Last updated: 2024-08-04

Checks: 7 0

Knit directory: muse/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200712) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 0b486eb. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    r_packages_4.3.3/
    Ignored:    r_packages_4.4.0/

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/gene_heatmap.Rmd) and HTML (docs/gene_heatmap.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 0b486eb Dave Tang 2024-08-04 Fix headers
html 14838f9 Dave Tang 2024-08-04 Build site.
Rmd aeb4c85 Dave Tang 2024-08-04 Aesthetics
html 9e8e5a9 Dave Tang 2024-08-04 Build site.
Rmd f34237f Dave Tang 2024-08-04 Manually calculate the correlation
html 3030a3c Dave Tang 2024-08-03 Build site.
Rmd ee40673 Dave Tang 2024-08-03 Top 100 most correlated
html 42c3d39 Dave Tang 2024-08-03 Build site.
Rmd b5aa7d6 Dave Tang 2024-08-03 Plot TNF expression as a boxplot
html df00969 Dave Tang 2023-07-14 Build site.
Rmd 7188c55 Dave Tang 2023-07-14 pheatmap resolution
html e2d73eb Dave Tang 2023-07-14 Build site.
Rmd 3a5ec3f Dave Tang 2023-07-14 Interactive heatmap
html 7fa8b41 Dave Tang 2023-07-13 Build site.
Rmd 922aa56 Dave Tang 2023-07-13 ARCHS4 heatmap

ARCHS4

Use gget and the archs4 subtool to find the most correlated genes to a gene of interest or find the gene’s tissue expression atlas using ARCHS4.

Install using pip:

pip install --upgrade gget

Usage.

gget archs4 -h
usage: gget archs4 [-h] [-e] [-w {correlation,tissue}] [-gc GENE_COUNT] [-s {human,mouse}] [-csv] [-o OUT] [-q] [-g GENE_DEPRECATED] [-j] gene

Find the most correlated genes or the tissue expression atlas of a gene using data from the human and mouse RNA-seq database ARCHS4 (https://maayanlab.cloud/archs4/).

positional arguments:
  gene                  Gene symbol or Ensembl gene ID of gene of interest, e.g. 'STAT4'.

options:
  -h, --help            show this help message and exit
  -e, --ensembl         Add this flag if gene is given as an Ensembl gene ID. (default: False)
  -w {correlation,tissue}, --which {correlation,tissue}
                        'correlation' (default) or 'tissue'.
                        - 'correlation' returns a gene correlation table that contains the 100 most correlated genes to the gene of interest. The Pearson correlation is calculated over all samples and tissues in ARCHS4.
                        - 'tissue' returns a tissue expression atlas calculated from human or mouse samples (as defined by 'species') in ARCHS4. (default: correlation)
  -gc GENE_COUNT, --gene_count GENE_COUNT
                        Number of correlated genes to return (default: 100).
                        (Only for gene correlation.) (default: 100)
  -s {human,mouse}, --species {human,mouse}
                        'human' (default) or 'mouse'. (Only for tissue expression atlas.) (default: human)
  -csv, --csv           Returns results in csv format instead of json. (default: True)
  -o OUT, --out OUT     Path to the csv file the results will be saved in, e.g. path/to/directory/results.csv.
                        Default: Standard out.
  -q, --quiet           Does not print progress information. (default: True)
  -g GENE_DEPRECATED, --gene GENE_DEPRECATED
                        DEPRECATED - use positional argument instead. Gene symbol or Ensembl gene ID of gene of interest (str), e.g. 'STAT4'.
  -j, --json            DEPRECATED - json is now the default output format (convert to csv using flag [--csv]). (default: False)

Get tissue expression for TNF and CCL4 in CSV.

gget archs4 --which tissue --csv --out TNF_tissue.csv TNF
gget archs4 --which tissue --csv --out CCL4_tissue.csv CCL4

Get the 100 most correlated genes to TNF from ARCHS4.

gget archs4 --which correlation --csv --out TNF_correlation.csv TNF

Tissue expression

Load data and split the ID into multiple columns.

read_tissue <- function(fn){
  readr::read_csv(file = fn, show_col_types = FALSE) |>
    tidyr::separate(col = id, sep = "\\.", into = c("junk", "system", "organ", "tissue")) |>
    dplyr::mutate(tissue = stringr::str_to_title(tissue)) |>
    dplyr::arrange(system) |>
    dplyr::mutate(tissue = factor(tissue, levels = tissue)) -> tnf_exp
}

tnf_exp <- read_tissue("data/archs4/TNF_tissue.csv")
ccl4_exp <- read_tissue("data/archs4/CCL4_tissue.csv")
head(tnf_exp)
# A tibble: 6 × 9
  junk   system                organ       tissue   min    q1 median    q3   max
  <chr>  <chr>                 <chr>       <fct>  <dbl> <dbl>  <dbl> <dbl> <dbl>
1 System Cardiovascular System Heart       Valve  0.114 1.21   3.23   4.30  5.16
2 System Cardiovascular System Heart       Ventr… 0.114 2.16   2.78   3.39  4.31
3 System Cardiovascular System Heart       Atrium 0.114 0.114  1.21   2.78  3.35
4 System Cardiovascular System Heart       Heart  0.114 0.114  0.114  2.42  8.60
5 System Connective Tissue     Adipose ti… Adipo… 0.114 0.114  2.42   3.29  4.84
6 System Connective Tissue     Bone marrow Chond… 0.114 0.114  0.114  1.81  9.13

Plot tissue expression as box plots.

library(ggplot2)
ggplot(
  tnf_exp,
  aes(
    x = tissue,
    ymin = min,
    lower = q1,
    middle = median,
    upper = q3,
    ymax = max,
    fill = system
  )
) +
  geom_boxplot(stat = 'identity') +
  theme_minimal() +
  theme(
    legend.position = 'right',
    axis.title.x = element_blank(),
    axis.text.x = element_text(angle = 70, hjust = 1)
  ) +
  labs(y = "Expression (TPM)")

Version Author Date
14838f9 Dave Tang 2024-08-04
42c3d39 Dave Tang 2024-08-03

Top 100 most correlated genes to TNF

Load data.

tnf_cor <- readr::read_csv(file = "data/archs4/TNF_correlation.csv", show_col_types = FALSE)
head(tnf_cor)
# A tibble: 6 × 2
  gene_symbol pearson_correlation
  <chr>                     <dbl>
1 CCL4                      0.779
2 GPR132                    0.765
3 SLAMF1                    0.763
4 CCL3                      0.758
5 CD48                      0.754
6 OSM                       0.745

CCL4 is the most correlated to TNF. Get the 100 most correlated genes to CCL4 from ARCHS4 to check if this is reciprocated.

gget archs4 --which correlation --csv --out CCL4_correlation.csv CCL4

Load CCL4 correlation data.

ccl4_cor <- readr::read_csv(file = "data/archs4/CCL4_correlation.csv", show_col_types = FALSE)
head(ccl4_cor)
# A tibble: 6 × 2
  gene_symbol pearson_correlation
  <chr>                     <dbl>
1 CCL4L2                    0.923
2 CCL3                      0.913
3 CCL3L3                    0.854
4 CD48                      0.843
5 PLEK                      0.833
6 CYTIP                     0.820

Check rank of TNF.

which(ccl4_cor$gene_symbol == "TNF")
[1] 36

Check correlation as a sanity check.

ccl4_cor[which(ccl4_cor$gene_symbol == "TNF"), ]
# A tibble: 1 × 2
  gene_symbol pearson_correlation
  <chr>                     <dbl>
1 TNF                       0.779

Calculate correlation from retrieved tissue expression data.

dplyr::inner_join(tnf_exp, ccl4_exp, by = c('junk', 'system', 'organ', 'tissue'), suffix = c("_tnf", "_ccl4")) |>
  dplyr::summarise(correlation = cor(median_tnf, median_ccl4))
# A tibble: 1 × 1
  correlation
        <dbl>
1       0.821

Combine all data

Tissue expression was retrieved for a list of other genes. We will combine their expressions together into one data frame.

lapply(
  list.files("data/archs4/cancer", pattern = ".csv$", full.names = TRUE),
  function(x){
    cbind(gene = sub("\\.\\w+$", "", basename(x)), read.csv(x))
  }
) |>
  do.call("rbind", args = _) -> my_df

# Split `id` column.
do.call("rbind", strsplit(x = my_df$id, split = "\\.")) |>
  as.data.frame() -> id_split

colnames(id_split) <- c('root', 'system', 'organ', 'tissue')

# Rename tissues.
cap_first <- function(x){
  s <- strsplit(x, "")[[1]][1]
  return(sub(s, toupper(s), x))
}

id_split$tissue <- tolower(id_split$tissue)
id_split$tissue <- sapply(id_split$tissue, cap_first)

my_df <- cbind(my_df, id_split)

# Order `my_df` by system.
my_df <- my_df[order(my_df$gene, my_df$system), ]
my_df$tissue <- factor(my_df$tissue, levels = unique(my_df$tissue))

head(my_df)
    gene                                                id      min       q1
12 CCND1          System.Cardiovascular System.Heart.VALVE 10.62560 11.68490
28 CCND1          System.Cardiovascular System.Heart.HEART  5.87724 10.15820
30 CCND1      System.Cardiovascular System.Heart.VENTRICLE  9.54469 10.37180
36 CCND1         System.Cardiovascular System.Heart.ATRIUM  8.44515  9.67321
5  CCND1          System.Connective Tissue.Bone.OSTEOBLAST 11.30840 12.09570
18 CCND1 System.Connective Tissue.Adipose tissue.ADIPOCYTE  8.38312 10.48580
    median      q3     max   root                system          organ
12 12.0648 12.5311 13.7986 System Cardiovascular System          Heart
28 10.9207 11.5210 12.8617 System Cardiovascular System          Heart
30 10.8446 11.2841 11.9118 System Cardiovascular System          Heart
36 10.5234 11.0560 11.4873 System Cardiovascular System          Heart
5  12.6214 13.2789 14.0211 System     Connective Tissue           Bone
18 11.7684 12.7769 14.1867 System     Connective Tissue Adipose tissue
       tissue
12      Valve
28      Heart
30  Ventricle
36     Atrium
5  Osteoblast
18  Adipocyte

Back to wide format.

my_df |>
  dplyr::select(gene, median, tissue) |>
  tidyr::pivot_wider(names_from = tissue, values_from = median) -> my_df_wide

Heatmap

Convert to matrix and plot.

my_mat <- as.matrix(my_df_wide[, -1])
row.names(my_mat) <- my_df_wide$gene

pheatmap(my_mat)

Version Author Date
df00969 Dave Tang 2023-07-14
e2d73eb Dave Tang 2023-07-14
7fa8b41 Dave Tang 2023-07-13

Create sample annotation.

my_order <- colnames(my_mat)

my_df |>
  dplyr::select(system, tissue) |>
  dplyr::distinct() |>
  dplyr::arrange(match(tissue, my_order)) |>
  dplyr::select(-tissue) -> sample_anno

row.names(sample_anno) <- my_order
head(sample_anno)
                          system
Valve      Cardiovascular System
Heart      Cardiovascular System
Ventricle  Cardiovascular System
Atrium     Cardiovascular System
Osteoblast     Connective Tissue
Adipocyte      Connective Tissue

Heatmap with system annotation.

pheatmap(my_mat, annotation_col = sample_anno)

Version Author Date
df00969 Dave Tang 2023-07-14
e2d73eb Dave Tang 2023-07-14
7fa8b41 Dave Tang 2023-07-13

Interactive heatmap.

plot_ly(
  x=colnames(my_mat),
  y=rownames(my_mat),
  z = my_mat,
  colors = colorRamp(c("green", "red")),
  type = "heatmap"
)

sessionInfo()
R version 4.4.0 (2024-04-24)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 22.04.4 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so;  LAPACK version 3.10.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

time zone: Etc/UTC
tzcode source: system (glibc)

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] plotly_4.10.4   ggplot2_3.5.1   pheatmap_1.0.12 workflowr_1.7.1

loaded via a namespace (and not attached):
 [1] gtable_0.3.5       xfun_0.44          bslib_0.7.0        htmlwidgets_1.6.4 
 [5] processx_3.8.4     callr_3.7.6        tzdb_0.4.0         crosstalk_1.2.1   
 [9] vctrs_0.6.5        tools_4.4.0        ps_1.7.6           generics_0.1.3    
[13] parallel_4.4.0     tibble_3.2.1       fansi_1.0.6        highr_0.11        
[17] pkgconfig_2.0.3    data.table_1.15.4  RColorBrewer_1.1-3 lifecycle_1.0.4   
[21] compiler_4.4.0     farver_2.1.2       stringr_1.5.1      git2r_0.33.0      
[25] munsell_0.5.1      getPass_0.2-4      httpuv_1.6.15      htmltools_0.5.8.1 
[29] sass_0.4.9         yaml_2.3.8         lazyeval_0.2.2     later_1.3.2       
[33] pillar_1.9.0       crayon_1.5.2       jquerylib_0.1.4    whisker_0.4.1     
[37] tidyr_1.3.1        cachem_1.1.0       tidyselect_1.2.1   digest_0.6.35     
[41] stringi_1.8.4      dplyr_1.1.4        purrr_1.0.2        labeling_0.4.3    
[45] rprojroot_2.0.4    fastmap_1.2.0      grid_4.4.0         colorspace_2.1-0  
[49] cli_3.6.2          magrittr_2.0.3     utf8_1.2.4         readr_2.1.5       
[53] withr_3.0.0        scales_1.3.0       promises_1.3.0     bit64_4.0.5       
[57] rmarkdown_2.27     httr_1.4.7         bit_4.0.5          hms_1.1.3         
[61] evaluate_0.24.0    knitr_1.47         viridisLite_0.4.2  rlang_1.1.4       
[65] Rcpp_1.0.12        glue_1.7.0         rstudioapi_0.16.0  vroom_1.6.5       
[69] jsonlite_1.8.8     R6_2.5.1           fs_1.6.4