Last updated: 2019-07-26

Checks: 6 1

Knit directory: apaQTL/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.4.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

The global environment had objects present when the code in the R Markdown file was run. These objects can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment. Use wflow_publish or wflow_build to ensure that the code is always run in an empty environment.

The following objects were defined in the global environment when these results were created:

Name Class Size
data environment 56 bytes
env environment 56 bytes

The command set.seed(20190411) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/.DS_Store
    Ignored:    output/.DS_Store

Untracked files:
    Untracked:  .Rprofile
    Untracked:  ._.DS_Store
    Untracked:  .gitignore
    Untracked:  _workflowr.yml
    Untracked:  analysis/._PASdescriptiveplots.Rmd
    Untracked:  analysis/._cuttoffPercUsage.Rmd
    Untracked:  analysis/QTLexampleplots.Rmd
    Untracked:  analysis/cuttoffPercUsage.Rmd
    Untracked:  analysis/eQTLoverlap.Rmd
    Untracked:  analysis/mergeRNA.Rmd
    Untracked:  analysis/oldstuffNotNeeded.Rmd
    Untracked:  apaQTL.Rproj
    Untracked:  code/.NascentRNAdtPlotFirstintronicPAS.sh.swp
    Untracked:  code/._ApaQTL_nominalNonnorm.sh
    Untracked:  code/._BothFracDTPlotGeneRegions_normalized.sh
    Untracked:  code/._EandPqtl_perm.sh
    Untracked:  code/._EandPqtls.sh
    Untracked:  code/._FC_NucintornUpandDown.sh
    Untracked:  code/._FC_UTR.sh
    Untracked:  code/._FC_intornUpandDownsteamPAS.sh
    Untracked:  code/._FC_nascentseq.sh
    Untracked:  code/._FC_newPeaks_olddata.sh
    Untracked:  code/._HMMpermuteTotal.py
    Untracked:  code/._HmmPermute.py
    Untracked:  code/._IntronicPASDT.sh
    Untracked:  code/._LC_samplegroups.py
    Untracked:  code/._LD_qtl.sh
    Untracked:  code/._NascentRNAdtPlot.sh
    Untracked:  code/._NascentRNAdtPlot3UTRPAS.sh
    Untracked:  code/._NascentRNAdtPlotExcludeFirstintronicPAS.sh
    Untracked:  code/._NascentRNAdtPlotNucPAS.sh
    Untracked:  code/._NascentRNAdtPlotTotPAS.sh
    Untracked:  code/._NascentRNAdtPlotintronicPAS.sh
    Untracked:  code/._NascnetRNAdtPlotPAS.sh
    Untracked:  code/._NetSeq_fourthintronDT.sh
    Untracked:  code/._NomResfromPASSNP.py
    Untracked:  code/._NuclearPAS_5per.bed.py
    Untracked:  code/._PTTfacetboxplots.R
    Untracked:  code/._PrematureQTLNominal.sh
    Untracked:  code/._PrematureQTLPermuted.sh
    Untracked:  code/._QTL2bed.py
    Untracked:  code/._QTL2bed_withstrand.py
    Untracked:  code/._RNAbam2bw.sh
    Untracked:  code/._SnakefilePAS
    Untracked:  code/._SnakefilefiltPAS
    Untracked:  code/._TESplots100bp.sh
    Untracked:  code/._TESplots150bp.sh
    Untracked:  code/._TESplots200bp.sh
    Untracked:  code/._TotalPAS_5perc.bed.py
    Untracked:  code/._Untitled
    Untracked:  code/._ZipandTabPheno.sh
    Untracked:  code/._aAPAqtl_nominal39ind.sh
    Untracked:  code/._annotatePacBioPASregion.sh
    Untracked:  code/._annotatedPAS2bed.py
    Untracked:  code/._apaQTLCorrectPvalMakeQQ.R
    Untracked:  code/._apaQTL_Nominal.sh
    Untracked:  code/._apaQTL_permuted.sh
    Untracked:  code/._assignNucIntonpeak2intronlocs.sh
    Untracked:  code/._assignTotIntronpeak2intronlocs.sh
    Untracked:  code/._bam2BW_5primemost.sh
    Untracked:  code/._bed2saf.py
    Untracked:  code/._bothFracDTplot1stintron.sh
    Untracked:  code/._bothFracDTplot4thintron.sh
    Untracked:  code/._bothFrac_FC.sh
    Untracked:  code/._callPeaksYL.py
    Untracked:  code/._changenomQTLres2geneName.py
    Untracked:  code/._chooseAnno2PAS_pacbio.py
    Untracked:  code/._chooseAnno2SAF.py
    Untracked:  code/._chooseSignalSite
    Untracked:  code/._chooseSignalSite.py
    Untracked:  code/._closestannotated.sh
    Untracked:  code/._closestannotated_byfrac.sh
    Untracked:  code/._cluster.json
    Untracked:  code/._clusterPAS.json
    Untracked:  code/._clusterfiltPAS.json
    Untracked:  code/._codingdms2bed.py
    Untracked:  code/._config.yaml
    Untracked:  code/._config2.yaml
    Untracked:  code/._configOLD.yaml
    Untracked:  code/._convertNominal2SNPLOC.py
    Untracked:  code/._convertNumeric.py
    Untracked:  code/._correctNomeqtl.R
    Untracked:  code/._createPlinkSampfile.py
    Untracked:  code/._dag.pdf
    Untracked:  code/._eQTL_switch2snploc.py
    Untracked:  code/._eQTLgenestestedapa.py
    Untracked:  code/._encodeRNADTplots.sh
    Untracked:  code/._extractGenotypes.py
    Untracked:  code/._extractseqfromqtlfastq.py
    Untracked:  code/._fc2leafphen.py
    Untracked:  code/._filter5perc.R
    Untracked:  code/._filter5percPheno.py
    Untracked:  code/._filterpeaks.py
    Untracked:  code/._finalPASbed2SAF.py
    Untracked:  code/._fix4su304corr.py
    Untracked:  code/._fix4su604corr.py
    Untracked:  code/._fix4sukalisto.py
    Untracked:  code/._fixExandUnexeQTL
    Untracked:  code/._fixExandUnexeQTL.py
    Untracked:  code/._fixFChead.py
    Untracked:  code/._fixFChead_bothfrac.py
    Untracked:  code/._fixH3k12ac.py
    Untracked:  code/._fixPASregionSNPs.py
    Untracked:  code/._fixRNAhead4corr.py
    Untracked:  code/._fixRNAkalisto.py
    Untracked:  code/._fixgroupedtranscript.py
    Untracked:  code/._fixhead_netseqfc.py
    Untracked:  code/._getAPAfromanyeQTL.py
    Untracked:  code/._getApapval4eqtl.py
    Untracked:  code/._getApapval4eqtl_unexp.py
    Untracked:  code/._getDownstreamIntronNuclear.py
    Untracked:  code/._getIntronDownstreamPAS.py
    Untracked:  code/._getIntronUpstreamPAS.py
    Untracked:  code/._getQTLalleles.py
    Untracked:  code/._getQTLfastq.sh
    Untracked:  code/._getUpstreamIntronNuclear.py
    Untracked:  code/._grouptranscripts.py
    Untracked:  code/._intersectVCFandupPAS.sh
    Untracked:  code/._keep5perMAF.py
    Untracked:  code/._keepSNP_vcf.sh
    Untracked:  code/._make5percPeakbed.py
    Untracked:  code/._makeFileID.py
    Untracked:  code/._makePheno.py
    Untracked:  code/._makeSAFbothfrac5perc.py
    Untracked:  code/._makeSNP2rsidfile.py
    Untracked:  code/._makeeQTLempirical_unexp.py
    Untracked:  code/._makeeQTLempiricaldist.py
    Untracked:  code/._makegencondeTSSfile.py
    Untracked:  code/._mapSSsnps2PAS.sh
    Untracked:  code/._mergRNABam.sh
    Untracked:  code/._mergeAllBam.sh
    Untracked:  code/._mergeBW_norm.sh
    Untracked:  code/._mergeBamNascent.sh
    Untracked:  code/._mergeByFracBam.sh
    Untracked:  code/._mergePeaks.sh
    Untracked:  code/._mnase1stintron.sh
    Untracked:  code/._mnaseDT_fourthintron.sh
    Untracked:  code/._namePeaks.py
    Untracked:  code/._netseqDTplot1stIntron.sh
    Untracked:  code/._netseqFC.sh
    Untracked:  code/._nucQTLGWAS.py
    Untracked:  code/._nucSpeceffectsize.py
    Untracked:  code/._pacbioDT.sh
    Untracked:  code/._pacbioIntronicDT.sh
    Untracked:  code/._peak2PAS.py
    Untracked:  code/._peakFC.sh
    Untracked:  code/._pheno2countonly.R
    Untracked:  code/._phenoQTLfromlist.py
    Untracked:  code/._processYRIgen.py
    Untracked:  code/._pttQTLsinapaQTL.py
    Untracked:  code/._qtlRegionseq.sh
    Untracked:  code/._qtlsPvalOppFrac.py
    Untracked:  code/._quantassign2parsedpeak.py
    Untracked:  code/._removeXfromHmm.py
    Untracked:  code/._removeloc_pheno.py
    Untracked:  code/._runCorrectNomEqtl.sh
    Untracked:  code/._runHMMpermuteAPAqtls.sh
    Untracked:  code/._runHMMpermuteeQTLS.sh
    Untracked:  code/._runMakeEmpiricaleQTL_unexp.sh
    Untracked:  code/._runMakeeQTLempirical.sh
    Untracked:  code/._run_bam2bw_all3prime.sh
    Untracked:  code/._run_bam2bw_extra3.sh
    Untracked:  code/._run_getApaPval4eqtl.sh
    Untracked:  code/._run_getapafromeQTL.py
    Untracked:  code/._run_getapafromeQTL.sh
    Untracked:  code/._run_getapapval4eqtl_unexp.sh
    Untracked:  code/._run_leafcutterDiffIso.sh
    Untracked:  code/._run_pttfacetboxplot.sh
    Untracked:  code/._run_sepUsagephen.sh
    Untracked:  code/._run_sepgenobychrom.sh
    Untracked:  code/._selectNominalPvalues.py
    Untracked:  code/._sepUsagePhen.py
    Untracked:  code/._sepgenobychrom.py
    Untracked:  code/._snakemakePAS.batch
    Untracked:  code/._snakemakefiltPAS.batch
    Untracked:  code/._sortindexRNAbam.sh
    Untracked:  code/._submit-snakemakePAS.sh
    Untracked:  code/._submit-snakemakefiltPAS.sh
    Untracked:  code/._subsetAPAnotEorPgene.py
    Untracked:  code/._subsetApanoteGene.py
    Untracked:  code/._subsetUnexplainedeQTLs.py
    Untracked:  code/._subsetVCF_SS.sh
    Untracked:  code/._subsetVCF_noSSregions.sh
    Untracked:  code/._subsetVCF_upstreamPAS.sh
    Untracked:  code/._subset_diffisopheno.py
    Untracked:  code/._subsetpermAPAwithGenelist.py
    Untracked:  code/._subsetvcf_otherreg.sh
    Untracked:  code/._subsetvcf_permSS.sh
    Untracked:  code/._subtrachfiveprimeUTR.sh
    Untracked:  code/._subtractExons.sh
    Untracked:  code/._subtractfiveprimeUTR.sh
    Untracked:  code/._tabixSNPS.sh
    Untracked:  code/._totSeceffectsize.py
    Untracked:  code/._utrdms2saf.py
    Untracked:  code/._vcf2bed.py
    Untracked:  code/._writePTTexamplecode.py
    Untracked:  code/._writePTTexamplecode.sh
    Untracked:  code/.pversion
    Untracked:  code/.snakemake/
    Untracked:  code/APAqtl_nominal.err
    Untracked:  code/APAqtl_nominal.out
    Untracked:  code/APAqtl_nominal_39.err
    Untracked:  code/APAqtl_nominal_39.out
    Untracked:  code/APAqtl_nominal_nonNorm.err
    Untracked:  code/APAqtl_nominal_nonNorm.out
    Untracked:  code/APAqtl_permuted.err
    Untracked:  code/APAqtl_permuted.out
    Untracked:  code/ApaQTL_nominalNonnorm.sh
    Untracked:  code/BothFracDTPlot1stintron.err
    Untracked:  code/BothFracDTPlot1stintron.out
    Untracked:  code/BothFracDTPlot4stintron.err
    Untracked:  code/BothFracDTPlot4stintron.out
    Untracked:  code/BothFracDTPlotGeneRegions.err
    Untracked:  code/BothFracDTPlotGeneRegions.out
    Untracked:  code/BothFracDTPlotGeneRegions_norm.err
    Untracked:  code/BothFracDTPlotGeneRegions_norm.out
    Untracked:  code/BothFracDTPlotGeneRegions_normalized.sh
    Untracked:  code/DistPAS2Sig.py
    Untracked:  code/EandPqtl.err
    Untracked:  code/EandPqtl.out
    Untracked:  code/EandPqtl_perm.sh
    Untracked:  code/EandPqtls.sh
    Untracked:  code/EncodeRNADTPlotGeneRegions.err
    Untracked:  code/EncodeRNADTPlotGeneRegions.out
    Untracked:  code/FC_NucintornUpandDown.sh
    Untracked:  code/FC_NucintronPASupandDown.err
    Untracked:  code/FC_NucintronPASupandDown.out
    Untracked:  code/FC_UTR.err
    Untracked:  code/FC_UTR.out
    Untracked:  code/FC_UTR.sh
    Untracked:  code/FC_intornUpandDownsteamPAS.sh
    Untracked:  code/FC_intronPASupandDown.err
    Untracked:  code/FC_intronPASupandDown.out
    Untracked:  code/FC_nascent.err
    Untracked:  code/FC_nascentout
    Untracked:  code/FC_nascentseq.sh
    Untracked:  code/FC_newPAS_olddata.err
    Untracked:  code/FC_newPAS_olddata.out
    Untracked:  code/FC_newPeaks_olddata.sh
    Untracked:  code/HMMpermuteTotal.py
    Untracked:  code/HmmPermute.p
    Untracked:  code/HmmPermute.py
    Untracked:  code/IntronicPASDT.err
    Untracked:  code/IntronicPASDT.out
    Untracked:  code/IntronicPASDT.sh
    Untracked:  code/LC_samplegroups.py
    Untracked:  code/LD_qtl.sh
    Untracked:  code/LD_vcftools.hap.out
    Untracked:  code/NascentDTPlotGeneRegions.err
    Untracked:  code/NascentDTPlotGeneRegions.out
    Untracked:  code/NascentDTPlotPAS.err
    Untracked:  code/NascentDTPlotPAS.out
    Untracked:  code/NascentDTPlotPAS_3utr.err
    Untracked:  code/NascentDTPlotPAS_3utr.out
    Untracked:  code/NascentDTPlotPAS_firstintron.err
    Untracked:  code/NascentDTPlotPAS_firstintron.out
    Untracked:  code/NascentDTPlotPAS_intron.err
    Untracked:  code/NascentDTPlotPAS_intron.out
    Untracked:  code/NascentDTPlotPAS_nuc.err
    Untracked:  code/NascentDTPlotPAS_nuc.out
    Untracked:  code/NascentDTPlotPAS_tot.err
    Untracked:  code/NascentDTPlotPAS_tot.out
    Untracked:  code/NascentRNAdtPlot.sh
    Untracked:  code/NascentRNAdtPlot3UTRPAS.sh
    Untracked:  code/NascentRNAdtPlotExcludeFirstintronicPAS.sh
    Untracked:  code/NascentRNAdtPlotFirstintronicPAS.sh
    Untracked:  code/NascentRNAdtPlotNucPAS.sh
    Untracked:  code/NascentRNAdtPlotTotPAS.sh
    Untracked:  code/NascentRNAdtPlotintronicPAS.sh
    Untracked:  code/NascnetRNAdtPlotPAS.sh
    Untracked:  code/NetSeq_fourthintronDT.sh
    Untracked:  code/NomResfromPASSNP.py
    Untracked:  code/NuclearPAS_5per.bed.py
    Untracked:  code/Nuclear_example.err
    Untracked:  code/Nuclear_example.out
    Untracked:  code/PACbioDT.err
    Untracked:  code/PACbioDT.out
    Untracked:  code/PACbioDTitronic.err
    Untracked:  code/PACbioDTitronic.out
    Untracked:  code/PTTfacetboxplots.R
    Untracked:  code/PrematureQTLNominal.sh
    Untracked:  code/PrematureQTLPermuted.sh
    Untracked:  code/Prematureqtl_nominal.err
    Untracked:  code/Prematureqtl_nominal.out
    Untracked:  code/Prematureqtl_permuted.err
    Untracked:  code/Prematureqtl_permuted.out
    Untracked:  code/QTL2bed.py
    Untracked:  code/QTL2bed_withstrand.py
    Untracked:  code/README.md
    Untracked:  code/RNABam2BW.err
    Untracked:  code/RNABam2BW.out
    Untracked:  code/RNAbam2bw.sh
    Untracked:  code/Rplots.pdf
    Untracked:  code/Script4NuclearPTTqtlexamples.sh
    Untracked:  code/Script4NuclearQTLexamples.sh
    Untracked:  code/Script4TotalPTTqtlexamples.sh
    Untracked:  code/Script4TotalQTLexamples.sh
    Untracked:  code/TESplots100bp.err
    Untracked:  code/TESplots100bp.out
    Untracked:  code/TESplots100bp.sh
    Untracked:  code/TESplots150bp.err
    Untracked:  code/TESplots150bp.out
    Untracked:  code/TESplots150bp.sh
    Untracked:  code/TESplots200bp.err
    Untracked:  code/TESplots200bp.out
    Untracked:  code/TESplots200bp.sh
    Untracked:  code/TotalPAS_5perc.bed.py
    Untracked:  code/Total_example.err
    Untracked:  code/Total_example.out
    Untracked:  code/Untitled
    Untracked:  code/Upstream100Bases_general.py
    Untracked:  code/ZipandTabPheno.sh
    Untracked:  code/aAPAqtl_nominal39ind.sh
    Untracked:  code/annotatePacBioPASregion.sh
    Untracked:  code/annotatedPAS2bed.py
    Untracked:  code/annotatedPASregion.err
    Untracked:  code/annotatedPASregion.out
    Untracked:  code/apaQTLCorrectPvalMakeQQ_4pc.R
    Untracked:  code/apaQTL_Nominal_4pc.sh
    Untracked:  code/apaQTL_permuted.4pc.sh
    Untracked:  code/apafacetboxplots.R
    Untracked:  code/apaqtlfacetboxplots.R
    Untracked:  code/assignNucIntonpeak2intronlocs.sh
    Untracked:  code/assignPeak2Intronicregion.err
    Untracked:  code/assignPeak2Intronicregion.out
    Untracked:  code/assignTotIntronpeak2intronlocs.sh
    Untracked:  code/assigntotPeak2Intronicregion.err
    Untracked:  code/assigntotPeak2Intronicregion.out
    Untracked:  code/bam2BW_5primemost.sh
    Untracked:  code/bam2bw.err
    Untracked:  code/bam2bw.out
    Untracked:  code/bam2bw_5primemost.err
    Untracked:  code/bam2bw_5primemost.out
    Untracked:  code/binary_fileset.log
    Untracked:  code/bothFracDTplot1stintron.sh
    Untracked:  code/bothFracDTplot4thintron.sh
    Untracked:  code/bothFrac_FC.err
    Untracked:  code/bothFrac_FC.out
    Untracked:  code/bothFrac_FC.sh
    Untracked:  code/changePermQTLres2geneName.py
    Untracked:  code/changenomQTLres2geneName.py
    Untracked:  code/chooseAnno2PAS_pacbio.py
    Untracked:  code/closestannotated.err
    Untracked:  code/closestannotated.out
    Untracked:  code/closestannotated.sh
    Untracked:  code/closestannotated_byfrac.sh
    Untracked:  code/closestannotatedbyfrac.err
    Untracked:  code/closestannotatedbyfrac.out
    Untracked:  code/codingdms2bed.py
    Untracked:  code/convertNominal2SNPLOC.py
    Untracked:  code/correctNomeqtl.R
    Untracked:  code/createPlinkSampfile.py
    Untracked:  code/dag.pdf
    Untracked:  code/dagPAS.pdf
    Untracked:  code/dagfiltPAS.pdf
    Untracked:  code/eQTL_switch2snploc.py
    Untracked:  code/eQTLgenestestedapa.py
    Untracked:  code/encodeRNADTplots.sh
    Untracked:  code/extractGenotypes.py
    Untracked:  code/extractseqfromqtlfastq.py
    Untracked:  code/fc2leafphen.py
    Untracked:  code/finalPASbed2SAF.py
    Untracked:  code/findbuginpeaks.R
    Untracked:  code/fix4su304corr.py
    Untracked:  code/fix4su604corr.py
    Untracked:  code/fix4sukalisto.py
    Untracked:  code/fixExandUnexeQTL
    Untracked:  code/fixExandUnexeQTL.py
    Untracked:  code/fixFChead_bothfrac.py
    Untracked:  code/fixFChead_summary.py
    Untracked:  code/fixH3k12ac.py
    Untracked:  code/fixPASregionSNPs.py
    Untracked:  code/fixRNAhead4corr.py
    Untracked:  code/fixRNAkalisto.py
    Untracked:  code/fixgroupedtranscript.py
    Untracked:  code/fixhead_netseqfc.py
    Untracked:  code/genotypesYRI.gen.proc.keep.vcf.log
    Untracked:  code/genotypesYRI.gen.proc.keep.vcf.recode.vcf
    Untracked:  code/get100upPAS.py
    Untracked:  code/getAPAfromanyeQTL.py
    Untracked:  code/getApapval4eqtl.py
    Untracked:  code/getApapval4eqtl_unexp.py
    Untracked:  code/getDownstreamIntronNuclear.py
    Untracked:  code/getIntronDownstreamPAS.py
    Untracked:  code/getIntronUpstreamPAS.py
    Untracked:  code/getQTLalleles.py
    Untracked:  code/getQTLfastq.sh
    Untracked:  code/getSeq100up.sh
    Untracked:  code/getUpstreamIntronNuclear.py
    Untracked:  code/getseq100up.err
    Untracked:  code/getseq100up.out
    Untracked:  code/grouptranscripts.err
    Untracked:  code/grouptranscripts.out
    Untracked:  code/grouptranscripts.py
    Untracked:  code/intersectPAS_ssSNPS.err
    Untracked:  code/intersectPAS_ssSNPS.out
    Untracked:  code/intersectVCFPAS.err
    Untracked:  code/intersectVCFPAS.out
    Untracked:  code/intersectVCFandupPAS.sh
    Untracked:  code/keep5perMAF.py
    Untracked:  code/keepSNP_vcf.sh
    Untracked:  code/log/
    Untracked:  code/makeSAFbothfrac5perc.py
    Untracked:  code/makeSNP2rsidfile.py
    Untracked:  code/makeeQTLempirical_unexp.py
    Untracked:  code/makeeQTLempiricaldist.py
    Untracked:  code/makegencondeTSSfile.py
    Untracked:  code/mapSSsnps2PAS.sh
    Untracked:  code/mergRNABam.sh
    Untracked:  code/mergeBW_norm.sh
    Untracked:  code/mergeBWnorm.err
    Untracked:  code/mergeBWnorm.out
    Untracked:  code/mergeBamNacent.err
    Untracked:  code/mergeBamNacent.out
    Untracked:  code/mergeBamNascent.sh
    Untracked:  code/mergeRNAbam.err
    Untracked:  code/mergeRNAbam.out
    Untracked:  code/mnase1stintron.sh
    Untracked:  code/mnaseDTPlot1stintron.err
    Untracked:  code/mnaseDTPlot1stintron.out
    Untracked:  code/mnaseDTPlot4thintron.err
    Untracked:  code/mnaseDTPlot4thintron.out
    Untracked:  code/mnaseDT_fourthintron.sh
    Untracked:  code/netDTPlot4thintron.out
    Untracked:  code/netseqDTplot1stIntron.sh
    Untracked:  code/netseqFC.err
    Untracked:  code/netseqFC.out
    Untracked:  code/netseqFC.sh
    Untracked:  code/neyDTPlot4thintron.err
    Untracked:  code/nucQTLGWAS.py
    Untracked:  code/nucSpeceffectsize.py
    Untracked:  code/pacbioDT.sh
    Untracked:  code/pacbioIntronicDT.sh
    Untracked:  code/phenoQTLfromlist.py
    Untracked:  code/plink.log
    Untracked:  code/processYRIgen.py
    Untracked:  code/pttFacetBoxplots.err
    Untracked:  code/pttFacetBoxplots.out
    Untracked:  code/pttQTLsinapaQTL.py
    Untracked:  code/pullTwoMechData.py
    Untracked:  code/qtlFacetBoxplots.err
    Untracked:  code/qtlFacetBoxplots.out
    Untracked:  code/qtlRegionseq.sh
    Untracked:  code/qtlsPvalOppFrac.py
    Untracked:  code/rLD_vcftools.hap.err
    Untracked:  code/removeXfromHmm.py
    Untracked:  code/removeloc_pheno.py
    Untracked:  code/runCorrectNomEqtl.sh
    Untracked:  code/runCorrectNomeqtl.err
    Untracked:  code/runCorrectNomeqtl.out
    Untracked:  code/runHMMpermute.err
    Untracked:  code/runHMMpermute.out
    Untracked:  code/runHMMpermuteAPAqtls.sh
    Untracked:  code/runHMMpermuteeQTLS.sh
    Untracked:  code/runHMMpermuteeQTLs.err
    Untracked:  code/runHMMpermuteeQTLs.out
    Untracked:  code/runMakeEmpiricaleQTL_unexp.sh
    Untracked:  code/runMakeEmpiricaleQTLs.err
    Untracked:  code/runMakeEmpiricaleQTLs.out
    Untracked:  code/runMakeEmpiricaleQTLsunex.err
    Untracked:  code/runMakeEmpiricaleQTLsunex.out
    Untracked:  code/runMakeeQTLempirical.sh
    Untracked:  code/run_DistPAS2Sig.err
    Untracked:  code/run_DistPAS2Sig.out
    Untracked:  code/run_bam2bw.err
    Untracked:  code/run_bam2bw.out
    Untracked:  code/run_bam2bw_all3prime.sh
    Untracked:  code/run_bam2bw_extra3.sh
    Untracked:  code/run_bam2bwexta.err
    Untracked:  code/run_bam2bwexta.out
    Untracked:  code/run_distPAS2Sig.sh
    Untracked:  code/run_getAPAfromanyeQTL.err
    Untracked:  code/run_getAPAfromanyeQTL.out
    Untracked:  code/run_getApaPval4eQTLs.err
    Untracked:  code/run_getApaPval4eQTLs.out
    Untracked:  code/run_getApaPval4eQTLsunexplained.err
    Untracked:  code/run_getApaPval4eQTLsunexplained.out
    Untracked:  code/run_getApaPval4eqtl.sh
    Untracked:  code/run_getapafromeQTL.sh
    Untracked:  code/run_getapapval4eqtl_unexp.sh
    Untracked:  code/run_leafcutterDiffIso.sh
    Untracked:  code/run_leafcutter_ds.err
    Untracked:  code/run_leafcutter_ds.out
    Untracked:  code/run_pttfacetboxplot.sh
    Untracked:  code/run_qtlFacetBoxplots.sh
    Untracked:  code/run_sepUsagephen.sh
    Untracked:  code/run_sepgenobychrom.err
    Untracked:  code/run_sepgenobychrom.out
    Untracked:  code/run_sepgenobychrom.sh
    Untracked:  code/run_sepusage.err
    Untracked:  code/run_sepusage.out
    Untracked:  code/selectNominalPvalues.py
    Untracked:  code/sepUsagePhen.py
    Untracked:  code/sepgenobychrom.py
    Untracked:  code/seqQTLfastq.err
    Untracked:  code/seqQTLfastq.out
    Untracked:  code/seqQTLregion.err
    Untracked:  code/seqQTLregion.out
    Untracked:  code/snakePASlog.out
    Untracked:  code/snakefiltPASlog.out
    Untracked:  code/sortindexRNABam.err
    Untracked:  code/sortindexRNABam.out
    Untracked:  code/sortindexRNAbam.sh
    Untracked:  code/subsetAPAnotEorPgene.py
    Untracked:  code/subsetApanoteGene.py
    Untracked:  code/subsetUnexplainedeQTLs.py
    Untracked:  code/subsetVCF_SS.sh
    Untracked:  code/subsetVCF_noSSregions.sh
    Untracked:  code/subsetVCF_upstreamPAS.sh
    Untracked:  code/subset_diffisopheno.py
    Untracked:  code/subsetpermAPAwithGenelist.py
    Untracked:  code/subsetvcf_SS.err
    Untracked:  code/subsetvcf_SS.out
    Untracked:  code/subsetvcf_noSS.err
    Untracked:  code/subsetvcf_noSS.out
    Untracked:  code/subsetvcf_otherreg.sh
    Untracked:  code/subsetvcf_pas.err
    Untracked:  code/subsetvcf_pas.out
    Untracked:  code/subsetvcf_perm.err
    Untracked:  code/subsetvcf_perm.out
    Untracked:  code/subsetvcf_permSS.sh
    Untracked:  code/subsetvcf_rand.err
    Untracked:  code/subsetvcf_rand.out
    Untracked:  code/subtract5UTR.err
    Untracked:  code/subtract5UTR.out
    Untracked:  code/subtractExons.err
    Untracked:  code/subtractExons.out
    Untracked:  code/subtractExons.sh
    Untracked:  code/subtractfiveprimeUTR.sh
    Untracked:  code/tabixSNPS.sh
    Untracked:  code/tabixSNPs.err
    Untracked:  code/tabixSNPs.out
    Untracked:  code/totSeceffectsize.py
    Untracked:  code/transcriptdm2bed.py
    Untracked:  code/utrdms2saf.py
    Untracked:  code/vcf2bed.py
    Untracked:  code/vcf_keepsnps.err
    Untracked:  code/vcf_keepsnps.out
    Untracked:  code/writeExampleQTLcode.py
    Untracked:  code/writePTTexamplecode.py
    Untracked:  code/zipandtabPhen.err
    Untracked:  code/zipandtabPhen.out
    Untracked:  data/._.DS_Store
    Untracked:  data/._MetaDataSequencing.txt
    Untracked:  data/AnnotatedPAS/
    Untracked:  data/ApaByEgene/
    Untracked:  data/ApaByPgene/
    Untracked:  data/Battle_pQTL/
    Untracked:  data/CompareOldandNew/
    Untracked:  data/DTmatrix/
    Untracked:  data/DiffIso/
    Untracked:  data/EncodeRNA/
    Untracked:  data/ExampleQTLPlots/
    Untracked:  data/GWAS_overlap/
    Untracked:  data/GeuvadisRNA/
    Untracked:  data/HMMqtls/
    Untracked:  data/Li_eQTLs/
    Untracked:  data/NascentRNA/
    Untracked:  data/NucSpeceQTLeffect/
    Untracked:  data/PAS/
    Untracked:  data/PolyA_DB/
    Untracked:  data/PreTerm_pheno/
    Untracked:  data/PrematureQTLNominal/
    Untracked:  data/PrematureQTLPermuted/
    Untracked:  data/QTLGenotypes/
    Untracked:  data/QTLoverlap/
    Untracked:  data/QTLoverlap_nonNorm/
    Untracked:  data/README.md
    Untracked:  data/RNAseq/
    Untracked:  data/Reads2UTR/
    Untracked:  data/SNPinSS/
    Untracked:  data/SignalSiteFiles/
    Untracked:  data/TF_motifdisruption/
    Untracked:  data/ThirtyNineIndQtl_nominal/
    Untracked:  data/apaQTLNominal/
    Untracked:  data/apaQTLNominal_4pc/
    Untracked:  data/apaQTLPermuted/
    Untracked:  data/apaQTLPermuted_4pc/
    Untracked:  data/apaQTLs/
    Untracked:  data/assignedPeaks/
    Untracked:  data/bam/
    Untracked:  data/bam_clean/
    Untracked:  data/bam_waspfilt/
    Untracked:  data/bed_10up/
    Untracked:  data/bed_clean/
    Untracked:  data/bed_clean_sort/
    Untracked:  data/bed_waspfilter/
    Untracked:  data/bedsort_waspfilter/
    Untracked:  data/bothFrac_FC/
    Untracked:  data/bw/
    Untracked:  data/bw_norm/
    Untracked:  data/eQTLs/
    Untracked:  data/exampleQTLs/
    Untracked:  data/fastq/
    Untracked:  data/filterPeaks/
    Untracked:  data/fourSU/
    Untracked:  data/h3k27ac/
    Untracked:  data/highdiffsiggenes.txt
    Untracked:  data/inclusivePeaks/
    Untracked:  data/inclusivePeaks_FC/
    Untracked:  data/intronRNAratio/
    Untracked:  data/intron_analysis/
    Untracked:  data/locusZoom/
    Untracked:  data/mergedBG/
    Untracked:  data/mergedBW_byfrac/
    Untracked:  data/mergedBW_norm/
    Untracked:  data/mergedBam/
    Untracked:  data/mergedbyFracBam/
    Untracked:  data/molPhenos/
    Untracked:  data/molQTLs/
    Untracked:  data/motifdistrupt/
    Untracked:  data/netseq/
    Untracked:  data/nonNorm_pheno/
    Untracked:  data/nuc_10up/
    Untracked:  data/nuc_10upclean/
    Untracked:  data/overlapeQTL_try2/
    Untracked:  data/overlapeQTLs/
    Untracked:  data/pacbio/
    Untracked:  data/peakCoverage/
    Untracked:  data/peaks_5perc/
    Untracked:  data/phenotype/
    Untracked:  data/phenotype_5perc/
    Untracked:  data/pttQTL/
    Untracked:  data/pttQTLplots/
    Untracked:  data/sigDiffGenes.txt
    Untracked:  data/sort/
    Untracked:  data/sort_clean/
    Untracked:  data/sort_waspfilter/
    Untracked:  data/twoMech/
    Untracked:  nohup.out
    Untracked:  output/._.DS_Store
    Untracked:  output/._meanCorrelationPhenotypes.svg
    Untracked:  output/dtPlots/
    Untracked:  output/fastqc/
    Untracked:  output/meanCorrelationPhenotypes.svg

Unstaged changes:
    Modified:   analysis/DiffIsoAnalysis.Rmd
    Modified:   analysis/NuclearSpecAPAqtl.Rmd
    Modified:   analysis/PASdescriptiveplots.Rmd
    Modified:   analysis/PrematureTermQTL.Rmd
    Modified:   analysis/QTLlocation.Rmd
    Modified:   analysis/Readdistagainstfeatures.Rmd
    Modified:   analysis/chromHHMQTL.Rmd
    Modified:   analysis/compareAnnotatedpas.Rmd
    Modified:   analysis/nonNormQTL.Rmd
    Modified:   analysis/nucSpecinEQTLs.Rmd
    Modified:   analysis/overlapapaqtlsandeqtls.Rmd
    Modified:   analysis/pQTLexampleplot.Rmd
    Modified:   analysis/propeQTLs_explained.Rmd
    Modified:   analysis/signalsiteanalysis.Rmd
    Modified:   code/BothFracDTPlotGeneRegions.sh
    Modified:   code/Snakefile
    Deleted:    code/Upstream10Bases_general.py
    Modified:   code/apaQTLCorrectPvalMakeQQ.R
    Modified:   code/apaQTL_Nominal.sh
    Modified:   code/apaQTL_permuted.sh
    Modified:   code/apaQTLsnake.err
    Modified:   code/bam2bw.sh
    Modified:   code/bed2saf.py
    Modified:   code/cluster.json
    Modified:   code/clusterfiltPAS.json
    Modified:   code/config.yaml
    Modified:   code/environment.yaml
    Modified:   code/makePheno.py
    Deleted:    code/test.txt

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd cee6ce0 brimittleman 2019-07-26 get pvalues form <-16 tests
html f7e0fe5 brimittleman 2019-06-20 Build site.
Rmd b7c9381 brimittleman 2019-06-20 test inc/dec
html cd60f50 brimittleman 2019-06-20 Build site.
Rmd 6df08b6 brimittleman 2019-06-20 change analysis to include not tested in total as nuc spec

In my previous analysis found here I took nuclear specific apa QTLs as those tested in total that are not nominally significant in total. In this analysis I will include the nuclear apaQTLs in PAS not tested in total as nuclear specific. These may be important for explaining eQTLs or pQTLs.

library(workflowr)
This is workflowr version 1.4.0
Run ?workflowr for help getting started
library(tidyverse)
── Attaching packages ───────────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.1.1       ✔ purrr   0.3.2  
✔ tibble  2.1.1       ✔ dplyr   0.8.0.1
✔ tidyr   0.8.3       ✔ stringr 1.3.1  
✔ readr   1.3.1       ✔ forcats 0.3.0  
── Conflicts ──────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
library(cowplot)

Attaching package: 'cowplot'
The following object is masked from 'package:ggplot2':

    ggsave
library(ggpubr)
Loading required package: magrittr

Attaching package: 'magrittr'
The following object is masked from 'package:purrr':

    set_names
The following object is masked from 'package:tidyr':

    extract

Attaching package: 'ggpubr'
The following object is masked from 'package:cowplot':

    get_legend

I will give all of the QTLs an id.

nucQTls=read.table("../data/apaQTLs/Nuclear_apaQTLs4pc_5fdr.txt",header = T, stringsAsFactors = F) %>% mutate(ID=paste(Gene,Peak, sid, sep=":"))
sharedQTLs=read.table("../data/apaQTLs/SharedAPAQTLs.txt", header = T, stringsAsFactors = F) %>% mutate(ID=paste(gene,peakNum, snp, sep=":"))

sharedQTL_ID=as.vector(sharedQTLs$ID)

Nuclear Specific:

NuclearSpecQTL= nucQTls %>% mutate(Shared=ifelse(ID %in% sharedQTL_ID, "Yes", "No"))
NuclearSpecQTL$Shared=as.factor(NuclearSpecQTL$Shared)

I need to input the explained eGenes, unexplained eGenes, and pGenes. For this I will make sure none of the pgenes are eGenes.

explained=read.table("../data/Li_eQTLs/explainedEgenes.txt", header = F, stringsAsFactors = F, col.names = c("gene"))
unexplained=read.table("../data/Li_eQTLs/UnexplainedEgenes.txt", header = F, stringsAsFactors = F, col.names = c("gene"))
protein=read.table("../data/Battle_pQTL/psQTLGeneNames.txt",header = F, stringsAsFactors = F,col.names = c("gene"))
'%!in%' <- function(x,y)!('%in%'(x,y))


protein_only=protein %>% filter(gene %!in% explained$gene & gene %!in% unexplained$gene)

write.table(protein_only, "../data/Battle_pQTL/pQTLGeneNamesONLYP.txt", col.names = F, row.names = F,quote = F, sep="\t")

Are nuc specific less likely to be in p genes?

NuclearSpecQTL_gene=NuclearSpecQTL %>% mutate(pGene=ifelse(Gene %in% protein_only$gene, "Yes", "No"), uneplained=ifelse(Gene %in% unexplained$gene, "Yes", "No"), explained=ifelse(Gene %in% explained$gene, "Yes","No"))
nPandShare=nrow(NuclearSpecQTL_gene %>% filter(Shared=="Yes", pGene=="Yes"))/nrow(NuclearSpecQTL_gene)
nPandShare
[1] 0.01037613
nPandNotShare=nrow(NuclearSpecQTL_gene %>% filter(Shared=="No", pGene=="Yes"))/nrow(NuclearSpecQTL_gene)
nPandNotShare
[1] 0.002594034

Only looking at 8 and 2. This isnt very good. Cant make claim.

nEandShare=nrow(NuclearSpecQTL_gene %>% filter(Shared=="Yes", uneplained=="Yes" |explained=="Yes" ))
allShare=NuclearSpecQTL_gene %>% filter(Shared=="Yes")
nEandShare
[1] 113
nEandNotShare=nrow(NuclearSpecQTL_gene %>% filter(Shared=="No", uneplained=="Yes" |explained=="Yes"))
nEandNotShare
[1] 59
allNotShare=NuclearSpecQTL_gene %>% filter(Shared=="No")

prop.test(x=c(nEandShare,nEandNotShare),n=c(nrow(allShare),nrow(allNotShare)))

    2-sample test for equality of proportions with continuity
    correction

data:  c(nEandShare, nEandNotShare) out of c(nrow(allShare), nrow(allNotShare))
X-squared = 5.3642, df = 1, p-value = 0.02055
alternative hypothesis: two.sided
95 percent confidence interval:
 0.01213795 0.13376403
sample estimates:
   prop 1    prop 2 
0.2539326 0.1809816 

I want to not count genes with multiple qtl

nGenes=NuclearSpecQTL_gene %>% group_by(Gene) %>% summarise(n=n()) %>% nrow()
nGenes
[1] 609
Egeneandshared=NuclearSpecQTL_gene %>% filter(Shared=="Yes", uneplained=="Yes" |explained=="Yes" ) %>% group_by(Gene) %>% summarise(n=n()) %>% nrow()
Egeneandshared
[1] 89
EgeneandNotshared=NuclearSpecQTL_gene %>% filter(Shared=="No", uneplained=="Yes" |explained=="Yes" ) %>% group_by(Gene) %>% summarise(n=n()) %>% nrow()
EgeneandNotshared
[1] 53
prop.test(x=c(Egeneandshared,EgeneandNotshared),n=c(nGenes,nGenes))

    2-sample test for equality of proportions with continuity
    correction

data:  c(Egeneandshared, EgeneandNotshared) out of c(nGenes, nGenes)
X-squared = 9.7652, df = 1, p-value = 0.001778
alternative hypothesis: two.sided
95 percent confidence interval:
 0.02157843 0.09664817
sample estimates:
    prop 1     prop 2 
0.14614122 0.08702791 

This is significant. This means the extra PAS are most likely driving the egene overlap.

Write these out for other anaylsis.

NuclearSpecQTL_shared= NuclearSpecQTL %>% filter(Shared=="Yes") %>% select(Gene, sid)
write.table(NuclearSpecQTL_shared,file="../data/NucSpeceQTLeffect/SharedApaQTL_nottestinc.txt", col.names = F, row.names = F, sep="\t", quote = F )
NuclearSpecQTL_specific=NuclearSpecQTL %>% filter(Shared=="No")%>% select(Gene, sid)
write.table(NuclearSpecQTL_specific,file="../data/NucSpeceQTLeffect/NucSpecApaQTL_nottestinc.txt", col.names = F, row.names = F, sep="\t", quote = F )
ggplot(NuclearSpecQTL,aes(x=Loc, fill=Shared)) + geom_bar()

Version Author Date
f7e0fe5 brimittleman 2019-06-20
NuclearSpecQTL__group= NuclearSpecQTL %>% group_by(Loc, Shared) %>% summarise(nShared=n()) %>% ungroup() %>% group_by(Loc) %>% mutate(nLoc=sum(nShared)) %>% ungroup() %>% mutate(prop=nShared/nLoc)


ggplot(NuclearSpecQTL__group, aes(x=Loc, y=prop, fill=Shared)) + geom_bar(stat="identity") + labs(title="Proportion of apaQTL by \nlocation that are nuclear specific")

Version Author Date
f7e0fe5 brimittleman 2019-06-20
NuclearSpecQTL__group_small=NuclearSpecQTL__group %>% filter( Loc=="intron" |Loc=="utr3")

ggplot(NuclearSpecQTL__group_small, aes(x=Loc, y=prop, fill=Shared)) + geom_bar(stat="identity") + labs(title="Proportion of apaQTL by \nlocation that are nuclear specific", y="Proportion of QTLs") + scale_fill_discrete(labels = c("Specific","Shared"))  + scale_fill_manual(values=c("orange", "blue"))
Scale for 'fill' is already present. Adding another scale for 'fill',
which will replace the existing scale.

Version Author Date
f7e0fe5 brimittleman 2019-06-20
NuclearSpecQTL__group_small
# A tibble: 4 x 5
  Loc    Shared nShared  nLoc  prop
  <chr>  <fct>    <int> <int> <dbl>
1 intron No         183   297 0.616
2 intron Yes        114   297 0.384
3 utr3   No          87   355 0.245
4 utr3   Yes        268   355 0.755
prop.test(x=c(183,87),n=c(297,355))

    2-sample test for equality of proportions with continuity
    correction

data:  c(183, 87) out of c(297, 355)
X-squared = 90.261, df = 1, p-value < 2.2e-16
alternative hypothesis: two.sided
95 percent confidence interval:
 0.2968583 0.4453241
sample estimates:
   prop 1    prop 2 
0.6161616 0.2450704 
prop.test(x=c(183,87),n=c(297,355))$p.value
[1] 2.087491e-21

I want to know if the shared or specific are more likely to decrease/increase

NuclearSpecQTL=NuclearSpecQTL %>% mutate(Dir=ifelse(slope>1, "Increase", "Decrease"))

NuclearSpecQTL_shareInc=NuclearSpecQTL %>% filter(Loc=="intron",Dir=="Increase", Shared=="Yes") %>% nrow()
AllShared=NuclearSpecQTL %>%  filter(Loc=="intron", Shared=="Yes") %>% nrow()
AllInc=NuclearSpecQTL %>%  filter(Loc=="intron", Dir=="Increase") %>% nrow()
AllDec=NuclearSpecQTL %>%  filter(Loc=="intron", Dir=="Decrease") %>% nrow()
AllSpec=NuclearSpecQTL %>%  filter(Loc=="intron", Shared=="No") %>% nrow()
NuclearSpecQTL_SpecInc=NuclearSpecQTL %>% filter(Loc=="intron",Dir=="Increase", Shared=="No") %>% nrow()
NuclearSpecQTL_shareDec=NuclearSpecQTL %>% filter(Loc=="intron",Dir=="Decrease", Shared=="Yes") %>% nrow()
NuclearSpecQTL_SpecDec=NuclearSpecQTL %>% filter(Loc=="intron",Dir=="Decrease", Shared=="No") %>% nrow()

#in increased
NuclearSpecQTL_SpecInc/AllInc
[1] 0.5701754
#in dec
NuclearSpecQTL_SpecDec/AllDec
[1] 0.6448087
prop.test(x=c(NuclearSpecQTL_SpecInc,NuclearSpecQTL_SpecDec), n=c(AllInc,AllDec))

    2-sample test for equality of proportions with continuity
    correction

data:  c(NuclearSpecQTL_SpecInc, NuclearSpecQTL_SpecDec) out of c(AllInc, AllDec)
X-squared = 1.3538, df = 1, p-value = 0.2446
alternative hypothesis: two.sided
95 percent confidence interval:
 -0.19605819  0.04679158
sample estimates:
   prop 1    prop 2 
0.5701754 0.6448087 
ggplot(NuclearSpecQTL, aes(x=Dir, fill=Shared))+ geom_bar(stat="count") + facet_grid(~Loc) +  theme(axis.text.x=element_text(angle=90, hjust=1))

Version Author Date
f7e0fe5 brimittleman 2019-06-20

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] ggpubr_0.2      magrittr_1.5    cowplot_0.9.4   forcats_0.3.0  
 [5] stringr_1.3.1   dplyr_0.8.0.1   purrr_0.3.2     readr_1.3.1    
 [9] tidyr_0.8.3     tibble_2.1.1    ggplot2_3.1.1   tidyverse_1.2.1
[13] workflowr_1.4.0

loaded via a namespace (and not attached):
 [1] tidyselect_0.2.5 reshape2_1.4.3   haven_1.1.2      lattice_0.20-38 
 [5] colorspace_1.3-2 generics_0.0.2   htmltools_0.3.6  yaml_2.2.0      
 [9] utf8_1.1.4       rlang_0.4.0      pillar_1.3.1     glue_1.3.0      
[13] withr_2.1.2      modelr_0.1.2     readxl_1.1.0     plyr_1.8.4      
[17] munsell_0.5.0    gtable_0.2.0     cellranger_1.1.0 rvest_0.3.2     
[21] evaluate_0.12    labeling_0.3     knitr_1.20       fansi_0.4.0     
[25] highr_0.7        broom_0.5.1      Rcpp_1.0.0       scales_1.0.0    
[29] backports_1.1.2  jsonlite_1.6     fs_1.3.1         hms_0.4.2       
[33] digest_0.6.18    stringi_1.2.4    grid_3.5.1       rprojroot_1.3-2 
[37] cli_1.1.0        tools_3.5.1      lazyeval_0.2.1   crayon_1.3.4    
[41] whisker_0.3-2    pkgconfig_2.0.2  xml2_1.2.0       lubridate_1.7.4 
[45] assertthat_0.2.0 rmarkdown_1.10   httr_1.3.1       rstudioapi_0.10 
[49] R6_2.3.0         nlme_3.1-137     git2r_0.25.2     compiler_3.5.1