Last updated: 2021-01-19

Checks: 7 0

Knit directory: uci_covid_modeling2/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2.9000). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20201209) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 518b7bf. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.DS_Store
    Ignored:    code/.DS_Store
    Ignored:    code/.Rhistory
    Ignored:    code/models/.DS_Store
    Ignored:    code/models/model_death_reporting_delay/.DS_Store
    Ignored:    code/models/model_no_reporting_delay/.DS_Store
    Ignored:    code/results/.DS_Store
    Ignored:    code/results/2020-11-01_2020-12-06/.DS_Store
    Ignored:    code/results/2020-11-01_2020-12-06/anaheim/.DS_Store
    Ignored:    code/results/2020-11-08_2020-12-13/.DS_Store
    Ignored:    data/.DS_Store
    Ignored:    data/from_OCHCA/

Untracked files:
    Untracked:  analysis/2020-12-09_2021-01-13.Rmd
    Untracked:  analysis/2020-12-09_2021-01-13_anaheim.Rmd
    Untracked:  analysis/2020-12-09_2021-01-13_irvine.Rmd
    Untracked:  analysis/2020-12-09_2021-01-13_santa-ana.Rmd
    Untracked:  code/Untitled.R
    Untracked:  code/fit_new_model_command_args.R
    Untracked:  code/results/2020-12-02_2021-01-06/forecast_no_delay.rds
    Untracked:  code/results/2020-12-02_2021-01-06/original_no_delay.rds
    Untracked:  code/results/2020-12-09_2021-01-13/
    Untracked:  explore_environments.R
    Untracked:  explore_reporting_delay.R
    Untracked:  tweets.R

Unstaged changes:
    Modified:   analysis/_site.yml
    Modified:   code/process_ochca_data.R
    Modified:   data/data_for_calcat.csv
    Modified:   data/oc_city_data.csv
    Modified:   data/oc_data.csv

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/2020-11-22_2020-12-27.Rmd) and HTML (docs/2020-11-22_2020-12-27.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 518b7bf Damon Bayer 2021-01-12 Small plot tweaks
html 518b7bf Damon Bayer 2021-01-12 Small plot tweaks
Rmd b3e230f Damon Bayer 2021-01-12 Show Probability of Death Reporting in Model Inputs Plots
html b3e230f Damon Bayer 2021-01-12 Show Probability of Death Reporting in Model Inputs Plots
Rmd 013d9c5 Damon Bayer 2021-01-11 Fix historical plots
Rmd 63bcbfd Damon Bayer 2021-01-11 2021-01-11 Update, Close #2, Account for Death Reporting Delays
html 63bcbfd Damon Bayer 2021-01-11 2021-01-11 Update, Close #2, Account for Death Reporting Delays
Rmd b13e15b Damon Bayer 2021-01-06 Posterior Predictive Plots + Icons
html b13e15b Damon Bayer 2021-01-06 Posterior Predictive Plots + Icons
html 68805a0 Damon Bayer 2021-01-06 Fix Icons
Rmd f70916b Damon Bayer 2021-01-06 2021-01-14 City & County Updates
html f70916b Damon Bayer 2021-01-06 2021-01-14 City & County Updates

Orange County, CA COVID-19 Situation Report, January 1, 2021

Report period: Nov 22 - Dec 27 (we don’t use the most recent data due to reporting delays)

The goal of this report is to inform interested parties about dynamics of SARS-CoV-2 spread in Orange County, CA and to predict epidemic trajectories. Methodological details are provided below and in the accompanying manuscript. We are also contributing to COVID Trends by UC Irvine project that provides data visualizations of California County trends across time and space.

Version Author Date
63bcbfd Damon Bayer 2021-01-11
f70916b Damon Bayer 2021-01-06

Version Author Date
518b7bf Damon Bayer 2021-01-12
b3e230f Damon Bayer 2021-01-12
63bcbfd Damon Bayer 2021-01-11
f70916b Damon Bayer 2021-01-06

Version Author Date
518b7bf Damon Bayer 2021-01-12
b3e230f Damon Bayer 2021-01-12
63bcbfd Damon Bayer 2021-01-11
f70916b Damon Bayer 2021-01-06

Version Author Date
518b7bf Damon Bayer 2021-01-12
b3e230f Damon Bayer 2021-01-12
63bcbfd Damon Bayer 2021-01-11
f70916b Damon Bayer 2021-01-06

Summary (statements are made assuming 95% credibility levels)

Note: We previously created a report using a similar model with a different implementation. Archives of the old report can be found here.


Abbreviated technical details (optional)

Our approach is based on fitting a mechanistic model of SARS-CoV-2 spread to multiple sources of surveillance data. A more fleshed out method description is in the manuscript.

Model inputs

Our method takes three time series as input: daily new tests, case counts, and deaths. However, we find daily resolution to be too noisy due to delay in testing reports, weekend effect, etc. So we aggregated/binned the three types of counts in 3 day intervals. These aggregated time series are shown below.

Version Author Date
518b7bf Damon Bayer 2021-01-12
b3e230f Damon Bayer 2021-01-12
f70916b Damon Bayer 2021-01-06

Model structure

We assume that all individuals in Orange County, CA can be split into 6 compartments: S = susceptible individuals, E = infected, but not yet infectious individuals, \(\text{I}_\text{e}\) = individuals at early stages of infection, \(\text{I}_\text{p}\) = individuals at progressed stages of infection (assumed 20% less infectious than individuals at the early infection stage), R = recovered individuals, D = individuals who died due to COVID-19. Possible progressions of an individual through the above compartments are depicted in the diagram below.

Version Author Date
dcffe20 Damon Bayer 2020-12-16

Mathematically, we assume that dynamics of the proportions of individuals in each compartment follow a set of ordinary differential equations corresponding to the above diagram. These equations are controlled by the following parameters:

  • Basic reproductive number (\(R_0\))
  • mean duration of the latent period
  • mean duration of the early infection period
  • mean duration of the progressed infection period
  • probability of transitioning from progressed infection to death, rather than to recovery (i.e., IFR)

We fit this model to data by assuming that case counts are noisy realizations of the actual number of individuals progressing from \(\text{I}_\text{e}\) compartment to \(\text{I}_\text{p}\) compartment. Similarly we assume that observed deaths are noisy realizations of the actual number of individuals progressing from \(\text{I}_\text{p}\) compartment to \(\text{D}\) compartment. A priori, we assume that death counts are significantly less noisy than case counts. We use a Bayesian estimation framework, which means that all estimated quantities receive credible intervals (e.g., 80% or 95% credible intervals). Width of these credible intervals encode the amount of uncertainty that we have in the estimated quantities.

Posterior Predictive Plots

Version Author Date
b13e15b Damon Bayer 2021-01-06

R version 4.0.3 (2020-10-10)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur 10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] patchwork_1.0.1      coda_0.19-4          cowplot_1.1.0       
 [4] stemr_0.2.0          glue_1.4.2           scales_1.1.1        
 [7] tidybayes_2.1.1      forcats_0.5.0        stringr_1.4.0       
[10] dplyr_1.0.2          purrr_0.3.4          readr_1.3.1         
[13] tidyr_1.1.2          tibble_3.0.4         ggplot2_3.3.2       
[16] tidyverse_1.3.0      fs_1.5.0             lubridate_1.7.9     
[19] workflowr_1.6.2.9000

loaded via a namespace (and not attached):
 [1] httr_1.4.2           jsonlite_1.7.2       modelr_0.1.8        
 [4] assertthat_0.2.1     getPass_0.2-2        distributional_0.2.0
 [7] ggdist_2.2.0         blob_1.2.1           cellranger_1.1.0    
[10] yaml_2.2.1           pillar_1.4.7         backports_1.1.10    
[13] lattice_0.20-41      arrayhelpers_1.1-0   digest_0.6.27       
[16] RColorBrewer_1.1-2   promises_1.1.1       rvest_0.3.6         
[19] colorspace_1.4-1     htmltools_0.5.0      httpuv_1.5.4        
[22] plyr_1.8.6           pkgconfig_2.0.3      broom_0.7.0         
[25] svUnit_1.0.3         haven_2.3.1          processx_3.4.5      
[28] whisker_0.4          later_1.1.0.1        git2r_0.27.1        
[31] generics_0.1.0       farver_2.0.3         ellipsis_0.3.1      
[34] withr_2.3.0          cli_2.2.0            magrittr_2.0.1      
[37] crayon_1.3.4         readxl_1.3.1         evaluate_0.14       
[40] ps_1.5.0             fansi_0.4.1          xml2_1.3.2          
[43] tools_4.0.3          hms_0.5.3            lifecycle_0.2.0     
[46] odeintr_1.7.1        munsell_0.5.0        reprex_0.3.0        
[49] callr_3.5.1          compiler_4.0.3       rlang_0.4.9         
[52] grid_4.0.3           rstudioapi_0.13      labeling_0.3        
[55] rmarkdown_2.6        gtable_0.3.0         DBI_1.1.0           
[58] R6_2.5.0             knitr_1.30           rprojroot_2.0.2     
[61] stringi_1.5.3        Rcpp_1.0.5           vctrs_0.3.6         
[64] dbplyr_1.4.4         tidyselect_1.1.0     xfun_0.19