Last updated: 2019-03-13

Checks: 6 0

Knit directory: threeprimeseq/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.2.0). The Report tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/.DS_Store
    Ignored:    data/perm_QTL_trans_noMP_5percov/
    Ignored:    output/.DS_Store

Untracked files:
    Untracked:  KalistoAbundance18486.txt
    Untracked:  analysis/4suDataIGV.Rmd
    Untracked:  analysis/DirectionapaQTL.Rmd
    Untracked:  analysis/EmpDistforOverlaps.Rmd
    Untracked:  analysis/EvaleQTLs.Rmd
    Untracked:  analysis/YL_QTL_test.Rmd
    Untracked:  analysis/groSeqAnalysis.Rmd
    Untracked:  analysis/ncbiRefSeq_sm.sort.mRNA.bed
    Untracked:  analysis/snake.config.notes.Rmd
    Untracked:  analysis/verifyBAM.Rmd
    Untracked:  analysis/verifybam_dubs.Rmd
    Untracked:  code/PeaksToCoverPerReads.py
    Untracked:  code/strober_pc_pve_heatmap_func.R
    Untracked:  data/18486.genecov.txt
    Untracked:  data/APApeaksYL.total.inbrain.bed
    Untracked:  data/AllPeak_counts/
    Untracked:  data/ApaQTLs/
    Untracked:  data/ApaQTLs_otherPhen/
    Untracked:  data/ChromHmmOverlap/
    Untracked:  data/DistTXN2Peak_genelocAnno/
    Untracked:  data/EmpiricalDists/
    Untracked:  data/FeatureoverlapPeaks/
    Untracked:  data/GM12878.chromHMM.bed
    Untracked:  data/GM12878.chromHMM.txt
    Untracked:  data/GWAS_overlap/
    Untracked:  data/LianoglouLCL/
    Untracked:  data/LocusZoom/
    Untracked:  data/LocusZoom_Unexp/
    Untracked:  data/LocusZoom_proc/
    Untracked:  data/MatchedSnps/
    Untracked:  data/NucSpecQTL/
    Untracked:  data/NuclearApaQTLs.txt
    Untracked:  data/PeakCounts/
    Untracked:  data/PeakCounts_noMP_5perc/
    Untracked:  data/PeakCounts_noMP_genelocanno/
    Untracked:  data/PeakUsage/
    Untracked:  data/PeakUsage_noMP/
    Untracked:  data/PeakUsage_noMP_GeneLocAnno/
    Untracked:  data/PeaksUsed/
    Untracked:  data/PeaksUsed_noMP_5percCov/
    Untracked:  data/PolyA_DB/
    Untracked:  data/QTL_overlap/
    Untracked:  data/RNAkalisto/
    Untracked:  data/RefSeq_annotations/
    Untracked:  data/Replicates_usage/
    Untracked:  data/Signal_Loc/
    Untracked:  data/TotalApaQTLs.txt
    Untracked:  data/Totalpeaks_filtered_clean.bed
    Untracked:  data/UnderstandPeaksQC/
    Untracked:  data/WASP_STAT/
    Untracked:  data/YL-SP-18486-T-combined-genecov.txt
    Untracked:  data/YL-SP-18486-T_S9_R1_001-genecov.txt
    Untracked:  data/YL_QTL_test/
    Untracked:  data/apaExamp/
    Untracked:  data/apaExamp_proc/
    Untracked:  data/apaQTL_examp_noMP/
    Untracked:  data/bedgraph_peaks/
    Untracked:  data/bin200.5.T.nuccov.bed
    Untracked:  data/bin200.Anuccov.bed
    Untracked:  data/bin200.nuccov.bed
    Untracked:  data/clean_peaks/
    Untracked:  data/comb_map_stats.csv
    Untracked:  data/comb_map_stats.xlsx
    Untracked:  data/comb_map_stats_39ind.csv
    Untracked:  data/combined_reads_mapped_three_prime_seq.csv
    Untracked:  data/diff_iso_GeneLocAnno/
    Untracked:  data/diff_iso_proc/
    Untracked:  data/diff_iso_trans/
    Untracked:  data/eQTLs_Lietal/
    Untracked:  data/ensemble_to_genename.txt
    Untracked:  data/example_gene_peakQuant/
    Untracked:  data/explainProtVar/
    Untracked:  data/filtPeakOppstrand_cov_noMP_GeneLocAnno_5perc/
    Untracked:  data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.bed
    Untracked:  data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.noties.bed
    Untracked:  data/first50lines_closest.txt
    Untracked:  data/gencov.test.csv
    Untracked:  data/gencov.test.txt
    Untracked:  data/gencov_zero.test.csv
    Untracked:  data/gencov_zero.test.txt
    Untracked:  data/gene_cov/
    Untracked:  data/joined
    Untracked:  data/leafcutter/
    Untracked:  data/merged_combined_YL-SP-threeprimeseq.bg
    Untracked:  data/molPheno_noMP/
    Untracked:  data/mol_overlap/
    Untracked:  data/mol_pheno/
    Untracked:  data/nom_QTL/
    Untracked:  data/nom_QTL_opp/
    Untracked:  data/nom_QTL_trans/
    Untracked:  data/nuc6up/
    Untracked:  data/nuc_10up/
    Untracked:  data/other_qtls/
    Untracked:  data/pQTL_otherphen/
    Untracked:  data/pacbio_cov/
    Untracked:  data/peakPerRefSeqGene/
    Untracked:  data/peaks4DT/
    Untracked:  data/perm_QTL/
    Untracked:  data/perm_QTL_GeneLocAnno_noMP_5percov/
    Untracked:  data/perm_QTL_GeneLocAnno_noMP_5percov_3UTR/
    Untracked:  data/perm_QTL_diffWindow/
    Untracked:  data/perm_QTL_opp/
    Untracked:  data/perm_QTL_trans/
    Untracked:  data/perm_QTL_trans_filt/
    Untracked:  data/protAndAPAAndExplmRes.Rda
    Untracked:  data/protAndAPAlmRes.Rda
    Untracked:  data/protAndExpressionlmRes.Rda
    Untracked:  data/reads_mapped_three_prime_seq.csv
    Untracked:  data/smash.cov.results.bed
    Untracked:  data/smash.cov.results.csv
    Untracked:  data/smash.cov.results.txt
    Untracked:  data/smash_testregion/
    Untracked:  data/ssFC200.cov.bed
    Untracked:  data/temp.file1
    Untracked:  data/temp.file2
    Untracked:  data/temp.gencov.test.txt
    Untracked:  data/temp.gencov_zero.test.txt
    Untracked:  data/threePrimeSeqMetaData.csv
    Untracked:  data/threePrimeSeqMetaData55Ind.txt
    Untracked:  data/threePrimeSeqMetaData55Ind.xlsx
    Untracked:  data/threePrimeSeqMetaData55Ind_noDup.txt
    Untracked:  data/threePrimeSeqMetaData55Ind_noDup.xlsx
    Untracked:  data/threePrimeSeqMetaData55Ind_noDup_WASPMAP.txt
    Untracked:  data/threePrimeSeqMetaData55Ind_noDup_WASPMAP.xlsx
    Untracked:  output/LZ/
    Untracked:  output/deeptools_plots/
    Untracked:  output/picard/
    Untracked:  output/plots/
    Untracked:  output/qual.fig2.pdf

Unstaged changes:
    Modified:   analysis/28ind.peak.explore.Rmd
    Modified:   analysis/CompareLianoglouData.Rmd
    Modified:   analysis/NewPeakPostMP.Rmd
    Modified:   analysis/NuclearSpecQTL.Rmd
    Modified:   analysis/PeakToXper.Rmd
    Modified:   analysis/apaQTLoverlapGWAS.Rmd
    Modified:   analysis/characterize_apaQTLs.Rmd
    Modified:   analysis/cleanupdtseq.internalpriming.Rmd
    Modified:   analysis/coloc_apaQTLs_protQTLs.Rmd
    Modified:   analysis/dif.iso.usage.leafcutter.Rmd
    Modified:   analysis/diff_iso_pipeline.Rmd
    Modified:   analysis/explainpQTLs.Rmd
    Modified:   analysis/explore.filters.Rmd
    Modified:   analysis/fixBWChromNames.Rmd
    Modified:   analysis/flash2mash.Rmd
    Modified:   analysis/initialPacBioQuant.Rmd
    Modified:   analysis/mispriming_approach.Rmd
    Modified:   analysis/overlapMolQTL.Rmd
    Modified:   analysis/overlapMolQTL.opposite.Rmd
    Modified:   analysis/overlap_qtls.Rmd
    Modified:   analysis/peakOverlap_oppstrand.Rmd
    Modified:   analysis/peakQCPPlots.Rmd
    Modified:   analysis/pheno.leaf.comb.Rmd
    Modified:   analysis/pipeline_55Ind.Rmd
    Modified:   analysis/swarmPlots_QTLs.Rmd
    Modified:   analysis/test.max2.Rmd
    Modified:   analysis/test.smash.Rmd
    Modified:   analysis/understandPeaks.Rmd
    Modified:   analysis/unexplainedeQTL_analysis.Rmd
    Modified:   code/Snakefile

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
html 416ce21 Briana Mittleman 2019-02-28 Build site.
Rmd ea34b3c Briana Mittleman 2019-02-28 add nuclear spec peaks

library(tidyverse)
── Attaching packages ───────────────────────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.1.0       ✔ purrr   0.3.1  
✔ tibble  2.0.1       ✔ dplyr   0.8.0.1
✔ tidyr   0.8.3       ✔ stringr 1.4.0  
✔ readr   1.3.1       ✔ forcats 0.4.0  
Warning: package 'tibble' was built under R version 3.5.2
Warning: package 'tidyr' was built under R version 3.5.2
Warning: package 'purrr' was built under R version 3.5.2
Warning: package 'dplyr' was built under R version 3.5.2
Warning: package 'stringr' was built under R version 3.5.2
Warning: package 'forcats' was built under R version 3.5.2
── Conflicts ──────────────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
library(workflowr)
This is workflowr version 1.2.0
Run ?workflowr for help getting started

merge net seq data:

/project2/gilad/briana/Net-seq/Net-seq3/data/sort/*-sort.bam

/project2/gilad/briana/Net-seq/Net-seq3/data/sort/mergeAndMakeBWnet3.sh

#!/bin/bash

#SBATCH --job-name=mergeAndMakeBWnet3
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=mergeAndMakeBWnet3.out
#SBATCH --error=mergeAndMakeBWnet3.err
#SBATCH --partition=bigmem2
#SBATCH --mem=100G
#SBATCH --mail-type=END

module load Anaconda3
source activate three-prime-env

samtools merge /project2/gilad/briana/Net-seq/Net-seq3/data/sort/Merged.Net3.bam /project2/gilad/briana/Net-seq/Net-seq3/data/sort/*-sort.bam  
samtools sort /project2/gilad/briana/Net-seq/Net-seq3/data/sort/Merged.Net3.bam > /project2/gilad/briana/Net-seq/Net-seq3/data/sort/Merged.Net3.sort.bam
samtools index /project2/gilad/briana/Net-seq/Net-seq3/data/sort/Merged.Net3.sort.bam

bamCoverage -b  /project2/gilad/briana/Net-seq/Net-seq3/data/sort/Merged.Net3.sort.bam -o  /project2/gilad/briana/Net-seq/Net-seq3/data/sort/Merged.Net3.sort.bw

Look 3kb on each side

NetseqDTPlotmyPeaks_noMPFilt.sh

#!/bin/bash

#SBATCH --job-name=NetseqDTPlotmyPeaks_noMPFilt
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=NetseqDTPlotmyPeaks_noMPFilt.out
#SBATCH --error=NetseqDTPlotmyPeaks_noMPFilt.err
#SBATCH --partition=bigmem2
#SBATCH --mem=100G
#SBATCH --mail-type=END

module load Anaconda3
source activate three-prime-env


computeMatrix reference-point -S /project2/gilad/briana/Net-seq/Net-seq3/data/sort/Merged.Net3.sort.bw -R /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPeaks_5percCov_fixedStrand.bed -b 3000 -a 3000  -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_myPeaksNompfilt.gz

plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_myPeaksNompfilt.gz --refPointLabel "Called PAS" --plotTitle "Combined NetSeq at All Called PAS" --heatmapHeight 7 --colorMap YlGnBu  -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_myPeaksNompfilt.png

Do this for intronic peaks

NetseqDTPlotmyIntronPeaks_noMPFilt.sh

#!/bin/bash

#SBATCH --job-name=NetseqDTPlotmyIntronPeaks_noMPFilt
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=NetseqDTPlotmyIntronPeaks_noMPFilt.out
#SBATCH --error=NetseqDTPlotmyIntronPeaks_noMPFilt.err
#SBATCH --partition=bigmem2
#SBATCH --mem=100G
#SBATCH --mail-type=END

module load Anaconda3
source activate three-prime-env


computeMatrix reference-point -S /project2/gilad/briana/Net-seq/Net-seq3/data/sort/Merged.Net3.sort.bw -R /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPeaks_5percCov_fixedStrand_INTRON.bed -b 3000 -a 3000  -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_myIntronPeaksNompfilt.gz

plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_myIntronPeaksNompfilt.gz --refPointLabel "Called PAS" --plotTitle "Combined NetSeq at Intronic Called PAS" --heatmapHeight 7 --colorMap YlGnBu  -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_myIntronPeaksNompfilt.png

Top used intronic in nuclear
NetseqDTPlotmyToptIntronPeaks_noMPFilt.sh

#!/bin/bash

#SBATCH --job-name=NetseqDTPlotmyToptIntronPeaks_noMPFilt
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=NetseqDTPlotmyTopIntronPeaks_noMPFilt.out
#SBATCH --error=NetseqDTPlotmyTopIntronPeaks_noMPFilt.err
#SBATCH --partition=bigmem2
#SBATCH --mem=100G
#SBATCH --mail-type=END

module load Anaconda3
source activate three-prime-env


computeMatrix reference-point -S /project2/gilad/briana/Net-seq/Net-seq3/data/sort/Merged.Net3.sort.bw -R /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPeaks_5percCov_fixedStrand_INTRON_top200Usage.Nuclear.sort.bed -b 3000 -a 3000  -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_myTopIntronPeaksNompfilt.gz

plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_myTopIntronPeaksNompfilt.gz --refPointLabel "Called PAS" --plotTitle "Combined NetSeq at Top Nuclear Intronic Called PAS" --heatmapHeight 7 --colorMap YlGnBu  -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_myTotIntronPeaksNompfilt.png

/project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPeaks_5percCov_fixedStrand_INTRON_top200Usage_Total.sort.bed NetseqDTPlotmyTopTotIntronPeaks_noMPFilt.sh

#!/bin/bash

#SBATCH --job-name=NetseqDTPlotmyTopTotIntronPeaks_noMPFilt
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=NetseqDTPlotmyTopTotIntronPeaks_noMPFilt.out
#SBATCH --error=NetseqDTPlotmyTopTotIntronTotPeaks_noMPFilt.err
#SBATCH --partition=bigmem2
#SBATCH --mem=100G
#SBATCH --mail-type=END

module load Anaconda3
source activate three-prime-env


computeMatrix reference-point -S /project2/gilad/briana/Net-seq/Net-seq3/data/sort/Merged.Net3.sort.bw -R /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPeaks_5percCov_fixedStrand_INTRON_top200Usage_Total.sort.bed -b 3000 -a 3000  -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_myTopTotIntronPeaksNompfilt.gz

plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_myTopTotIntronPeaksNompfilt.gz --refPointLabel "Called PAS" --plotTitle "Combined NetSeq at Top Total Intronic Called PAS" --heatmapHeight 7 --colorMap YlGnBu  -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_myTopTotIntronPeaksNompfilt.png

UTR peaks

NetseqDTPlotmyUTRPeaks_noMPFilt.sh

#!/bin/bash

#SBATCH --job-name=NetseqDTPlotmyUTRPeaks_noMPFilt
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=NetseqDTPlotmyUTRPeaks_noMPFilt.out
#SBATCH --error=NetseqDTPlotmyUTRPeaks_noMPFilt.err
#SBATCH --partition=bigmem2
#SBATCH --mem=100G
#SBATCH --mail-type=END

module load Anaconda3
source activate three-prime-env


computeMatrix reference-point -S /project2/gilad/briana/Net-seq/Net-seq3/data/sort/Merged.Net3.sort.bw -R /project2/gilad/briana/threeprimeseq/data/mergedPeaks_noMP_GeneLoc_3UTR/Filtered_APApeaks_merged_allchrom_noMP.sort.named.noCHR_geneLocParsed_5perc_FixedStrand_3UTR.bed -b 3000 -a 3000  -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_myUTRPeaksNompfilt.gz

plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_myUTRPeaksNompfilt.gz --refPointLabel "Called PAS" --plotTitle "Combined NetSeq at 3' UTR Called PAS" --heatmapHeight 7 --colorMap YlGnBu  -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_myUTRPeaksNompfilt.png

I want to look at the peaks used more often in the nucelear fraction and see if we have enrichment at these.

NucPeaks=read.table("../data/diff_iso_GeneLocAnno/SigPeaksHigherInNuc.txt", header=T, stringsAsFactors = F) %>% separate(intron, into=c("Chr2", "Start", "End", "gene"), sep=":")
NucPeaks$Start=as.numeric(NucPeaks$Start)
NucPeaks$End=as.numeric(NucPeaks$End)

Now I want to pull in the corrected strand peaks.

DTPeaks=read.table("../data/peaks4DT/APAPeaks_5percCov_fixedStrand.bed",header = F, col.names = c("Chr", "Start", "End","Name", "Score", "Strand" )) %>% mutate(Chr2=paste("chr", Chr, sep=""))

DTPeaks_filt=DTPeaks %>% semi_join(NucPeaks, by=c("Chr2", "Start", "End")) %>% select(-Chr2)


#write it  
write.table(DTPeaks_filt, "../data/peaks4DT/APAPeaks_5percCov_fixedStrand_SigUsageNuc.bed", col.names = F, row.names = F, quote=F, sep="\t")

NetseqDTPlot_NucDiffUsedPeaks_noMPFilt.sh

#!/bin/bash

#SBATCH --job-name=NetseqDTPlot_NucDiffUsedPeaks_noMPFilt
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=NetseqDTPlot_NucDiffUsedPeaks_noMPFilt.out
#SBATCH --error=NetseqDTPlot_NucDiffUsedPeaks_noMPFilt.err
#SBATCH --partition=bigmem2
#SBATCH --mem=100G
#SBATCH --mail-type=END

module load Anaconda3
source activate three-prime-env


computeMatrix reference-point -S /project2/gilad/briana/Net-seq/Net-seq3/data/sort/Merged.Net3.sort.bw -R /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPeaks_5percCov_fixedStrand_SigUsageNuc.bed -b 3000 -a 3000  -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_NucDiffUsedPeaksNompfilt.gz

plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_NucDiffUsedPeaksNompfilt.gz --refPointLabel "Called PAS" --plotTitle "Combined NetSeq at Nuclear Specific PAS" --heatmapHeight 7 --colorMap YlGnBu  --averageTypeSummaryPlot "mean" -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_NucDiffUsedPeaksNompfilt.png

There are a few peaks driving the signal. I can split these up into 5 peak files

DTPeaks_filt_1= DTPeaks_filt %>% slice(1:150)
DTPeaks_filt_2= DTPeaks_filt %>% slice(151:300)
DTPeaks_filt_3= DTPeaks_filt %>% slice(301:450)
DTPeaks_filt_4= DTPeaks_filt %>% slice(451:600)
DTPeaks_filt_5= DTPeaks_filt %>% slice(601:762)

write.table(DTPeaks_filt_1, "../data/peaks4DT/APAPeaks_5percCov_fixedStrand_SigUsageNuc_1.bed", col.names = F, row.names = F, quote=F, sep="\t")
write.table(DTPeaks_filt_2, "../data/peaks4DT/APAPeaks_5percCov_fixedStrand_SigUsageNuc_2.bed", col.names = F, row.names = F, quote=F, sep="\t")
write.table(DTPeaks_filt_3, "../data/peaks4DT/APAPeaks_5percCov_fixedStrand_SigUsageNuc_3.bed", col.names = F, row.names = F, quote=F, sep="\t")
write.table(DTPeaks_filt_4, "../data/peaks4DT/APAPeaks_5percCov_fixedStrand_SigUsageNuc_4.bed", col.names = F, row.names = F, quote=F, sep="\t")
write.table(DTPeaks_filt_5, "../data/peaks4DT/APAPeaks_5percCov_fixedStrand_SigUsageNuc_5.bed", col.names = F, row.names = F, quote=F, sep="\t")

NetseqDTPlot_NucDiffUsedPeaks_noMPFilt_5plots.sh

#!/bin/bash

#SBATCH --job-name=NetseqDTPlot_NucDiffUsedPeaks_noMPFilt_5plots
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=NetseqDTPlot_NucDiffUsedPeaks_noMPFilt_5plots.out
#SBATCH --error=NetseqDTPlot_NucDiffUsedPeaks_noMPFilt_5plots.err
#SBATCH --partition=bigmem2
#SBATCH --mem=100G
#SBATCH --mail-type=END

module load Anaconda3
source activate three-prime-env

#1
computeMatrix reference-point -S /project2/gilad/briana/Net-seq/Net-seq3/data/sort/Merged.Net3.sort.bw -R /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPeaks_5percCov_fixedStrand_SigUsageNuc_1.bed  -b 3000 -a 3000  -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_NucDiffUsedPeaksNompfilt1.gz

plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_NucDiffUsedPeaksNompfilt1.gz --refPointLabel "Called PAS" --plotTitle "Combined NetSeq at Nuclear Specific PAS" --heatmapHeight 7 --colorMap YlGnBu  --averageTypeSummaryPlot "mean" -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_NucDiffUsedPeaksNompfilt1.png

#2
computeMatrix reference-point -S /project2/gilad/briana/Net-seq/Net-seq3/data/sort/Merged.Net3.sort.bw -R /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPeaks_5percCov_fixedStrand_SigUsageNuc_2.bed  -b 3000 -a 3000  -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_NucDiffUsedPeaksNompfilt2.gz

plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_NucDiffUsedPeaksNompfilt2.gz --refPointLabel "Called PAS" --plotTitle "Combined NetSeq at Nuclear Specific PAS" --heatmapHeight 7 --colorMap YlGnBu  --averageTypeSummaryPlot "mean" -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_NucDiffUsedPeaksNompfilt2.png

#3

computeMatrix reference-point -S /project2/gilad/briana/Net-seq/Net-seq3/data/sort/Merged.Net3.sort.bw -R /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPeaks_5percCov_fixedStrand_SigUsageNuc_3.bed  -b 3000 -a 3000  -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_NucDiffUsedPeaksNompfilt3.gz

plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_NucDiffUsedPeaksNompfilt3.gz --refPointLabel "Called PAS" --plotTitle "Combined NetSeq at Nuclear Specific PAS" --heatmapHeight 7 --colorMap YlGnBu  --averageTypeSummaryPlot "mean" -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_NucDiffUsedPeaksNompfilt3.png


#4
computeMatrix reference-point -S /project2/gilad/briana/Net-seq/Net-seq3/data/sort/Merged.Net3.sort.bw -R /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPeaks_5percCov_fixedStrand_SigUsageNuc_4.bed  -b 3000 -a 3000  -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_NucDiffUsedPeaksNompfilt4.gz

plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_NucDiffUsedPeaksNompfilt4.gz --refPointLabel "Called PAS" --plotTitle "Combined NetSeq at Nuclear Specific PAS" --heatmapHeight 7 --colorMap YlGnBu  --averageTypeSummaryPlot "mean" -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_NucDiffUsedPeaksNompfilt4.png


#5

computeMatrix reference-point -S /project2/gilad/briana/Net-seq/Net-seq3/data/sort/Merged.Net3.sort.bw -R /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPeaks_5percCov_fixedStrand_SigUsageNuc_5.bed  -b 3000 -a 3000  -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_NucDiffUsedPeaksNompfilt5.gz

plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_NucDiffUsedPeaksNompfilt5.gz --refPointLabel "Called PAS" --plotTitle "Combined NetSeq at Nuclear Specific PAS" --heatmapHeight 7 --colorMap YlGnBu  --averageTypeSummaryPlot "mean" -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_NucDiffUsedPeaksNompfilt5.png
Data are a bit too noisy to say anything here.


sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS  10.14.1

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] workflowr_1.2.0 forcats_0.4.0   stringr_1.4.0   dplyr_0.8.0.1  
 [5] purrr_0.3.1     readr_1.3.1     tidyr_0.8.3     tibble_2.0.1   
 [9] ggplot2_3.1.0   tidyverse_1.2.1

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.0       cellranger_1.1.0 plyr_1.8.4       pillar_1.3.1    
 [5] compiler_3.5.1   git2r_0.24.0     tools_3.5.1      digest_0.6.18   
 [9] lubridate_1.7.4  jsonlite_1.6     evaluate_0.13    nlme_3.1-137    
[13] gtable_0.2.0     lattice_0.20-38  pkgconfig_2.0.2  rlang_0.3.1     
[17] cli_1.0.1        rstudioapi_0.9.0 yaml_2.2.0       haven_2.1.0     
[21] xfun_0.5         withr_2.1.2      xml2_1.2.0       httr_1.4.0      
[25] knitr_1.21       hms_0.4.2        generics_0.0.2   fs_1.2.6        
[29] rprojroot_1.3-2  grid_3.5.1       tidyselect_0.2.5 glue_1.3.0      
[33] R6_2.4.0         readxl_1.3.0     rmarkdown_1.11   modelr_0.1.4    
[37] magrittr_1.5     whisker_0.3-2    backports_1.1.3  scales_1.0.0    
[41] htmltools_0.3.6  rvest_0.3.2      assertthat_0.2.0 colorspace_1.4-0
[45] stringi_1.3.1    lazyeval_0.2.1   munsell_0.5.0    broom_0.5.1     
[49] crayon_1.3.4