplot(re_DF,aes(x=species, y=PAS, fill=liftStat)) + geom_bar(stat="identity",position = "dodge") + scale_fill_brewer(palette = "Dark2") + labs(title="Reverse Liftover Results")

Version Author Date
8dd5eec brimittleman 2019-10-02
ggplot(re_DF,aes(x=species, y=proportion, fill=liftStat)) + geom_bar(stat="identity",position = "dodge") + scale_fill_brewer(palette = "Dark2")+ labs(title="Reverse Liftover Results")

Version Author Date
8dd5eec brimittleman 2019-10-02

I need to now make sure they lifted to the same location. To do this I will overlap the reciprocal lifted PAS with the original files.

I subset the original files by the pas that have an exact match in the reverse map. I can do this by pas name- start:end

mkdir ../data/cleanPeaks_lifted
python filterPostLift.py ../data/cleanPeaks_byspecies/human_APApeaks.ALLChrom.Filtered.Named.Cleaned_100bpreg.bed ../data/reverseLift/human_APApeaks_primarylift2Chimp_rev2Human.bed ../data/cleanPeaks_lifted/Human_PASregions.bed

python filterPostLift.py ../data/cleanPeaks_byspecies/chimp_APApeaks.ALLChrom.Filtered.Named.Cleaned_100bpreg.bed  ../data/reverseLift/chimp_APApeaks_primarylift2Human_rev2Chimp.bed ../data/cleanPeaks_lifted/Chimp_PASregions.bed

Results:

Human_recLift=read.table("../data/cleanPeaks_lifted/Human_PASregions.bed",stringsAsFactors = F, col.names = c("chr", "start","end", "name", "score", "strand")) 
Chimp_recLift=read.table("../data/cleanPeaks_lifted/Chimp_PASregions.bed",stringsAsFactors = F,col.names = c("chr", "start","end", "name", "score", "strand"))

originalH=unliftedH + liftedH
originalC=unliftedC + liftedC

#human
nrow(Human_recLift)/originalH
[1] 0.9640866
#chimp 
nrow(Chimp_recLift)/originalC
[1] 0.9655327

96% reciprocally lifted over.

lift the chimp ones back to human

sbatch recLiftchim2human.sh

Join the results: If they are discovered in both say so.

I need to intersect these with bedtools to know when a PAS is

sort -k1,1 -k2,2n ../data/cleanPeaks_lifted/Chimp_PASregions_humanCoord.bed > ../data/cleanPeaks_lifted/Chimp_PASregions_humanCoord.sort.bed


sort -k1,1 -k2,2n ../data/cleanPeaks_lifted/Human_PASregions.bed > ../data/cleanPeaks_lifted/Human_PASregions.sort.bed

I used 75% overlap for the observed in both. I had it report number of basepair overlap so i can evaluate this. If it is bimodal i will change this. (i chose 75% because its 50bp or within 1 read.)

OverlapBoth_Test=read.table("../data/cleanPeaks_lifted/PASregions_identifiedbothTEST.txt", col.names = c("Hchr", "Hstart","Hend", "Hname", "Hscore", "Hstrand", "Cchr", "Cstart", "Cend", "Cname", "Cscore", "Cstrand", "overlap"),stringsAsFactors = F)

ggplot(OverlapBoth_Test, aes(x=overlap)) + geom_histogram(bins=30) + scale_y_log10() + geom_vline(xintercept = 125)

Version Author Date
5fbf02b brimittleman 2019-10-02
125/200
[1] 0.625

I will go with 62.5% overlap. I can prepare the files to make a full set.

OverlapBoth=read.table("../data/cleanPeaks_lifted/PASregions_identifiedboth.txt", col.names = c("Hchr", "Hstart","Hend", "Hname", "Hscore", "Hstrand", "Cchr", "Cstart", "Cend", "Cname", "Cscore", "Cstrand", "overlap"),stringsAsFactors = F) %>% mutate(meanScore=(Hscore+Cscore)/2, name=paste("Both", Hname, sep=":"), Bothname=paste(Hname, Cname, sep=":"))

overlap2= OverlapBoth %>% group_by(name) %>% filter(n()>1) %>%  mutate(id = row_number()) %>% filter(id==2)

OverlapBoth_format=read.table("../data/cleanPeaks_lifted/PASregions_identifiedboth.txt", col.names = c("Hchr", "Hstart","Hend", "Hname", "Hscore", "Hstrand", "Cchr", "Cstart", "Cend", "Cname", "Cscore", "Cstrand", "overlap"),stringsAsFactors = F) %>% mutate(meanScore=(Hscore+Cscore)/2, name=paste("Both", Hname, sep=":"),Bothname=paste(Hname, Cname, sep=":")) %>% filter(!Bothname %in% overlap2$Bothname) %>% select(Hchr,Hstart,Hend,name,meanScore,Hstrand) 



HumanSpec=read.table("../data/cleanPeaks_lifted/PASregions_identifiedHuman.txt", col.names = c("Hchr", "Hstart","Hend", "Hname", "meanScore", 'Hstrand'),stringsAsFactors = F) %>% mutate(name=paste("Human", Hname, sep=":")) %>% select(Hchr, Hstart,Hend, name, meanScore, Hstrand) 


ChimpSpec=read.table("../data/cleanPeaks_lifted/PASregions_identifiedChimp.txt", col.names = c("Hchr", "Hstart","Hend", "Cname", "meanScore", 'Hstrand'),stringsAsFactors = F) %>% mutate(name=paste("Chimp", Cname, sep=":")) %>% select(Hchr, Hstart,Hend, name, meanScore, Hstrand)

Join all of these and plot characteristics

AllPAS=as.data.frame(rbind(OverlapBoth_format,HumanSpec,ChimpSpec)) %>% separate(name, into=c("discovery", "PAS"))


ggplot(AllPAS, aes(x=discovery, fill=discovery)) + geom_bar(stat="count")+ scale_fill_brewer(palette = "Dark2")

Version Author Date
5fbf02b brimittleman 2019-10-02
ggplot(AllPAS, aes(x=discovery, fill=discovery)) +  geom_bar(aes(y = (..count..)/sum(..count..)))+ scale_fill_brewer(palette = "Dark2")

Plot the difference in scores for both and discovered in 1 or other:

ggplot(AllPAS, aes(x=discovery, fill=discovery, y=meanScore)) + geom_boxplot() + scale_y_log10()+ scale_fill_brewer(palette = "Dark2")

This is expected. Those found in both will be used more often. I expect many of those only discovered in 1 will drop out at the 5% cutoff.

AllPAS_use=as.data.frame(rbind(OverlapBoth_format,HumanSpec,ChimpSpec))

write.table(AllPAS_use,  "../data/cleanPeaks_lifted/AllPAS_postLift.bed", col.names = F, row.names = F, quote = F, sep = "\t") 

sort these:

sort -k1,1 -k2,2n ../data/cleanPeaks_lifted/AllPAS_postLift.bed > ../data/cleanPeaks_lifted/AllPAS_postLift.sort.bed

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] forcats_0.3.0   stringr_1.3.1   dplyr_0.8.0.1   purrr_0.3.2    
[5] readr_1.3.1     tidyr_0.8.3     tibble_2.1.1    ggplot2_3.1.1  
[9] tidyverse_1.2.1

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.2         RColorBrewer_1.1-2 cellranger_1.1.0  
 [4] pillar_1.3.1       compiler_3.5.1     git2r_0.25.2      
 [7] plyr_1.8.4         workflowr_1.4.0    tools_3.5.1       
[10] digest_0.6.18      lubridate_1.7.4    jsonlite_1.6      
[13] evaluate_0.12      nlme_3.1-137       gtable_0.2.0      
[16] lattice_0.20-38    pkgconfig_2.0.2    rlang_0.4.0       
[19] cli_1.1.0          rstudioapi_0.10    yaml_2.2.0        
[22] haven_1.1.2        withr_2.1.2        xml2_1.2.0        
[25] httr_1.3.1         knitr_1.20         hms_0.4.2         
[28] generics_0.0.2     fs_1.3.1           rprojroot_1.3-2   
[31] grid_3.5.1         tidyselect_0.2.5   glue_1.3.0        
[34] R6_2.3.0           readxl_1.1.0       rmarkdown_1.10    
[37] modelr_0.1.2       magrittr_1.5       whisker_0.3-2     
[40] backports_1.1.2    scales_1.0.0       htmltools_0.3.6   
[43] rvest_0.3.2        assertthat_0.2.0   colorspace_1.3-2  
[46] labeling_0.3       stringi_1.2.4      lazyeval_0.2.1    
[49] munsell_0.5.0      broom_0.5.1        crayon_1.3.4