Last updated: 2020-04-23

Checks: 7 0

Knit directory: treeclimbR_toy_example/

This reproducible R Markdown analysis was created with workflowr (version 1.5.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200315) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd 49a1b4d fionarhuang 2020-04-23 customize the website
html 76414e2 fionarhuang 2020-04-23 Build site.
Rmd 9ae2f14 fionarhuang 2020-04-23 publish Rmd files

knitr::opts_chunk$set(echo = TRUE, warning=FALSE, message = FALSE)

Data simulation

suppressPackageStartupMessages({
  library(ggplot2)
  library(ggtree)
  library(dplyr)
  library(treeclimbR)  
  library(TreeSummarizedExperiment)
  library(ape)
  library(TreeHeatmap)
  library(ggnewscale)
  library(wesanderson)
  library(scales)
  library(gganimate)
})

A random tree is generated.

# random tree
set.seed(1)
n <- 1000
tr <- rtree(n)

A count table is generated with each column sampled from the same distribution. Entities in rows and samples in columns. Samples are assigned to two groups.

# generate a random probability of leaves
p <- runif(n = n, 0, 1)
p <- p/sum(p)
names(p) <- tr$tip.label

# group
nSam <- c(30, 30)
gr <- rep(LETTERS[1:2], nSam)

# counts
count <- rmultinom(n = sum(nSam), size = 10000, prob = p)
rownames(count) <- names(p)
colnames(count) <- paste(gr, seq_len(sum(nSam)), sep = "_")

The tree and count table are stored as a TSE object.

lse <- TreeSummarizedExperiment(assays = list(count),
                                colData = data.frame(group = gr),
                                rowTree = tr)

Data aggregation

# all nodes
all_node <- showNode(tree = tr, only.leaf = FALSE)
tse <- aggValue(x = lse, rowLevel = all_node, FUN = sum)

Differential analysis

Wilcoxon sum rank test is run on all nodes.

# wilcox.test
test.func <- function (X, Y) {  
    Y <- as.numeric(factor(Y))
    obj <- apply(X, 1, function(x) {                
        p.value <- suppressWarnings(wilcox.test(x ~ Y)$p.value)
        e.sign <- sign(mean(x[Y == 2]) - mean(x[Y == 1]))
        c(p.value, e.sign)          
    })
    return(list(p.value=obj[1, ], e.sign=obj[2, ])) 
}
Y <- colData(tse)$group
X <- assays(tse)[[1]]
resW <- test.func(X,Y)
outW <- data.frame(node = rowLinks(tse)$nodeNum,
                   pvalue = resW$p.value,
                   sign = resW$e.sign)

Run treeclimbR

# get candidates
cand <- getCand(tree = rowTree(tse), score_data = outW, 
                node_column = "node", p_column = "pvalue",
                threshold = 0.05,
                sign_column = "sign", message = TRUE)
# evaluate candidates
best <- evalCand(tree = rowTree(tse), levels = cand$candidate_list, 
                 score_data = outW, node_column = "node",
                 p_column = "pvalue", sign_column = "sign")
outB <- topNodes(object = best, n = Inf, p_value = 0.05)
infoCand(object = best)
      t upper_t is_valid method limit_rej level_name  best rej_leaf rej_node
1  0.00       0     TRUE     BH      0.05          0  TRUE        0        0
2  0.01       0    FALSE     BH      0.05       0.01 FALSE        0        0
3  0.02       0    FALSE     BH      0.05       0.02 FALSE        0        0
4  0.03       0    FALSE     BH      0.05       0.03 FALSE        0        0
5  0.04       0    FALSE     BH      0.05       0.04 FALSE        0        0
6  0.05       0    FALSE     BH      0.05       0.05 FALSE        0        0
7  0.10       0    FALSE     BH      0.05        0.1 FALSE        0        0
8  0.15       0    FALSE     BH      0.05       0.15 FALSE        0        0
9  0.20       0    FALSE     BH      0.05        0.2 FALSE        0        0
10 0.25       0    FALSE     BH      0.05       0.25 FALSE        0        0
11 0.30       0    FALSE     BH      0.05        0.3 FALSE        0        0
12 0.35       0    FALSE     BH      0.05       0.35 FALSE        0        0
13 0.40       0    FALSE     BH      0.05        0.4 FALSE        0        0
14 0.45       0    FALSE     BH      0.05       0.45 FALSE        0        0
15 0.50       0    FALSE     BH      0.05        0.5 FALSE        0        0
16 0.55       0    FALSE     BH      0.05       0.55 FALSE        0        0
17 0.60       0    FALSE     BH      0.05        0.6 FALSE        0        0
18 0.65       0    FALSE     BH      0.05       0.65 FALSE        0        0
19 0.70       0    FALSE     BH      0.05        0.7 FALSE        0        0
20 0.75       0    FALSE     BH      0.05       0.75 FALSE        0        0
21 0.80       0    FALSE     BH      0.05        0.8 FALSE        0        0
22 0.85       0    FALSE     BH      0.05       0.85 FALSE        0        0
23 0.90       0    FALSE     BH      0.05        0.9 FALSE        0        0
24 0.95       0    FALSE     BH      0.05       0.95 FALSE        0        0
25 1.00       0    FALSE     BH      0.05          1 FALSE        0        0

Results

Candidates

# number of nodes in each candidate
candL <- cand$candidate_list
unlist(lapply(candL, length))
   0 0.01 0.02 0.03 0.04 0.05  0.1 0.15  0.2 0.25  0.3 0.35  0.4 0.45  0.5 0.55 
 998  998  998  998  998  998  997  997  995  993  991  990  990  987  987  986 
 0.6 0.65  0.7 0.75  0.8 0.85  0.9 0.95    1 
 982  979  978  978  976  976  973  969  964 
# tree
leaf <- showNode(tree = tr, only.leaf = TRUE)
nleaf <- length(leaf)

# the candidate list
t <- names(candL)
nt <- length(candL)
mm <- matrix(NA, nrow = nleaf, ncol = nt)
colnames(mm) <- paste("row_", seq_len(nt), sep = "")

#
path <- matTree(tree = tr)
r1 <- lapply(leaf, FUN = function(x) {
    which(path == x, arr.ind = TRUE)[, "row"]
})

for (j in seq_len(nt)) {
    rj <- lapply(candL[[j]], FUN = function(x) {
        which(path == x, arr.ind = TRUE)[, "row"]
    })
    
    for (i in seq_len(nleaf)) {
        # leaf i: which row of `path`   
        ni <- r1[[i]]
        ul <- lapply(rj, FUN = function(x) {
            any(ni %in% x)
        })
        
        # the ancestor of leaf i: which node in candidate j
        ll <- which(unlist(ul))
        if (length(ll) == 1) {
            mm[i, j] <- ll
        }
    }}


nn <- lapply(seq_len(ncol(mm)), FUN = function(x) {
    mx <- mm[, x]
    xx <- candL[[x]][mx]
    cbind.data.frame(xx, rep(t[x], length(xx)), 
                     stringsAsFactors = FALSE)
})

df <- do.call(rbind.data.frame, nn)
colnames(df) <- c("node", "threshold")
head(df)

fig_1 <- ggtree(tr = tr, layout = "circular", 
                branch.length = "none", size = 0.3) 

pd <- df %>%
    left_join(y = fig_1$data, by = "node") %>%
    select(threshold, x, y) %>%
    mutate(t = factor(threshold, levels = names(candL)))


gif_neg <- fig_1  + 
    geom_point(data = pd, aes(x, y),
               color = "navy", size = 4) +
    theme(plot.title = element_text(size = 25)) +
    transition_states(states = t, 
                      state_length = 8,
                      transition_length = 2,
                      wrap = FALSE) +
    shadow_wake(wake_length = 0.1, alpha = FALSE, 
                wrap = FALSE) +
    labs(title = "t = {closest_state}") +
    enter_fade() +
    exit_fade()

anim_save("output/negative_cands.gif", gif_neg, height = 800, width = 800)

Nodes that are detected to be differential abundant (DA) between two groups are labeled as red points. Here, treeclimbR doesn’t detect any nodes.

# detected nodes
(loc <- outB$node)
integer(0)
fig_1 <- ggtree(tr = tr, layout = "circular", 
                branch.length = "none", size = 0.3) 
fig_1 +
  geom_point2(aes(subset = node %in% loc), color = "red")

Version Author Date
76414e2 fionarhuang 2020-04-23

Histogram of P-values

pL <- lapply(seq_along(candL), FUN = function(x) {
  p.x <- outW[outW$node %in% candL[[x]], ][["pvalue"]]
  df.x <- cbind.data.frame(pvalue = p.x, t = names(candL)[x])
  return(df.x)
})
df <- do.call(rbind, pL)


ggplot(df, aes(x = pvalue, y = ..density..)) + 
        geom_histogram(bins = 20, fill = "grey", alpha = 0.8) +
        geom_density(color = "blue") +
    facet_wrap(. ~ t, nrow = 6) + 
        theme(plot.margin = unit(c(0, 0, 0, 0), "cm")) +
  ylim(0, 1.5)

Version Author Date
76414e2 fionarhuang 2020-04-23
prettify <- theme_bw(base_size = 9) + theme(
  aspect.ratio = 1,
  #plot.margin = unit(c(0, 0, 0.2, 0), "cm"),
  panel.grid = element_blank(),
  panel.spacing = unit(0, "lines"),
  axis.text = element_text(color = "black"),
  axis.text.x = element_text(angle = 45, hjust = 1),
  legend.key.size= unit(1.5, "mm"),
  plot.title = element_text(hjust = 0.5),
  legend.text = element_text(size = 7),
  legend.position="bottom",
  legend.margin = margin(0, 0, 0, 0),
  legend.box.margin=margin(-5,-5,-10,-5),
  strip.background = element_rect(colour = "black", fill = "gray90"),
  strip.text.x = element_text(color = "black", size = 8),
  strip.text.y = element_text(color = "black", size = 8))

pal <- wes_palette("Zissou1", 25, type = "continuous")

fig <- ggplot(df, aes(x= pvalue, group = t, color = t)) + 
  stat_ecdf(geom = "step") +
  geom_abline(slope = 1, intercept = 0, linetype = "dashed") +
  scale_color_manual(values = pal) +
  prettify +
  labs(y = NULL,
       title = "CDF of p values on each candidate") +
  theme(legend.position = "right",
        legend.key.size= unit(3, "mm"),
        legend.box.margin=margin(0,0,0,0),
        axis.text.x = element_text(angle = 0, hjust = 1))

fig

Version Author Date
76414e2 fionarhuang 2020-04-23
ggsave(filename = "output/Supplementary_negative_unif.eps", 
       width = 5, height = 5, units = "in")

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Mojave 10.14.4

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] gganimate_1.0.4                scales_1.1.0                  
 [3] wesanderson_0.3.6              ggnewscale_0.4.0              
 [5] TreeHeatmap_0.1.0              ape_5.3                       
 [7] treeclimbR_0.1.1               TreeSummarizedExperiment_1.3.0
 [9] SingleCellExperiment_1.8.0     SummarizedExperiment_1.16.0   
[11] DelayedArray_0.12.0            BiocParallel_1.20.0           
[13] matrixStats_0.55.0             Biobase_2.46.0                
[15] GenomicRanges_1.38.0           GenomeInfoDb_1.22.0           
[17] IRanges_2.20.0                 S4Vectors_0.24.0              
[19] BiocGenerics_0.32.0            dplyr_0.8.5                   
[21] ggtree_2.1.6                   ggplot2_3.3.0                 
[23] workflowr_1.5.0               

loaded via a namespace (and not attached):
  [1] backports_1.1.6             circlize_0.4.8             
  [3] diffcyt_1.6.1               plyr_1.8.5                 
  [5] igraph_1.2.4.1              ConsensusClusterPlus_1.50.0
  [7] lazyeval_0.2.2              splines_3.6.1              
  [9] flowCore_1.52.0             fda_2.4.8                  
 [11] TH.data_1.0-10              digest_0.6.25              
 [13] htmltools_0.4.0             viridis_0.5.1              
 [15] fansi_0.4.1                 magrittr_1.5               
 [17] CytoML_1.12.0               cluster_2.1.0              
 [19] ks_1.11.6                   limma_3.42.0               
 [21] ComplexHeatmap_2.2.0        RcppParallel_4.4.4         
 [23] R.utils_2.9.0               sandwich_2.5-1             
 [25] flowWorkspace_3.34.0        prettyunits_1.1.1          
 [27] colorspace_1.4-1            rrcov_1.4-7                
 [29] xfun_0.11                   crayon_1.3.4               
 [31] RCurl_1.95-4.12             jsonlite_1.6.1             
 [33] hexbin_1.28.0               graph_1.64.0               
 [35] lme4_1.1-21                 dirmult_0.1.3-4            
 [37] survival_2.44-1.1           zoo_1.8-6                  
 [39] glue_1.4.0                  flowClust_3.24.0           
 [41] gtable_0.3.0                zlibbioc_1.32.0            
 [43] XVector_0.26.0              GetoptLong_0.1.7           
 [45] ggcyto_1.14.0               IDPmisc_1.1.19             
 [47] Rgraphviz_2.30.0            shape_1.4.4                
 [49] DEoptimR_1.0-8              mvtnorm_1.0-11             
 [51] edgeR_3.28.0                Rcpp_1.0.4                 
 [53] progress_1.2.2              viridisLite_0.3.0          
 [55] clue_0.3-57                 tidytree_0.3.3             
 [57] openCyto_1.24.0             mclust_5.4.5               
 [59] FlowSOM_1.18.0              tsne_0.1-3                 
 [61] RColorBrewer_1.1-2          ellipsis_0.3.0             
 [63] farver_2.0.3                pkgconfig_2.0.3            
 [65] XML_3.98-1.20               R.methodsS3_1.7.1          
 [67] flowViz_1.50.0              locfit_1.5-9.1             
 [69] labeling_0.3                reshape2_1.4.3             
 [71] flowStats_3.44.0            tidyselect_1.0.0           
 [73] rlang_0.4.5                 later_1.0.0                
 [75] munsell_0.5.0               tools_3.6.1                
 [77] cli_2.0.2                   gifski_0.8.6               
 [79] evaluate_0.14               stringr_1.4.0              
 [81] yaml_2.2.0                  knitr_1.26                 
 [83] fs_1.3.1                    robustbase_0.93-5          
 [85] purrr_0.3.3                 RBGL_1.62.1                
 [87] nlme_3.1-142                whisker_0.4                
 [89] R.oo_1.23.0                 aplot_0.0.4                
 [91] compiler_3.6.1              png_0.1-7                  
 [93] treeio_1.11.2               tweenr_1.0.1               
 [95] tibble_3.0.0                pcaPP_1.9-73               
 [97] stringi_1.4.6               lattice_0.20-38            
 [99] Matrix_1.2-17               nloptr_1.2.1               
[101] vctrs_0.2.4                 pillar_1.4.3               
[103] lifecycle_0.2.0             BiocManager_1.30.10        
[105] GlobalOptions_0.1.1         data.table_1.12.6          
[107] cowplot_1.0.0               bitops_1.0-6               
[109] corpcor_1.6.9               httpuv_1.5.2               
[111] patchwork_1.0.0             R6_2.4.1                   
[113] latticeExtra_0.6-28         promises_1.1.0             
[115] KernSmooth_2.23-15          gridExtra_2.3              
[117] codetools_0.2-16            boot_1.3-23                
[119] MASS_7.3-51.4               gtools_3.8.1               
[121] assertthat_0.2.1            rprojroot_1.3-2            
[123] rjson_0.2.20                withr_2.1.2                
[125] mnormt_1.5-5                multcomp_1.4-10            
[127] GenomeInfoDbData_1.2.2      hms_0.5.2                  
[129] ncdfFlow_2.32.0             grid_3.6.1                 
[131] minqa_1.2.4                 tidyr_1.0.2                
[133] rmarkdown_1.17              rvcheck_0.1.8              
[135] git2r_0.26.1                base64enc_0.1-3            
[137] ellipse_0.4.1