Last updated: 2022-09-05
Checks: 7 0
Knit directory: bioinformatics_tips/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20200503)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 1a2198d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Unstaged changes:
Modified: analysis/scripting.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown (analysis/get_option.Rmd
) and HTML
(docs/get_option.html
) files. If you’ve configured a remote
Git repository (see ?wflow_git_remote
), click on the
hyperlinks in the table below to view the files as they were in that
past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 1a2198d | Dave Tang | 2022-09-05 | Pos and opt args with R |
html | 2106d5e | Dave Tang | 2022-08-15 | Build site. |
Rmd | 2df43f5 | Dave Tang | 2022-08-15 | Include Python example |
html | e9934e7 | davetang | 2020-06-07 | Security basics |
html | 56b7e19 | davetang | 2020-05-10 | Build site. |
Rmd | 778bf20 | davetang | 2020-05-10 | Copy code button |
html | 04be0ae | davetang | 2020-05-09 | Build site. |
Rmd | f8b797f | davetang | 2020-05-09 | No TOC |
html | 60d127f | davetang | 2020-05-09 | Build site. |
html | 169cfdf | davetang | 2020-05-09 | Build site. |
Rmd | 83ae7f7 | davetang | 2020-05-09 | Command line arguments |
If you have used Unix tools on the command line, you may have noticed
that you can provide different arguments/options to the tool to modify
its behaviour. For example using the ls
command by itself
will simply return files and directories (without a .
prefix) that exist in your current working directory.
ls
analysis
bioinformatics_tips.Rproj
code
data
docs
LICENSE
output
README.md
ref
script
_workflowr.yml
If you want to show all files, use the -a
(short) or
--all
(long) option.
ls -a
.
..
analysis
bioinformatics_tips.Rproj
code
data
docs
.git
.gitattributes
.gitignore
LICENSE
output
README.md
ref
.Rhistory
.Rprofile
.Rproj.user
script
_workflowr.yml
You can write scripts in different languages that mimic this behaviour. It is preferable to write scripts that accept command line arguments because it makes it easy to reuse the script on a different dataset or rerun the script using different parameters. In addition, this makes it easy to incorporate the script into a bioinformatics pipeline.
Some concepts to understand are usage, short and long options, and positional and optional arguments.
cp
command
will copy the first positional argument to the last positional argument.
Optional arguments are non-mandatory and can be specified using short
and long options; their order does not matter.Below are examples of writing scripts that accept command line arguments in Python, Bash, R, and Perl.
In Python use the argparse module.
#!/usr/bin/env python3
#
# based on the argparse tutorial https://docs.python.org/3/howto/argparse.html
#
import argparse
parser = argparse.ArgumentParser()
#
# positional arguments
#
# default type is string
parser.add_argument(
"echo",
help = "display a string",
)
# specify integer type
parser.add_argument(
"number",
help = "display a number",
type = int
)
#
# optional arguments
#
# short and long options
# store True if specified
parser.add_argument(
"-v",
"--verbose",
help = "verbose mode",
action = "store_true"
)
# set choices for argument and default value
parser.add_argument(
"-p",
"--threads",
help = "number of threads",
choices = range(1,9),
default = 2,
type = int
)
args = parser.parse_args()
if args.verbose:
print("Verbose mode")
if args.threads:
print("Using %d threads" % args.threads)
print("%s's type is %s" % (args.echo, type(args.echo)))
print("%s's type is %s" % (args.number, type(args.number)))
If you run the Python script by itself, a simple usage will be
displayed. (Ignore the || true
command, which is only
needed because this document is generated programmatically.)
code/python/parse_arg.py || true
usage: parse_arg.py [-h] [-v] [-p {1,2,3,4,5,6,7,8}] echo number
parse_arg.py: error: the following arguments are required: echo, number
You can get a more detailed usage by using the help argument.
code/python/parse_arg.py -h
usage: parse_arg.py [-h] [-v] [-p {1,2,3,4,5,6,7,8}] echo number
positional arguments:
echo display a string
number display a number
optional arguments:
-h, --help show this help message and exit
-v, --verbose verbose mode
-p {1,2,3,4,5,6,7,8}, --threads {1,2,3,4,5,6,7,8}
number of threads
Run the script with positional and optional arguments.
code/python/parse_arg.py foobar 1984 -v
Verbose mode
Using 2 threads
foobar's type is <class 'str'>
1984's type is <class 'int'>
In Bash you can use the getopts command.
#!/usr/bin/env bash
usage() {
# redirect STDOUT to STDERR
echo "Usage: $0 [ -f FILE ] [ -t INT ]" 1>&2
exit 1
}
while getopts ":f:t:" options; do
case "${options}" in
f)
file=${OPTARG}
;;
t)
thread=${OPTARG}
regex='^[1-9][0-9]*$'
if [[ ! $thread =~ $regex ]]; then
usage
fi
;;
:)
echo "Error: -${OPTARG} requires an argument."
exit 1
;;
*)
usage ;;
esac
done
# OPTIND is the number of arguments that are options or arguments to options
if [ $OPTIND -ne 5 ]; then
usage
fi
printf "File: %s\nThreads: %d\n" $file $thread
exit 0
Usage.
code/unix/get_option.sh || true
Usage: code/unix/get_option.sh [ -f FILE ] [ -t INT ]
In R use the optparse library.
#!/usr/bin/env Rscript
#
# Example script using both positional and optional arguments. For more
# examples, see:
#
# https://cran.r-project.org/web/packages/optparse/vignettes/optparse.html
#
suppressPackageStartupMessages(library(optparse))
# optional args
option_list <- list(
make_option(c("-p", "--threads"), type = "integer", default = 2, help =
"Number of threads to use (default = %default)"),
make_option(c("-v", "--verbose"), action = "store_true", default = FALSE,
help = "Verbose mode (default = %default)")
)
# create your own usage
opt_parse <- OptionParser(usage = "%prog [options] infile <infile2> ...",
option_list = option_list)
# set positional_arguments to TRUE
opt <- parse_args(opt_parse, positional_arguments = TRUE)
# print usage if no positional args provided
if (length(opt$args) == 0){
print_help(opt_parse)
stop("Please provide an input file")
}
if (opt$options$verbose){
message("Verbose mode activated")
}
message(paste0("Using ", opt$options$threads, " threads"))
for (file in opt$args){
if(!file.exists(file)){
stop(paste0(file, " does not exist"))
}
message(paste0("Processing ", file))
}
message("Done")
quit()
Usage.
code/r/optparse.R || true
Loading .Rprofile for the current workflowr project
This is workflowr version 1.7.0
Run ?workflowr for help getting started
Usage: code/r/optparse.R [options]
Options:
-f READ1.FASTQ1, --first=READ1.FASTQ1
first read pair
-s READ2.FASTQ, --second=READ2.FASTQ
second read pair
-t THREAD, --thread=THREAD
number of threads to use
-h, --help
Show this help message and exit
In Perl use the Getopt::Long
package (or
Getopt::Std
).
#!/usr/bin/env perl
use warnings;
use strict;
use Getopt::Long;
my $fastq1 = "";
my $fastq2 = "";
my $thread = 8;
my $verbose = 0;
my $help = 0;
GetOptions ("thread=i" => \$thread, # numeric
"first=s" => \$fastq1, # string
"second=s" => \$fastq2, # string
"verbose" => \$verbose, # flag
"help" => \$help) # flag
|| die("Error in command line arguments\n");
if ($fastq1 eq "" || $fastq2 eq "" || $help == 1){
usage()
}
if ($verbose){
print join("\n", "First: $fastq1", "Second: $fastq2", "Thread: $thread"), "\n";
}
sub usage {
print STDERR <<EOF;
Usage: $0 -f read1.fastq -s read2.fastq -t 8
Where: -f, --first FILE first read pair
-s, --second FILE second read pair
-t, --thread INT number of threads to use (default 8)
-v, --verbose print out arguments
-h, --help this helpful usage message
EOF
exit();
}
__END__
Usage.
code/perl/getopts.pl
Usage: code/perl/getopts.pl -f read1.fastq -s read2.fastq -t 8
Where: -f, --first FILE first read pair
-s, --second FILE second read pair
-t, --thread INT number of threads to use (default 8)
-v, --verbose print out arguments
-h, --help this helpful usage message
sessionInfo()
R version 4.2.0 (2022-04-22)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.4 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/liblapack.so.3
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] workflowr_1.7.0
loaded via a namespace (and not attached):
[1] Rcpp_1.0.8.3 bslib_0.3.1 compiler_4.2.0 pillar_1.7.0
[5] later_1.3.0 git2r_0.30.1 jquerylib_0.1.4 tools_4.2.0
[9] getPass_0.2-2 digest_0.6.29 jsonlite_1.8.0 evaluate_0.15
[13] tibble_3.1.7 lifecycle_1.0.1 pkgconfig_2.0.3 rlang_1.0.2
[17] cli_3.3.0 rstudioapi_0.13 yaml_2.3.5 xfun_0.31
[21] fastmap_1.1.0 httr_1.4.3 stringr_1.4.0 knitr_1.39
[25] sass_0.4.1 fs_1.5.2 vctrs_0.4.1 rprojroot_2.0.3
[29] glue_1.6.2 R6_2.5.1 processx_3.5.3 fansi_1.0.3
[33] rmarkdown_2.14 callr_3.7.0 magrittr_2.0.3 whisker_0.4
[37] ps_1.7.0 promises_1.2.0.1 htmltools_0.5.2 ellipsis_0.3.2
[41] httpuv_1.6.5 utf8_1.2.2 stringi_1.7.6 crayon_1.5.1