• Vary the pvalue cuttoff
  • Concordance of directions for intronic pas usage and eQTL
  • Examples for overlap:

Last updated: 2019-08-01

Checks: 6 1

Knit directory: apaQTL/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.4.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

The global environment had objects present when the code in the R Markdown file was run. These objects can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment. Use wflow_publish or wflow_build to ensure that the code is always run in an empty environment.

The following objects were defined in the global environment when these results were created:

Name Class Size
data environment 56 bytes
env environment 56 bytes

The command set.seed(20190411) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/.DS_Store
    Ignored:    docs/.DS_Store
    Ignored:    docs/figure/.DS_Store
    Ignored:    output/.DS_Store

Untracked files:
    Untracked:  .Rprofile
    Untracked:  ._.DS_Store
    Untracked:  .gitignore
    Untracked:  @
    Untracked:  _workflowr.yml
    Untracked:  analysis/._PASdescriptiveplots.Rmd
    Untracked:  analysis/._cuttoffPercUsage.Rmd
    Untracked:  analysis/QTLexampleplots.Rmd
    Untracked:  analysis/cuttoffPercUsage.Rmd
    Untracked:  analysis/eQTLoverlap.Rmd
    Untracked:  analysis/mergeRNA.Rmd
    Untracked:  analysis/oldstuffNotNeeded.Rmd
    Untracked:  apaQTL.Rproj
    Untracked:  code/.NascentRNAdtPlotFirstintronicPAS.sh.swp
    Untracked:  code/._ApaQTL_nominalNonnorm.sh
    Untracked:  code/._BothFracDTPlotGeneRegions.sh
    Untracked:  code/._BothFracDTPlotGeneRegions_normalized.sh
    Untracked:  code/._EandPqtl_perm.sh
    Untracked:  code/._EandPqtls.sh
    Untracked:  code/._FC_NucintornUpandDown.sh
    Untracked:  code/._FC_UTR.sh
    Untracked:  code/._FC_intornUpandDownsteamPAS.sh
    Untracked:  code/._FC_nascentseq.sh
    Untracked:  code/._FC_newPeaks_olddata.sh
    Untracked:  code/._HMMpermuteTotal.py
    Untracked:  code/._HmmPermute.py
    Untracked:  code/._IntronicPASDT.sh
    Untracked:  code/._LC_samplegroups.py
    Untracked:  code/._LD_qtl.sh
    Untracked:  code/._NascentRNAdtPlot.sh
    Untracked:  code/._NascentRNAdtPlot3UTRPAS.sh
    Untracked:  code/._NascentRNAdtPlotExcludeFirstintronicPAS.sh
    Untracked:  code/._NascentRNAdtPlotNucPAS.sh
    Untracked:  code/._NascentRNAdtPlotTotPAS.sh
    Untracked:  code/._NascentRNAdtPlotintronicPAS.sh
    Untracked:  code/._NascnetRNAdtPlotPAS.sh
    Untracked:  code/._NetSeq_fourthintronDT.sh
    Untracked:  code/._NomResfromPASSNP.py
    Untracked:  code/._NuclearPAS_5per.bed.py
    Untracked:  code/._PTTfacetboxplots.R
    Untracked:  code/._PrematureQTLNominal.sh
    Untracked:  code/._PrematureQTLPermuted.sh
    Untracked:  code/._QTL2bed.py
    Untracked:  code/._QTL2bed_withstrand.py
    Untracked:  code/._RNAbam2bw.sh
    Untracked:  code/._RNAseqDTplot.sh
    Untracked:  code/._SnakefilePAS
    Untracked:  code/._SnakefilefiltPAS
    Untracked:  code/._TESplots100bp.sh
    Untracked:  code/._TESplots150bp.sh
    Untracked:  code/._TESplots200bp.sh
    Untracked:  code/._TotalPAS_5perc.bed.py
    Untracked:  code/._Untitled
    Untracked:  code/._ZipandTabPheno.sh
    Untracked:  code/._aAPAqtl_nominal39ind.sh
    Untracked:  code/._annotatePacBioPASregion.sh
    Untracked:  code/._annotatedPAS2bed.py
    Untracked:  code/._apaQTLCorrectPvalMakeQQ.R
    Untracked:  code/._apaQTL_Nominal.sh
    Untracked:  code/._apaQTL_permuted.sh
    Untracked:  code/._assignNucIntonpeak2intronlocs.sh
    Untracked:  code/._assignTotIntronpeak2intronlocs.sh
    Untracked:  code/._bam2BW_5primemost.sh
    Untracked:  code/._bed2saf.py
    Untracked:  code/._bothFracDTplot1stintron.sh
    Untracked:  code/._bothFracDTplot4thintron.sh
    Untracked:  code/._bothFrac_FC.sh
    Untracked:  code/._callPeaksYL.py
    Untracked:  code/._changenomQTLres2geneName.py
    Untracked:  code/._chooseAnno2PAS_pacbio.py
    Untracked:  code/._chooseAnno2SAF.py
    Untracked:  code/._chooseSignalSite
    Untracked:  code/._chooseSignalSite.py
    Untracked:  code/._closestannotated.sh
    Untracked:  code/._closestannotated_byfrac.sh
    Untracked:  code/._cluster.json
    Untracked:  code/._clusterPAS.json
    Untracked:  code/._clusterfiltPAS.json
    Untracked:  code/._codingdms2bed.py
    Untracked:  code/._config.yaml
    Untracked:  code/._config2.yaml
    Untracked:  code/._configOLD.yaml
    Untracked:  code/._convertNominal2SNPLOC.py
    Untracked:  code/._convertNumeric.py
    Untracked:  code/._correctNomeqtl.R
    Untracked:  code/._createPlinkSampfile.py
    Untracked:  code/._dag.pdf
    Untracked:  code/._eQTL_switch2snploc.py
    Untracked:  code/._eQTLgenestestedapa.py
    Untracked:  code/._encodeRNADTplots.sh
    Untracked:  code/._extractGenotypes.py
    Untracked:  code/._extractseqfromqtlfastq.py
    Untracked:  code/._fc2leafphen.py
    Untracked:  code/._filter5perc.R
    Untracked:  code/._filter5percPheno.py
    Untracked:  code/._filterpeaks.py
    Untracked:  code/._finalPASbed2SAF.py
    Untracked:  code/._fix4su304corr.py
    Untracked:  code/._fix4su604corr.py
    Untracked:  code/._fix4sukalisto.py
    Untracked:  code/._fixExandUnexeQTL
    Untracked:  code/._fixExandUnexeQTL.py
    Untracked:  code/._fixFChead.py
    Untracked:  code/._fixFChead_bothfrac.py
    Untracked:  code/._fixH3k12ac.py
    Untracked:  code/._fixPASregionSNPs.py
    Untracked:  code/._fixRNAhead4corr.py
    Untracked:  code/._fixRNAkalisto.py
    Untracked:  code/._fixgroupedtranscript.py
    Untracked:  code/._fixhead_netseqfc.py
    Untracked:  code/._getAPAfromanyeQTL.py
    Untracked:  code/._getApapval4eqtl.py
    Untracked:  code/._getApapval4eqtl_unexp.py
    Untracked:  code/._getDownstreamIntronNuclear.py
    Untracked:  code/._getIntronDownstreamPAS.py
    Untracked:  code/._getIntronUpstreamPAS.py
    Untracked:  code/._getQTLalleles.py
    Untracked:  code/._getQTLfastq.sh
    Untracked:  code/._getUpstreamIntronNuclear.py
    Untracked:  code/._grouptranscripts.py
    Untracked:  code/._intersectVCFandupPAS.sh
    Untracked:  code/._keep5perMAF.py
    Untracked:  code/._keepSNP_vcf.sh
    Untracked:  code/._make5percPeakbed.py
    Untracked:  code/._makeFileID.py
    Untracked:  code/._makePheno.py
    Untracked:  code/._makeSAFbothfrac5perc.py
    Untracked:  code/._makeSNP2rsidfile.py
    Untracked:  code/._makeeQTLempirical_unexp.py
    Untracked:  code/._makeeQTLempiricaldist.py
    Untracked:  code/._makegencondeTSSfile.py
    Untracked:  code/._mapSSsnps2PAS.sh
    Untracked:  code/._mergRNABam.sh
    Untracked:  code/._mergeAllBam.sh
    Untracked:  code/._mergeBW_norm.sh
    Untracked:  code/._mergeBamNascent.sh
    Untracked:  code/._mergeByFracBam.sh
    Untracked:  code/._mergePeaks.sh
    Untracked:  code/._mnase1stintron.sh
    Untracked:  code/._mnaseDT_fourthintron.sh
    Untracked:  code/._namePeaks.py
    Untracked:  code/._netseqDTplot1stIntron.sh
    Untracked:  code/._netseqFC.sh
    Untracked:  code/._nucQTLGWAS.py
    Untracked:  code/._nucSpeceffectsize.py
    Untracked:  code/._pacbioDT.sh
    Untracked:  code/._pacbioIntronicDT.sh
    Untracked:  code/._peak2PAS.py
    Untracked:  code/._peakFC.sh
    Untracked:  code/._pheno2countonly.R
    Untracked:  code/._phenoQTLfromlist.py
    Untracked:  code/._processYRIgen.py
    Untracked:  code/._pttQTLsinapaQTL.py
    Untracked:  code/._qtlRegionseq.sh
    Untracked:  code/._qtlsPvalOppFrac.py
    Untracked:  code/._quantassign2parsedpeak.py
    Untracked:  code/._removeXfromHmm.py
    Untracked:  code/._removeloc_pheno.py
    Untracked:  code/._runCorrectNomEqtl.sh
    Untracked:  code/._runHMMpermuteAPAqtls.sh
    Untracked:  code/._runHMMpermuteeQTLS.sh
    Untracked:  code/._runMakeEmpiricaleQTL_unexp.sh
    Untracked:  code/._runMakeeQTLempirical.sh
    Untracked:  code/._run_bam2bw_all3prime.sh
    Untracked:  code/._run_bam2bw_extra3.sh
    Untracked:  code/._run_getApaPval4eqtl.sh
    Untracked:  code/._run_getapafromeQTL.py
    Untracked:  code/._run_getapafromeQTL.sh
    Untracked:  code/._run_getapapval4eqtl_unexp.sh
    Untracked:  code/._run_leafcutterDiffIso.sh
    Untracked:  code/._run_pttfacetboxplot.sh
    Untracked:  code/._run_sepUsagephen.sh
    Untracked:  code/._run_sepgenobychrom.sh
    Untracked:  code/._selectNominalPvalues.py
    Untracked:  code/._sepUsagePhen.py
    Untracked:  code/._sepgenobychrom.py
    Untracked:  code/._snakemakePAS.batch
    Untracked:  code/._snakemakefiltPAS.batch
    Untracked:  code/._sortindexRNAbam.sh
    Untracked:  code/._submit-snakemakePAS.sh
    Untracked:  code/._submit-snakemakefiltPAS.sh
    Untracked:  code/._subsetAPAnotEorPgene.py
    Untracked:  code/._subsetApanoteGene.py
    Untracked:  code/._subsetUnexplainedeQTLs.py
    Untracked:  code/._subsetVCF_SS.sh
    Untracked:  code/._subsetVCF_noSSregions.sh
    Untracked:  code/._subsetVCF_upstreamPAS.sh
    Untracked:  code/._subset_diffisopheno.py
    Untracked:  code/._subsetpermAPAwithGenelist.py
    Untracked:  code/._subsetvcf_otherreg.sh
    Untracked:  code/._subsetvcf_permSS.sh
    Untracked:  code/._subtrachfiveprimeUTR.sh
    Untracked:  code/._subtractExons.sh
    Untracked:  code/._subtractfiveprimeUTR.sh
    Untracked:  code/._tabixSNPS.sh
    Untracked:  code/._totSeceffectsize.py
    Untracked:  code/._utrdms2saf.py
    Untracked:  code/._vcf2bed.py
    Untracked:  code/._writePTTexamplecode.py
    Untracked:  code/._writePTTexamplecode.sh
    Untracked:  code/.pversion
    Untracked:  code/.snakemake/
    Untracked:  code/APAqtl_nominal.err
    Untracked:  code/APAqtl_nominal.out
    Untracked:  code/APAqtl_nominal_39.err
    Untracked:  code/APAqtl_nominal_39.out
    Untracked:  code/APAqtl_nominal_nonNorm.err
    Untracked:  code/APAqtl_nominal_nonNorm.out
    Untracked:  code/APAqtl_permuted.err
    Untracked:  code/APAqtl_permuted.out
    Untracked:  code/ApaQTL_nominalNonnorm.sh
    Untracked:  code/BothFracDTPlot1stintron.err
    Untracked:  code/BothFracDTPlot1stintron.out
    Untracked:  code/BothFracDTPlot4stintron.err
    Untracked:  code/BothFracDTPlot4stintron.out
    Untracked:  code/BothFracDTPlotGeneRegions.err
    Untracked:  code/BothFracDTPlotGeneRegions.out
    Untracked:  code/BothFracDTPlotGeneRegions_norm.err
    Untracked:  code/BothFracDTPlotGeneRegions_norm.out
    Untracked:  code/BothFracDTPlotGeneRegions_normalized.sh
    Untracked:  code/DistPAS2Sig.py
    Untracked:  code/EandPqtl.err
    Untracked:  code/EandPqtl.out
    Untracked:  code/EandPqtl_perm.sh
    Untracked:  code/EandPqtls.sh
    Untracked:  code/EncodeRNADTPlotGeneRegions.err
    Untracked:  code/EncodeRNADTPlotGeneRegions.out
    Untracked:  code/FC_NucintornUpandDown.sh
    Untracked:  code/FC_NucintronPASupandDown.err
    Untracked:  code/FC_NucintronPASupandDown.out
    Untracked:  code/FC_UTR.err
    Untracked:  code/FC_UTR.out
    Untracked:  code/FC_UTR.sh
    Untracked:  code/FC_intornUpandDownsteamPAS.sh
    Untracked:  code/FC_intronPASupandDown.err
    Untracked:  code/FC_intronPASupandDown.out
    Untracked:  code/FC_nascent.err
    Untracked:  code/FC_nascentout
    Untracked:  code/FC_nascentseq.sh
    Untracked:  code/FC_newPAS_olddata.err
    Untracked:  code/FC_newPAS_olddata.out
    Untracked:  code/FC_newPeaks_olddata.sh
    Untracked:  code/HMMpermuteTotal.py
    Untracked:  code/HmmPermute.p
    Untracked:  code/HmmPermute.py
    Untracked:  code/IntronicPASDT.err
    Untracked:  code/IntronicPASDT.out
    Untracked:  code/IntronicPASDT.sh
    Untracked:  code/LC_samplegroups.py
    Untracked:  code/LD_qtl.sh
    Untracked:  code/LD_vcftools.hap.out
    Untracked:  code/NascentDTPlotGeneRegions.err
    Untracked:  code/NascentDTPlotGeneRegions.out
    Untracked:  code/NascentDTPlotPAS.err
    Untracked:  code/NascentDTPlotPAS.out
    Untracked:  code/NascentDTPlotPAS_3utr.err
    Untracked:  code/NascentDTPlotPAS_3utr.out
    Untracked:  code/NascentDTPlotPAS_firstintron.err
    Untracked:  code/NascentDTPlotPAS_firstintron.out
    Untracked:  code/NascentDTPlotPAS_intron.err
    Untracked:  code/NascentDTPlotPAS_intron.out
    Untracked:  code/NascentDTPlotPAS_nuc.err
    Untracked:  code/NascentDTPlotPAS_nuc.out
    Untracked:  code/NascentDTPlotPAS_tot.err
    Untracked:  code/NascentDTPlotPAS_tot.out
    Untracked:  code/NascentRNAdtPlot.sh
    Untracked:  code/NascentRNAdtPlot3UTRPAS.sh
    Untracked:  code/NascentRNAdtPlotExcludeFirstintronicPAS.sh
    Untracked:  code/NascentRNAdtPlotFirstintronicPAS.sh
    Untracked:  code/NascentRNAdtPlotNucPAS.sh
    Untracked:  code/NascentRNAdtPlotTotPAS.sh
    Untracked:  code/NascentRNAdtPlotintronicPAS.sh
    Untracked:  code/NascnetRNAdtPlotPAS.sh
    Untracked:  code/NetSeq_fourthintronDT.sh
    Untracked:  code/NomResfromPASSNP.py
    Untracked:  code/NuclearPAS_5per.bed.py
    Untracked:  code/Nuclear_example.err
    Untracked:  code/Nuclear_example.out
    Untracked:  code/PACbioDT.err
    Untracked:  code/PACbioDT.out
    Untracked:  code/PACbioDTitronic.err
    Untracked:  code/PACbioDTitronic.out
    Untracked:  code/PTTfacetboxplots.R
    Untracked:  code/PrematureQTLNominal.sh
    Untracked:  code/PrematureQTLPermuted.sh
    Untracked:  code/Prematureqtl_nominal.err
    Untracked:  code/Prematureqtl_nominal.out
    Untracked:  code/Prematureqtl_permuted.err
    Untracked:  code/Prematureqtl_permuted.out
    Untracked:  code/QTL2bed.py
    Untracked:  code/QTL2bed_withstrand.py
    Untracked:  code/README.md
    Untracked:  code/RNABam2BW.err
    Untracked:  code/RNABam2BW.out
    Untracked:  code/RNAbam2bw.sh
    Untracked:  code/RNAseqDTPlotGeneRegions.err
    Untracked:  code/RNAseqDTPlotGeneRegions.out
    Untracked:  code/RNAseqDTplot.sh
    Untracked:  code/Rplots.pdf
    Untracked:  code/Script4NuclearPTTqtlexamples.sh
    Untracked:  code/Script4NuclearQTLexamples.sh
    Untracked:  code/Script4TotalPTTqtlexamples.sh
    Untracked:  code/Script4TotalQTLexamples.sh
    Untracked:  code/TESplots100bp.err
    Untracked:  code/TESplots100bp.out
    Untracked:  code/TESplots100bp.sh
    Untracked:  code/TESplots150bp.err
    Untracked:  code/TESplots150bp.out
    Untracked:  code/TESplots150bp.sh
    Untracked:  code/TESplots200bp.err
    Untracked:  code/TESplots200bp.out
    Untracked:  code/TESplots200bp.sh
    Untracked:  code/TotalPAS_5perc.bed.py
    Untracked:  code/Total_example.err
    Untracked:  code/Total_example.out
    Untracked:  code/Untitled
    Untracked:  code/Upstream100Bases_general.py
    Untracked:  code/ZipandTabPheno.sh
    Untracked:  code/aAPAqtl_nominal39ind.sh
    Untracked:  code/annotatePacBioPASregion.sh
    Untracked:  code/annotatedPAS2bed.py
    Untracked:  code/annotatedPASregion.err
    Untracked:  code/annotatedPASregion.out
    Untracked:  code/apaQTLCorrectPvalMakeQQ_4pc.R
    Untracked:  code/apaQTL_Nominal_4pc.sh
    Untracked:  code/apaQTL_permuted.4pc.sh
    Untracked:  code/apafacetboxplots.R
    Untracked:  code/apaqtlfacetboxplots.R
    Untracked:  code/assignNucIntonpeak2intronlocs.sh
    Untracked:  code/assignPeak2Intronicregion.err
    Untracked:  code/assignPeak2Intronicregion.out
    Untracked:  code/assignTotIntronpeak2intronlocs.sh
    Untracked:  code/assigntotPeak2Intronicregion.err
    Untracked:  code/assigntotPeak2Intronicregion.out
    Untracked:  code/bam2BW_5primemost.sh
    Untracked:  code/bam2bw.err
    Untracked:  code/bam2bw.out
    Untracked:  code/bam2bw_5primemost.err
    Untracked:  code/bam2bw_5primemost.out
    Untracked:  code/binary_fileset.log
    Untracked:  code/bothFracDTplot1stintron.sh
    Untracked:  code/bothFracDTplot4thintron.sh
    Untracked:  code/bothFrac_FC.err
    Untracked:  code/bothFrac_FC.out
    Untracked:  code/bothFrac_FC.sh
    Untracked:  code/changePermQTLres2geneName.py
    Untracked:  code/changenomQTLres2geneName.py
    Untracked:  code/chooseAnno2PAS_pacbio.py
    Untracked:  code/closestannotated.err
    Untracked:  code/closestannotated.out
    Untracked:  code/closestannotated.sh
    Untracked:  code/closestannotated_byfrac.sh
    Untracked:  code/closestannotatedbyfrac.err
    Untracked:  code/closestannotatedbyfrac.out
    Untracked:  code/codingdms2bed.py
    Untracked:  code/convertNominal2SNPLOC.py
    Untracked:  code/correctNomeqtl.R
    Untracked:  code/createPlinkSampfile.py
    Untracked:  code/dag.pdf
    Untracked:  code/dagPAS.pdf
    Untracked:  code/dagfiltPAS.pdf
    Untracked:  code/eQTL_switch2snploc.py
    Untracked:  code/eQTLgenestestedapa.py
    Untracked:  code/encodeRNADTplots.sh
    Untracked:  code/extractGenotypes.py
    Untracked:  code/extractseqfromqtlfastq.py
    Untracked:  code/fc2leafphen.py
    Untracked:  code/finalPASbed2SAF.py
    Untracked:  code/findbuginpeaks.R
    Untracked:  code/fix4su304corr.py
    Untracked:  code/fix4su604corr.py
    Untracked:  code/fix4sukalisto.py
    Untracked:  code/fixExandUnexeQTL
    Untracked:  code/fixExandUnexeQTL.py
    Untracked:  code/fixFChead_bothfrac.py
    Untracked:  code/fixFChead_summary.py
    Untracked:  code/fixH3k12ac.py
    Untracked:  code/fixPASregionSNPs.py
    Untracked:  code/fixRNAhead4corr.py
    Untracked:  code/fixRNAkalisto.py
    Untracked:  code/fixgroupedtranscript.py
    Untracked:  code/fixhead_netseqfc.py
    Untracked:  code/genotypesYRI.gen.proc.keep.vcf.log
    Untracked:  code/genotypesYRI.gen.proc.keep.vcf.recode.vcf
    Untracked:  code/get100upPAS.py
    Untracked:  code/getAPAfromanyeQTL.py
    Untracked:  code/getApapval4eqtl.py
    Untracked:  code/getApapval4eqtl_unexp.py
    Untracked:  code/getDownstreamIntronNuclear.py
    Untracked:  code/getIntronDownstreamPAS.py
    Untracked:  code/getIntronUpstreamPAS.py
    Untracked:  code/getQTLalleles.py
    Untracked:  code/getQTLfastq.sh
    Untracked:  code/getSeq100up.sh
    Untracked:  code/getUpstreamIntronNuclear.py
    Untracked:  code/getseq100up.err
    Untracked:  code/getseq100up.out
    Untracked:  code/grouptranscripts.err
    Untracked:  code/grouptranscripts.out
    Untracked:  code/grouptranscripts.py
    Untracked:  code/intersectPAS_ssSNPS.err
    Untracked:  code/intersectPAS_ssSNPS.out
    Untracked:  code/intersectVCFPAS.err
    Untracked:  code/intersectVCFPAS.out
    Untracked:  code/intersectVCFandupPAS.sh
    Untracked:  code/keep5perMAF.py
    Untracked:  code/keepSNP_vcf.sh
    Untracked:  code/log/
    Untracked:  code/makeSAFbothfrac5perc.py
    Untracked:  code/makeSNP2rsidfile.py
    Untracked:  code/makeeQTLempirical_unexp.py
    Untracked:  code/makeeQTLempiricaldist.py
    Untracked:  code/makegencondeTSSfile.py
    Untracked:  code/mapSSsnps2PAS.sh
    Untracked:  code/mergRNABam.sh
    Untracked:  code/mergeBW_norm.sh
    Untracked:  code/mergeBWnorm.err
    Untracked:  code/mergeBWnorm.out
    Untracked:  code/mergeBamNacent.err
    Untracked:  code/mergeBamNacent.out
    Untracked:  code/mergeBamNascent.sh
    Untracked:  code/mergeRNAbam.err
    Untracked:  code/mergeRNAbam.out
    Untracked:  code/mnase1stintron.sh
    Untracked:  code/mnaseDTPlot1stintron.err
    Untracked:  code/mnaseDTPlot1stintron.out
    Untracked:  code/mnaseDTPlot4thintron.err
    Untracked:  code/mnaseDTPlot4thintron.out
    Untracked:  code/mnaseDT_fourthintron.sh
    Untracked:  code/netDTPlot4thintron.out
    Untracked:  code/netseqDTplot1stIntron.sh
    Untracked:  code/netseqFC.err
    Untracked:  code/netseqFC.out
    Untracked:  code/netseqFC.sh
    Untracked:  code/neyDTPlot4thintron.err
    Untracked:  code/nucQTLGWAS.py
    Untracked:  code/nucSpeceffectsize.py
    Untracked:  code/pacbioDT.sh
    Untracked:  code/pacbioIntronicDT.sh
    Untracked:  code/phenoQTLfromlist.py
    Untracked:  code/plink.log
    Untracked:  code/processYRIgen.py
    Untracked:  code/pttFacetBoxplots.err
    Untracked:  code/pttFacetBoxplots.out
    Untracked:  code/pttQTLsinapaQTL.py
    Untracked:  code/pullTwoMechData.py
    Untracked:  code/qtlFacetBoxplots.err
    Untracked:  code/qtlFacetBoxplots.out
    Untracked:  code/qtlRegionseq.sh
    Untracked:  code/qtlsPvalOppFrac.py
    Untracked:  code/rLD_vcftools.hap.err
    Untracked:  code/removeXfromHmm.py
    Untracked:  code/removeloc_pheno.py
    Untracked:  code/runCorrectNomEqtl.sh
    Untracked:  code/runCorrectNomeqtl.err
    Untracked:  code/runCorrectNomeqtl.out
    Untracked:  code/runHMMpermute.err
    Untracked:  code/runHMMpermute.out
    Untracked:  code/runHMMpermuteAPAqtls.sh
    Untracked:  code/runHMMpermuteeQTLS.sh
    Untracked:  code/runHMMpermuteeQTLs.err
    Untracked:  code/runHMMpermuteeQTLs.out
    Untracked:  code/runMakeEmpiricaleQTL_unexp.sh
    Untracked:  code/runMakeEmpiricaleQTLs.err
    Untracked:  code/runMakeEmpiricaleQTLs.out
    Untracked:  code/runMakeEmpiricaleQTLsunex.err
    Untracked:  code/runMakeEmpiricaleQTLsunex.out
    Untracked:  code/runMakeeQTLempirical.sh
    Untracked:  code/run_DistPAS2Sig.err
    Untracked:  code/run_DistPAS2Sig.out
    Untracked:  code/run_bam2bw.err
    Untracked:  code/run_bam2bw.out
    Untracked:  code/run_bam2bw_all3prime.sh
    Untracked:  code/run_bam2bw_extra3.sh
    Untracked:  code/run_bam2bwexta.err
    Untracked:  code/run_bam2bwexta.out
    Untracked:  code/run_distPAS2Sig.sh
    Untracked:  code/run_getAPAfromanyeQTL.err
    Untracked:  code/run_getAPAfromanyeQTL.out
    Untracked:  code/run_getApaPval4eQTLs.err
    Untracked:  code/run_getApaPval4eQTLs.out
    Untracked:  code/run_getApaPval4eQTLsunexplained.err
    Untracked:  code/run_getApaPval4eQTLsunexplained.out
    Untracked:  code/run_getApaPval4eqtl.sh
    Untracked:  code/run_getapafromeQTL.sh
    Untracked:  code/run_getapapval4eqtl_unexp.sh
    Untracked:  code/run_leafcutterDiffIso.sh
    Untracked:  code/run_leafcutter_ds.err
    Untracked:  code/run_leafcutter_ds.out
    Untracked:  code/run_pttfacetboxplot.sh
    Untracked:  code/run_qtlFacetBoxplots.sh
    Untracked:  code/run_sepUsagephen.sh
    Untracked:  code/run_sepgenobychrom.err
    Untracked:  code/run_sepgenobychrom.out
    Untracked:  code/run_sepgenobychrom.sh
    Untracked:  code/run_sepusage.err
    Untracked:  code/run_sepusage.out
    Untracked:  code/selectNominalPvalues.py
    Untracked:  code/sepUsagePhen.py
    Untracked:  code/sepgenobychrom.py
    Untracked:  code/seqQTLfastq.err
    Untracked:  code/seqQTLfastq.out
    Untracked:  code/seqQTLregion.err
    Untracked:  code/seqQTLregion.out
    Untracked:  code/snakePASlog.out
    Untracked:  code/snakefiltPASlog.out
    Untracked:  code/sortindexRNABam.err
    Untracked:  code/sortindexRNABam.out
    Untracked:  code/sortindexRNAbam.sh
    Untracked:  code/subsetAPAnotEorPgene.py
    Untracked:  code/subsetApanoteGene.py
    Untracked:  code/subsetUnexplainedeQTLs.py
    Untracked:  code/subsetVCF_SS.sh
    Untracked:  code/subsetVCF_noSSregions.sh
    Untracked:  code/subsetVCF_upstreamPAS.sh
    Untracked:  code/subset_diffisopheno.py
    Untracked:  code/subsetpermAPAwithGenelist.py
    Untracked:  code/subsetvcf_SS.err
    Untracked:  code/subsetvcf_SS.out
    Untracked:  code/subsetvcf_noSS.err
    Untracked:  code/subsetvcf_noSS.out
    Untracked:  code/subsetvcf_otherreg.sh
    Untracked:  code/subsetvcf_pas.err
    Untracked:  code/subsetvcf_pas.out
    Untracked:  code/subsetvcf_perm.err
    Untracked:  code/subsetvcf_perm.out
    Untracked:  code/subsetvcf_permSS.sh
    Untracked:  code/subsetvcf_rand.err
    Untracked:  code/subsetvcf_rand.out
    Untracked:  code/subtract5UTR.err
    Untracked:  code/subtract5UTR.out
    Untracked:  code/subtractExons.err
    Untracked:  code/subtractExons.out
    Untracked:  code/subtractExons.sh
    Untracked:  code/subtractfiveprimeUTR.sh
    Untracked:  code/tabixSNPS.sh
    Untracked:  code/tabixSNPs.err
    Untracked:  code/tabixSNPs.out
    Untracked:  code/totSeceffectsize.py
    Untracked:  code/transcriptdm2bed.py
    Untracked:  code/utrdms2saf.py
    Untracked:  code/vcf2bed.py
    Untracked:  code/vcf_keepsnps.err
    Untracked:  code/vcf_keepsnps.out
    Untracked:  code/writeExampleQTLcode.py
    Untracked:  code/writePTTexamplecode.py
    Untracked:  code/zipandtabPhen.err
    Untracked:  code/zipandtabPhen.out
    Untracked:  data/._.DS_Store
    Untracked:  data/._MetaDataSequencing.txt
    Untracked:  data/AnnotatedPAS/
    Untracked:  data/ApaByEgene/
    Untracked:  data/ApaByPgene/
    Untracked:  data/Battle_pQTL/
    Untracked:  data/CompareOldandNew/
    Untracked:  data/DTmatrix/
    Untracked:  data/DiffIso/
    Untracked:  data/EncodeRNA/
    Untracked:  data/ExampleQTLPlots/
    Untracked:  data/GWAS_overlap/
    Untracked:  data/GeuvadisRNA/
    Untracked:  data/HMMqtls/
    Untracked:  data/Li_eQTLs/
    Untracked:  data/NascentRNA/
    Untracked:  data/NucSpeceQTLeffect/
    Untracked:  data/PAS/
    Untracked:  data/PolyA_DB/
    Untracked:  data/PreTerm_pheno/
    Untracked:  data/PrematureQTLNominal/
    Untracked:  data/PrematureQTLPermuted/
    Untracked:  data/QTLGenotypes/
    Untracked:  data/QTLoverlap/
    Untracked:  data/QTLoverlap_nonNorm/
    Untracked:  data/README.md
    Untracked:  data/RNAseq/
    Untracked:  data/Reads2UTR/
    Untracked:  data/SNPinSS/
    Untracked:  data/SignalSiteFiles/
    Untracked:  data/TF_motifdisruption/
    Untracked:  data/ThirtyNineIndQtl_nominal/
    Untracked:  data/apaQTLNominal/
    Untracked:  data/apaQTLNominal_4pc/
    Untracked:  data/apaQTLPermuted/
    Untracked:  data/apaQTLPermuted_4pc/
    Untracked:  data/apaQTLs/
    Untracked:  data/assignedPeaks/
    Untracked:  data/bam/
    Untracked:  data/bam_clean/
    Untracked:  data/bam_waspfilt/
    Untracked:  data/bed_10up/
    Untracked:  data/bed_clean/
    Untracked:  data/bed_clean_sort/
    Untracked:  data/bed_waspfilter/
    Untracked:  data/bedsort_waspfilter/
    Untracked:  data/bothFrac_FC/
    Untracked:  data/bw/
    Untracked:  data/bw_norm/
    Untracked:  data/eQTLs/
    Untracked:  data/exampleQTLs/
    Untracked:  data/fastq/
    Untracked:  data/filterPeaks/
    Untracked:  data/fourSU/
    Untracked:  data/h3k27ac/
    Untracked:  data/highdiffsiggenes.txt
    Untracked:  data/inclusivePeaks/
    Untracked:  data/inclusivePeaks_FC/
    Untracked:  data/intronRNAratio/
    Untracked:  data/intron_analysis/
    Untracked:  data/locusZoom/
    Untracked:  data/mergedBG/
    Untracked:  data/mergedBW_byfrac/
    Untracked:  data/mergedBW_norm/
    Untracked:  data/mergedBam/
    Untracked:  data/mergedbyFracBam/
    Untracked:  data/molPhenos/
    Untracked:  data/molQTLs/
    Untracked:  data/motifdistrupt/
    Untracked:  data/netseq/
    Untracked:  data/nonNorm_pheno/
    Untracked:  data/nuc_10up/
    Untracked:  data/nuc_10upclean/
    Untracked:  data/overlapeQTL_try2/
    Untracked:  data/overlapeQTLs/
    Untracked:  data/pacbio/
    Untracked:  data/peakCoverage/
    Untracked:  data/peaks_5perc/
    Untracked:  data/phenotype/
    Untracked:  data/phenotype_5perc/
    Untracked:  data/pttQTL/
    Untracked:  data/pttQTLplots/
    Untracked:  data/sigDiffGenes.txt
    Untracked:  data/sort/
    Untracked:  data/sort_clean/
    Untracked:  data/sort_waspfilter/
    Untracked:  data/twoMech/
    Untracked:  docs/._.DS_Store
    Untracked:  docs/figure/._.DS_Store
    Untracked:  docs/figure/nonNormQTL.Rmd/._figure2D-1.pdf
    Untracked:  nohup.out
    Untracked:  output/._.DS_Store
    Untracked:  output/._meanCorrelationPhenotypes.svg
    Untracked:  output/dtPlots/
    Untracked:  output/fastqc/
    Untracked:  output/meanCorrelationPhenotypes.svg

Unstaged changes:
    Modified:   analysis/NuclearSpecAPAqtl.Rmd
    Modified:   analysis/PAS_graphs.Rmd
    Modified:   analysis/PrematureTermQTL.Rmd
    Modified:   analysis/compareAnnotatedpas.Rmd
    Modified:   analysis/nucSpecinEQTLs.Rmd
    Modified:   analysis/overlapapaqtlsandeqtls.Rmd
    Modified:   analysis/pQTLexampleplot.Rmd
    Modified:   code/BothFracDTPlotGeneRegions.sh
    Modified:   code/Snakefile
    Deleted:    code/Upstream10Bases_general.py
    Modified:   code/apaQTLCorrectPvalMakeQQ.R
    Modified:   code/apaQTL_Nominal.sh
    Modified:   code/apaQTL_permuted.sh
    Modified:   code/apaQTLsnake.err
    Modified:   code/bam2bw.sh
    Modified:   code/bed2saf.py
    Modified:   code/cluster.json
    Modified:   code/clusterfiltPAS.json
    Modified:   code/config.yaml
    Modified:   code/environment.yaml
    Modified:   code/makePheno.py
    Deleted:    code/test.txt
    Modified:   docs/figure/exvunexpeQTL.Rmd/figure3C-1.pdf
    Modified:   docs/figure/pQTLandeQTLoverlap.Rmd/figure3A-1.pdf
    Deleted:    docs/figure/propeQTLs_explained.Rmd/figure3B-1.pdf

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd e4d84f6 brimittleman 2019-08-01 chamge pdf sizes for figure 3
html ab8482d brimittleman 2019-08-01 Build site.
Rmd 99c751e brimittleman 2019-08-01 pdf for figure 3
html d73d818 brimittleman 2019-06-26 Build site.
Rmd c53925a brimittleman 2019-06-26 add graph labels
html 06de9df brimittleman 2019-06-26 Build site.
Rmd ec9c1d6 brimittleman 2019-06-26 add direction concordance plots
html ec8d7dc brimittleman 2019-06-26 Build site.
Rmd 52e46bc brimittleman 2019-06-26 add example plot code
html 0fae25e brimittleman 2019-06-20 Build site.
Rmd eb847c1 brimittleman 2019-06-20 add analysis by pval
html ca379ce brimittleman 2019-06-13 Build site.
Rmd 2fd2b27 brimittleman 2019-06-13 fix bug
html b907ac1 brimittleman 2019-06-12 Build site.
Rmd 178c5dc brimittleman 2019-06-12 new geno
html 6b164c8 brimittleman 2019-06-07 Build site.
Rmd b39620d brimittleman 2019-06-07 add bonfor results
html 458e494 brimittleman 2019-06-07 Build site.
Rmd 32091ee brimittleman 2019-06-07 more prop explained to new analysis

library(tidyverse)
── Attaching packages ────────────────────────────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.1.1       ✔ purrr   0.3.2  
✔ tibble  2.1.1       ✔ dplyr   0.8.0.1
✔ tidyr   0.8.3       ✔ stringr 1.3.1  
✔ readr   1.3.1       ✔ forcats 0.3.0  
── Conflicts ───────────────────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
library(workflowr)
This is workflowr version 1.4.0
Run ?workflowr for help getting started
library(reshape2)

Attaching package: 'reshape2'
The following object is masked from 'package:tidyr':

    smiths

I need to fix the explained_FDR10.sort.txt and unexplained_FDR10.sort.txt files because right now this file has multiple genes per snp.

python fixExandUnexeQTL.py ../data/Li_eQTLs/explained_FDR10.sort.txt ../data/Li_eQTLs/explained_FDR10.sort_FIXED.txt
python fixExandUnexeQTL.py ../data/Li_eQTLs/unexplained_FDR10.sort.txt ../data/Li_eQTLs/unexplained_FDR10.sort_FIXED.txt

There are 1195 explained and 814 unexplained eQTLs. I will next look at each of these in my apadata.

Convert nominal results to have snps rather than rsids:

python convertNominal2SNPLOC.py Total
python convertNominal2SNPLOC.py Nuclear
mkdir ../data/overlapeQTL_try2
sbatch run_getapafromeQTL.sh

total

I can group the unexplained by gene and snp then I can ask if there is at least 1 significat peak for each of these.

I will use the bonforoni correction here and multiply the pvalue by the number of peaks in the gene:snp association.

nomnames=c("peakID", 'snp','dist', 'pval', 'slope')
totalapaUnexplained=read.table("../data/overlapeQTL_try2/apaTotal_unexplainedQTLs.txt", stringsAsFactors = F, col.names = nomnames)
totalapaUnexplained=totalapaUnexplained %>% separate(peakID, into=c("chr","start","end","geneID"), sep=":") %>% separate(geneID, into=c("gene", "loc", "strand", "PASnum"), sep="_") %>% group_by(gene, snp)  %>% mutate(nPeaks=n(), adjPval=pval* nPeaks)%>%  dplyr::slice(which.min(adjPval))

totalapaUnexplained_sig= totalapaUnexplained %>% filter(adjPval<.05)

Look at distribution of these pvals:

ggplot(totalapaUnexplained, aes(x=adjPval)) + geom_histogram(bins=50)

Version Author Date
ca379ce brimittleman 2019-06-13
b907ac1 brimittleman 2019-06-12

Proportion explained:

nrow(totalapaUnexplained_sig)/nrow(totalapaUnexplained)
[1] 0.1632653

I tested 588 unexplained eQTLs in the total fraction and 96 have a bonforoni corrected significant peak.

Compare to explained eQTLS:

totalapaexplained=read.table("../data/overlapeQTL_try2/apaTotal_explainedQTLs.txt", stringsAsFactors = F, col.names = nomnames) %>% separate(peakID, into=c("chr","start","end","geneID"), sep=":") %>% separate(geneID, into=c("gene", "loc", "strand", "PASnum"), sep="_") %>% group_by(gene, snp) %>%  mutate(nPeaks=n(), adjPval=pval* nPeaks) %>%  dplyr::slice(which.min(adjPval))

totalapaexplained_sig= totalapaexplained %>% filter(adjPval<.05)

nrow(totalapaexplained_sig)/nrow(totalapaexplained)
[1] 0.1304878

I am testing 820 explained eQTLs and of those 107 have a bonforoni corrected significant peak.

difference of proportions:

prop.test(x=c(nrow(totalapaUnexplained_sig),nrow(totalapaexplained_sig)), n=c(nrow(totalapaUnexplained),nrow(totalapaexplained)))

    2-sample test for equality of proportions with continuity
    correction

data:  c(nrow(totalapaUnexplained_sig), nrow(totalapaexplained_sig)) out of c(nrow(totalapaUnexplained), nrow(totalapaexplained))
X-squared = 2.722, df = 1, p-value = 0.09898
alternative hypothesis: two.sided
95 percent confidence interval:
 -0.00641871  0.07197371
sample estimates:
   prop 1    prop 2 
0.1632653 0.1304878 
ggplot(totalapaUnexplained_sig,aes(x=loc)) + geom_histogram(stat="count",aes(y=..count../sum(..count..))) + labs(y="Proportion", title = "Total apaQTLs explaining eQTLs")
Warning: Ignoring unknown parameters: binwidth, bins, pad

Version Author Date
ca379ce brimittleman 2019-06-13
b907ac1 brimittleman 2019-06-12
totalapaUnexplained_sig_loc= totalapaUnexplained_sig %>% group_by(loc) %>% summarise(nLocTotalUn=n()) %>% mutate(propTotalUn=nLocTotalUn/nrow(totalapaUnexplained_sig))
totalapaexplained_sig_loc= totalapaexplained_sig %>% group_by(loc) %>% summarise(nLocTotalEx=n()) %>% mutate(propTotalEx=nLocTotalEx/nrow(totalapaexplained_sig))

BothTotalLoc=totalapaUnexplained_sig_loc %>% full_join(totalapaexplained_sig_loc,by="loc") %>%  replace_na(list(propTotalUn = 0, nLocTotalUn = 0,propTotalEx=0,nLocTotalEx=0  ))

BothTotalLoc
# A tibble: 5 x 5
  loc    nLocTotalUn propTotalUn nLocTotalEx propTotalEx
  <chr>        <dbl>       <dbl>       <dbl>       <dbl>
1 cds              7      0.0729           8      0.0748
2 end              9      0.0938           7      0.0654
3 intron          17      0.177           20      0.187 
4 utr3            59      0.615           70      0.654 
5 utr5             4      0.0417           2      0.0187

nuclear

nuclearapaUnexplained=read.table("../data/overlapeQTL_try2/apaNuclear_unexplainedQTLs.txt", stringsAsFactors = F, col.names = nomnames) %>% separate(peakID, into=c("chr","start","end","geneID"), sep=":") %>% separate(geneID, into=c("gene", "loc", "strand", "PASnum"), sep="_") %>% group_by(gene, snp)  %>%  mutate(nPeaks=n(), adjPval=pval* nPeaks) %>% dplyr::slice(which.min(adjPval))

nuclearapaUnexplained_sig= nuclearapaUnexplained %>% filter(adjPval<.05)

nrow(nuclearapaUnexplained_sig)/nrow(nuclearapaUnexplained)
[1] 0.1649832

I tested 594 unexplained eQTLs in the nuclear fraction and 98 have a bonforoni corrected significant peak.

nuclearapaexplained=read.table("../data/overlapeQTL_try2/apaNuclear_explainedQTLs.txt", stringsAsFactors = F, col.names = nomnames) %>% separate(peakID, into=c("chr","start","end","geneID"), sep=":") %>% separate(geneID, into=c("gene", "loc", "strand", "PASnum"), sep="_") %>% group_by(gene, snp) %>%  mutate(nPeaks=n(), adjPval=pval* nPeaks) %>%  dplyr::slice(which.min(adjPval))

nuclearapaexplained_sig= nuclearapaexplained %>% filter(adjPval<.05)

nrow(nuclearapaexplained_sig)/nrow(nuclearapaexplained)
[1] 0.13269

I tested 829 explained eQTLs in the nuclear fraction and 110 have a nominally significant peak. difference of proportions:

prop.test(x=c(nrow(nuclearapaUnexplained_sig),nrow(nuclearapaexplained_sig)), n=c(nrow(nuclearapaUnexplained),nrow(nuclearapaexplained)))

    2-sample test for equality of proportions with continuity
    correction

data:  c(nrow(nuclearapaUnexplained_sig), nrow(nuclearapaexplained_sig)) out of c(nrow(nuclearapaUnexplained), nrow(nuclearapaexplained))
X-squared = 2.6386, df = 1, p-value = 0.1043
alternative hypothesis: two.sided
95 percent confidence interval:
 -0.006890426  0.071476780
sample estimates:
   prop 1    prop 2 
0.1649832 0.1326900 
ggplot(nuclearapaUnexplained_sig,aes(x=loc))  + geom_histogram(stat="count",aes(y=..count../sum(..count..))) + labs(title = "Nuclear apaQTLs explaining eQTLs", y="Proportion")
Warning: Ignoring unknown parameters: binwidth, bins, pad

Version Author Date
ca379ce brimittleman 2019-06-13
b907ac1 brimittleman 2019-06-12
nuclearapaUnexplained_sig_loc= nuclearapaUnexplained_sig %>% group_by(loc) %>% summarise(nLocnuclearUn=n()) %>% mutate(propnuclearUn=nLocnuclearUn/nrow(nuclearapaUnexplained_sig))
nuclearapaexplained_sig_loc= nuclearapaexplained_sig %>% group_by(loc) %>% summarise(nLocnuclearEx=n()) %>% mutate(propnuclearEx=nLocnuclearEx/nrow(nuclearapaexplained_sig))

BothnuclearLoc=nuclearapaUnexplained_sig_loc %>% full_join(nuclearapaexplained_sig_loc,by="loc") %>%  replace_na(list(propnuclearUn = 0, nLocnuclearUn = 0,propnuclearEx=0,nLocnuclearEx=0  ))

BothnuclearLoc
# A tibble: 5 x 5
  loc    nLocnuclearUn propnuclearUn nLocnuclearEx propnuclearEx
  <chr>          <dbl>         <dbl>         <dbl>         <dbl>
1 cds                4        0.0408             3        0.0273
2 end               10        0.102              9        0.0818
3 intron            18        0.184             33        0.3   
4 utr3              66        0.673             63        0.573 
5 utr5               0        0                  2        0.0182
prop.test(x=c(18,33), n=c(nrow(nuclearapaUnexplained_sig),nrow(nuclearapaexplained_sig)))

    2-sample test for equality of proportions with continuity
    correction

data:  c(18, 33) out of c(nrow(nuclearapaUnexplained_sig), nrow(nuclearapaexplained_sig))
X-squared = 3.1869, df = 1, p-value = 0.07423
alternative hypothesis: two.sided
95 percent confidence interval:
 -0.240913267  0.008260206
sample estimates:
   prop 1    prop 2 
0.1836735 0.3000000 
prop.test(x=c(66,63), n=c(nrow(nuclearapaUnexplained_sig),nrow(nuclearapaexplained_sig)))

    2-sample test for equality of proportions with continuity
    correction

data:  c(66, 63) out of c(nrow(nuclearapaUnexplained_sig), nrow(nuclearapaexplained_sig))
X-squared = 1.8258, df = 1, p-value = 0.1766
alternative hypothesis: two.sided
95 percent confidence interval:
 -0.03992433  0.24140856
sample estimates:
   prop 1    prop 2 
0.6734694 0.5727273 

total v nuclear

prop.test(x=c(nrow(nuclearapaUnexplained_sig),nrow(totalapaUnexplained_sig)), n=c(nrow(nuclearapaUnexplained),nrow(totalapaUnexplained)))

    2-sample test for equality of proportions with continuity
    correction

data:  c(nrow(nuclearapaUnexplained_sig), nrow(totalapaUnexplained_sig)) out of c(nrow(nuclearapaUnexplained), nrow(totalapaUnexplained))
X-squared = 1.4301e-06, df = 1, p-value = 0.999
alternative hypothesis: two.sided
95 percent confidence interval:
 -0.04220475  0.04564046
sample estimates:
   prop 1    prop 2 
0.1649832 0.1632653 

Differences in proportion by location

allLocProp=BothnuclearLoc %>% full_join(BothTotalLoc, by="loc") %>% select(loc,propnuclearUn,propnuclearEx,propTotalUn,propTotalEx )

allLocPropmelt= melt(allLocProp, id.vars = "loc") %>% mutate(Fraction=ifelse(grepl("Total", variable), "Total", "Nuclear"),eQTL=ifelse(grepl("Un", variable), "Unexplained", "Explained"))


ggplot(allLocPropmelt,aes(x=loc, fill=eQTL, y=value)) + geom_histogram(stat="identity", position = "dodge") + facet_grid(~Fraction)+ labs(y="Proportion of PAS", title="apaQTLs overlaping eQTLs by PAS location")  + scale_fill_manual(values=c("orange", "blue"))
Warning: Ignoring unknown parameters: binwidth, bins, pad

Version Author Date
ab8482d brimittleman 2019-08-01
ca379ce brimittleman 2019-06-13
b907ac1 brimittleman 2019-06-12

This is a very stringent test. A less stringent way to get an upper bound would be to make an informed decision about which peak to use. This will make it so I am only testing one PAS per gene.

Vary the pvalue cuttoff

To test if .05 is a good cuttoff for this analysis I will create a function that computes the overlap at different cutoffs. I will go from .01 to .5 by .05

totalapaUnexplained totalapaexplained

nuclearapaUnexplained nuclearapaexplained

prop_overlap=function(status, fraction, cutoff){
  if (fraction=="Total"){
    if (status=="Explained"){
      file=totalapaexplained
      sig=file %>% filter(adjPval<=cutoff)
      proportion=round(nrow(sig)/nrow(file),digits=2)
    }else {
      file=totalapaUnexplained
      sig=file %>% filter(adjPval<=cutoff)
      proportion=round(nrow(sig)/nrow(file),digits=2)
    }
  } else{
    if (status=="Explained"){
      file=nuclearapaexplained
      sig=file %>% filter(adjPval<=cutoff)
      proportion=round(nrow(sig)/nrow(file),digits=2)
     }else {
      file=nuclearapaUnexplained
      sig=file %>% filter(adjPval<=cutoff)
      proportion=round(nrow(sig)/nrow(file),digits=2)
     }
  }
  return(proportion)
}
cutoffs=c(0.001,0.01,0.02,0.03,0.04,0.05,0.1,0.2,0.3,0.4,0.5)

TotalExplained_Proportions=c()
for(i in cutoffs){
  TotalExplained_Proportions=c( TotalExplained_Proportions, prop_overlap("Explained", "Total", i))
}
TotalExplained_ProportionsDF=as.data.frame(cbind(cutoffs,Prop=TotalExplained_Proportions, Status=rep("Explained", 11), Fraction=rep("Total", 11)))

TotalUnexplained_Proportions=c()
for(i in cutoffs){
  TotalUnexplained_Proportions=c(TotalUnexplained_Proportions, prop_overlap("Unexplained", "Total", i))
}
TotalUnexplained_ProportionsDF=as.data.frame(cbind(cutoffs,Prop=TotalUnexplained_Proportions, Status=rep("Unexplained", 11), Fraction=rep("Total", 11)))

NuclearExplained_Proportions=c()
for(i in cutoffs){
  NuclearExplained_Proportions=c( NuclearExplained_Proportions, prop_overlap("Explained", "Nuclear", i))
}
NuclearExplained_ProportionsDF=as.data.frame(cbind(cutoffs,Prop=NuclearExplained_Proportions, Status=rep("Explained", 11), Fraction=rep("Nuclear", 11)))


NuclearUnexplained_Proportions=c()
for(i in cutoffs){
  NuclearUnexplained_Proportions=c( NuclearUnexplained_Proportions, prop_overlap("Unexplained", "Nuclear", i))
}
NuclearUnexplained_ProportionsDF=as.data.frame(cbind(cutoffs,Prop=NuclearUnexplained_Proportions, Status=rep("Unexplained", 11), Fraction=rep("Nuclear", 11)))



AllPropDF=bind_rows(TotalExplained_ProportionsDF,TotalUnexplained_ProportionsDF,NuclearExplained_ProportionsDF,NuclearUnexplained_ProportionsDF)
Warning in bind_rows_(x, .id): Unequal factor levels: coercing to character
Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector

Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector
Warning in bind_rows_(x, .id): Unequal factor levels: coercing to character
Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector

Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector

Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector

Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector
Warning in bind_rows_(x, .id): Unequal factor levels: coercing to character
Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector

Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector

Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector

Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector

Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector
AllPropDF$Prop=as.numeric(AllPropDF$Prop)

Plot this:

ggplot(AllPropDF, aes(x=cutoffs, y=Prop, fill=Status)) + geom_bar(position = "dodge", stat="identity") + facet_grid(~Fraction) + labs(title="Proportion of eQTLs explained by apaQTLs", y="Proportion", "P-Value cut off") + scale_fill_manual(values=c("orange", "blue"))

Version Author Date
ab8482d brimittleman 2019-08-01
ec8d7dc brimittleman 2019-06-26
0fae25e brimittleman 2019-06-20

Concordance of directions for intronic pas usage and eQTL

I want to look at the intronic pas and the eQTLs. To do this I want to look at a correaltion of effect sizes for the eQTLs and and intronic PAS.

The eQTL information is in ../data/molQTLs/fastqtl_qqnorm_RNAseq_phase2.fixed.nominal.AllNomRes.GeneName.txt. I need to converte the RSID into snp loc.

python eQTL_switch2snploc.py

prepare eQTL:

eQTLeffect=read.table("../data/molQTLs/fastqtl_qqnorm_RNAseq_phase2.fixed.nominal.AllNomRes.GeneName_snploc.txt", stringsAsFactors = F, col.names = c("gene","snp","dist", "pval", "eQTL_es")) %>% select(gene, snp, eQTL_es)

total:

#totalunex_all=read.table("../data/overlapeQTL_try2/apaTotal_unexplainedQTLs.txt", stringsAsFactors = F, col.names = nomnames) %>% separate(peakID, into=c("chr","start","end","geneID"), sep=":") %>% separate(geneID, into=c("gene", "loc", "strand", "PASnum"), sep="_")

#totalex_all=read.table("../data/overlapeQTL_try2/apaTotal_explainedQTLs.txt", stringsAsFactors = F, col.names = nomnames) %>%  separate(peakID, into=c("chr","start","end","geneID"), sep=":") %>% separate(geneID, into=c("gene", "loc", "strand", "PASnum"), sep="_")


alleQTLS_total=bind_rows(totalapaUnexplained, totalapaexplained) %>% filter(loc=="intron") %>% inner_join(eQTLeffect, by=c("gene","snp"))


ggplot(alleQTLS_total,aes(x=eQTL_es, y=slope)) + geom_point() + geom_smooth(method = "lm") +geom_text(y=-1, x=-1.5, label="slope: -0.21 p-value: .01, r2=0.06") + labs(title="Total apa effect sizes vs eQTL eqtl effect sizes", y="Total apaQTL effect size",x="eQTL effect size")

Version Author Date
d73d818 brimittleman 2019-06-26
06de9df brimittleman 2019-06-26
summary(lm(alleQTLS_total$slope ~alleQTLS_total$eQTL_es))

Call:
lm(formula = alleQTLS_total$slope ~ alleQTLS_total$eQTL_es)

Residuals:
     Min       1Q   Median       3Q      Max 
-1.12882 -0.29223 -0.00704  0.29545  1.11825 

Coefficients:
                       Estimate Std. Error t value Pr(>|t|)  
(Intercept)             0.04771    0.04766   1.001    0.320  
alleQTLS_total$eQTL_es -0.20567    0.07919  -2.597    0.011 *
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.447 on 87 degrees of freedom
Multiple R-squared:  0.07196,   Adjusted R-squared:  0.0613 
F-statistic: 6.746 on 1 and 87 DF,  p-value: 0.01103

Nuclear:

alleQTLS_nuclear=bind_rows(nuclearapaUnexplained,nuclearapaexplained) %>% filter(loc=="intron") %>% inner_join(eQTLeffect, by=c("gene","snp"))


ggplot(alleQTLS_nuclear,aes(x=eQTL_es, y=slope)) + geom_point() + geom_smooth(method = "lm") +geom_text(y=1.5, x=-1, label="slope: -0.18 p-value: .005, r2=0.05") + labs(title="", y="apaQTL effect size",x="eQTL effect size")

Version Author Date
ab8482d brimittleman 2019-08-01
d73d818 brimittleman 2019-06-26
06de9df brimittleman 2019-06-26
summary(lm(alleQTLS_nuclear$slope ~alleQTLS_nuclear$eQTL_es))

Call:
lm(formula = alleQTLS_nuclear$slope ~ alleQTLS_nuclear$eQTL_es)

Residuals:
     Min       1Q   Median       3Q      Max 
-1.18775 -0.26653 -0.03384  0.29319  1.16355 

Coefficients:
                          Estimate Std. Error t value Pr(>|t|)   
(Intercept)              -0.009364   0.036972  -0.253  0.80041   
alleQTLS_nuclear$eQTL_es -0.178352   0.062232  -2.866  0.00478 **
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4455 on 144 degrees of freedom
Multiple R-squared:  0.05396,   Adjusted R-squared:  0.04739 
F-statistic: 8.213 on 1 and 144 DF,  p-value: 0.004782

Examples for overlap:

unexplained_snps=read.table("../data/Li_eQTLs/unexplained_FDR10.sort_FIXED.txt", col.names = c("chr", "loc", "gene"),stringsAsFactors = F)
totQTL=read.table("../data/apaQTLs/Total_apaQTLs4pc_5fdr.bed", header = T, stringsAsFactors = F, col.names = c("chr", "bedstart","loc","ID", "score", "strand"))
nucQTL=read.table("../data/apaQTLs/Nuclear_apaQTLs4pc_5fdr.bed", stringsAsFactors = F, header = T, col.names = c("chr", "bedstart","loc","ID", "score", "strand"))

Overlap:

totQTL_unex=totQTL %>% inner_join(unexplained_snps, by=c("chr", "loc"))
nucQTL_unex=nucQTL %>% inner_join(unexplained_snps, by=c("chr", "loc"))
totQTL_unex
  chr  bedstart       loc                       ID     score strand
1  19  57706377  57706378  ZNF264:peak67836:intron -0.732823      .
2  20   1350708   1350709    FKBP1A:peak80048:utr3 -0.565488      .
3   2 197855151 197855152 ANKRD44:peak77452:intron -0.976492      .
4   7   6497500   6497501   KDELR2:peak119697:utr3  0.962082      .
5   7   6497500   6497501   KDELR2:peak119699:utr3 -1.013800      .
     gene
1  ZNF264
2  FKBP1A
3 ANKRD44
4  KDELR2
5  KDELR2
nucQTL_unex
  chr  bedstart       loc                        ID     score strand
1  10 124693586 124693587 C10orf88:peak19881:intron  1.314860      .
2  19  57706377  57706378   ZNF264:peak67836:intron -0.541008      .
3   4  44702719  44702720       GUF1:peak98095:utr3  0.837665      .
4   4  44702719  44702720       GUF1:peak98096:utr3 -1.361180      .
5   7 156760698 156760699      NOM1:peak127488:utr3  0.972826      .
      gene
1 C10orf88
2   ZNF264
3   GNPDA2
4   GNPDA2
5     NOM1

Make a plot for KDELR2 7:6497501

genohead=as.data.frame(read.table("../data/ExampleQTLPlots/genotypeHeader.txt", stringsAsFactors = F, header = F)[,10:128] %>% t())
colnames(genohead)=c("header")
genotype=as.data.frame(read.table("../data/ExampleQTLPlots/KDELR2_TotalPeaksGenotype.txt", stringsAsFactors = F, header = F) [,10:128] %>% t())

full_geno=bind_cols(Ind=genohead$header, dose=genotype$V1) %>% mutate(numdose=round(dose), genotype=ifelse(numdose==0, "TT", ifelse(numdose==1, "TG", "GG")))

RNAhead=as.data.frame(read.table("../data/molPhenos/RNAhead.txt", stringsAsFactors = F, header = F)[,5:73] %>% t())

RNApheno=as.data.frame(read.table("../data/molPhenos/RNA_KDELr2.txt", stringsAsFactors = F, header = F) [,5:73] %>% t())

full_pheno=bind_cols(Ind=RNAhead$V1, Expression=RNApheno$V1)

allRNA=full_geno %>% inner_join(full_pheno, by="Ind")
Warning: Column `Ind` joining factors with different levels, coercing to
character vector
allRNA$genotype=as.factor(allRNA$genotype)

Ref,T Alt= G

ggplot(allRNA, aes(x=genotype, y=Expression,group=genotype, fill=genotype)) + geom_boxplot() + geom_jitter()+scale_fill_brewer(palette = "YlOrRd") + labs(title="Unexplained eQTL: KDELR2 - rs6962012")

Version Author Date
06de9df brimittleman 2019-06-26

Make locus zoom

mkdir ../data/locusZoom

peak119699 KDELR2 ENSG00000136240.5


grep peak119699  ../data/apaQTLNominal_4pc/APApeak_Phenotype_GeneLocAnno.Total.5perc.fc.gz.qqnorm_AllChrom.txt > ../data/locusZoom/TotalAPA.peak119699.KDELR2.nomNuc.txt

grep ENSG00000136240.5 ../data/molQTLs/fastqtl_qqnorm_RNAseq_phase2.fixed.nominal.AllNomRes.txt > ../data/locusZoom/RNA.KDELR2.txt
APATotal_KDELR2_LZ=read.table("../data/locusZoom/TotalAPA.peak119699.KDELR2.nomNuc.txt", stringsAsFactors = F, col.names = c("PeakID", "SNP", "Dist", "P","slope"))  %>% select( SNP, P)

write.table(APATotal_KDELR2_LZ,"../data/locusZoom/apaTotalKDELR2_LZ.txt", col.names = T, row.names = F, quote = F)

RNA_KDELR2_LZ=read.table("../data/locusZoom/RNA.KDELR2.txt", stringsAsFactors = F, col.names = c("PeakID", "SNP", "Dist", "P","slope"))  %>% select( SNP, P)

write.table(RNA_KDELR2_LZ,"../data/locusZoom/RNAKDELR2_LZ.txt", col.names = T, row.names = F, quote = F)

Use locuszoom.org

locus zoom plot for C10ofr88 variant in nuclear:

peak19881


grep peak19881  ../data/apaQTLNominal_4pc/APApeak_Phenotype_GeneLocAnno.Nuclear.5perc.fc.gz.qqnorm_AllChrom.txt > ../data/locusZoom/NuclearAPA.peak119699.C10ofr88.nomNuc.txt

grep ENSG00000119965 ../data/molQTLs/fastqtl_qqnorm_RNAseq_phase2.fixed.nominal.AllNomRes.txt > ../data/locusZoom/RNA.C10ofr88.txt
APATNuclear_orf_LZ=read.table("../data/locusZoom/NuclearAPA.peak119699.C10ofr88.nomNuc.txt", stringsAsFactors = F, col.names = c("PeakID", "SNP", "Dist", "P","slope"))  %>% select( SNP, P)

write.table(APATNuclear_orf_LZ,"../data/locusZoom/apaNuclearC10orf88_LZ.txt", col.names = T, row.names = F, quote = F)

RNA_orf_LZ=read.table("../data/locusZoom/RNA.C10ofr88.txt", stringsAsFactors = F, col.names = c("PeakID", "SNP", "Dist", "P","slope"))  %>% select( SNP, P)

write.table(RNA_orf_LZ,"../data/locusZoom/RNAC10orf88_LZ.txt", col.names = T, row.names = F, quote = F)

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] reshape2_1.4.3  workflowr_1.4.0 forcats_0.3.0   stringr_1.3.1  
 [5] dplyr_0.8.0.1   purrr_0.3.2     readr_1.3.1     tidyr_0.8.3    
 [9] tibble_2.1.1    ggplot2_3.1.1   tidyverse_1.2.1

loaded via a namespace (and not attached):
 [1] tidyselect_0.2.5   haven_1.1.2        lattice_0.20-38   
 [4] colorspace_1.3-2   generics_0.0.2     htmltools_0.3.6   
 [7] yaml_2.2.0         utf8_1.1.4         rlang_0.4.0       
[10] pillar_1.3.1       glue_1.3.0         withr_2.1.2       
[13] RColorBrewer_1.1-2 modelr_0.1.2       readxl_1.1.0      
[16] plyr_1.8.4         munsell_0.5.0      gtable_0.2.0      
[19] cellranger_1.1.0   rvest_0.3.2        evaluate_0.12     
[22] labeling_0.3       knitr_1.20         fansi_0.4.0       
[25] highr_0.7          broom_0.5.1        Rcpp_1.0.0        
[28] scales_1.0.0       backports_1.1.2    jsonlite_1.6      
[31] fs_1.3.1           hms_0.4.2          digest_0.6.18     
[34] stringi_1.2.4      grid_3.5.1         rprojroot_1.3-2   
[37] cli_1.1.0          tools_3.5.1        magrittr_1.5      
[40] lazyeval_0.2.1     crayon_1.3.4       whisker_0.3-2     
[43] pkgconfig_2.0.2    xml2_1.2.0         lubridate_1.7.4   
[46] assertthat_0.2.0   rmarkdown_1.10     httr_1.3.1        
[49] rstudioapi_0.10    R6_2.3.0           nlme_3.1-137      
[52] git2r_0.25.2       compiler_3.5.1