Last updated: 2020-08-17
Checks: 7 0
Knit directory: GeoPKO/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20200629)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version b846f76. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Untracked files:
Untracked: 2020_07_21.R
Untracked: figure/viz.Rmd/
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/index.Rmd
) and HTML (docs/index.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | b846f76 | Nguyen Ha | 2020-08-17 | adding Lou’s update |
Rmd | c70e8b0 | Lou van Roozendaal | 2020-08-14 | descriptivstatistics |
html | 7447d5c | Nguyen Ha | 2020-08-13 | Build site. |
Rmd | 03c6897 | Nguyen Ha | 2020-08-13 | wflow_publish(all = TRUE) |
html | 9a57942 | Nguyen Ha | 2020-08-13 | Build site. |
Rmd | 3c3a981 | Nguyen Ha | 2020-08-13 | Updating new maps, new pages |
Rmd | 7cb84d7 | Tanushree Rao | 2020-08-10 | updating map |
html | e72567f | Nguyen Ha | 2020-07-10 | Build site. |
Rmd | 9ec337b | Nguyen Ha | 2020-07-10 | Update |
Rmd | 92d111c | Nguyen Ha | 2020-07-10 | Pulling before compiling. Merge branch ‘master’ of https://github.com/hatnguyen267/GeoPKO into render |
Rmd | bcabf5e | Nguyen Ha | 2020-07-10 | Pre-pull commit |
html | bcabf5e | Nguyen Ha | 2020-07-10 | Pre-pull commit |
Rmd | a35561b | Lou van Roozendaal | 2020-07-09 | added table |
html | baaaa20 | Nguyen Ha | 2020-07-08 | Build site. |
Rmd | b3d8755 | Nguyen Ha | 2020-07-08 | Adjusting graph output size |
html | 884b86f | Nguyen Ha | 2020-07-08 | Build site. |
Rmd | e863725 | Nguyen Ha | 2020-07-08 | building site with Tanushree’s additions |
Rmd | 8fe33fc | GitHub | 2020-07-08 | Merge branch ‘master’ into hey |
html | 325ac4f | Nguyen Ha | 2020-07-08 | Build site. |
Rmd | f5bc390 | Nguyen Ha | 2020-07-08 | Updating the stupid animated graph hope it will render |
html | 6bcd405 | Nguyen Ha | 2020-07-08 | Build site. |
Rmd | 176eca5 | Nguyen Ha | 2020-07-08 | wflow_publish(“analysis/index.Rmd”) |
Rmd | ebb000d | Nguyen Ha | 2020-07-08 | Animation added to index.rmd, waiting to be rendered |
html | ebb000d | Nguyen Ha | 2020-07-08 | Animation added to index.rmd, waiting to be rendered |
Rmd | 5edc140 | Tanushree Rao | 2020-07-07 | new map |
html | 819ccf2 | Nguyen Ha | 2020-07-03 | Build site. |
Rmd | 9c0642e | Nguyen Ha | 2020-07-03 | wflow_publish(“analysis/index.Rmd”) |
Rmd | 0d5cc47 | Nguyen Ha | 2020-07-03 | Fixed conflict with main fol. |
Rmd | 4cf53c8 | Nguyen Ha | 2020-07-03 | Fixing legend position; previous tables |
Rmd | 14ab237 | GitHub | 2020-07-03 | Update index.Rmd |
Rmd | 557ebbf | Lou van Roozendaal | 2020-07-03 | Lou_change_graph |
html | 3bde5f5 | Nguyen Ha | 2020-07-02 | Build site. |
Rmd | 8b39fe5 | Nguyen Ha | 2020-07-02 | wflow_publish(c(“index.Rmd”, “about.Rmd”)) |
html | 8b39fe5 | Nguyen Ha | 2020-07-02 | wflow_publish(c(“index.Rmd”, “about.Rmd”)) |
html | 01d2b98 | hatnguyen267 | 2020-06-29 | Build site. |
Rmd | 0a3c9c9 | hatnguyen267 | 2020-06-29 | more to index.rmb |
html | 50d7b31 | hatnguyen267 | 2020-06-29 | Build site. |
Rmd | 4db5b4f | hatnguyen267 | 2020-06-29 | adding items to index.rmb |
html | 4d2d90f | hatnguyen267 | 2020-06-29 | Build site. |
Rmd | a7817f7 | hatnguyen267 | 2020-06-29 | wflow_publish(all = TRUE) |
Rmd | 8e7fc45 | hatnguyen267 | 2020-06-29 | Start workflowr project. |
This document contains a series of steps that the project members have performed to extract meaningful information the Geo-PKO dataset. More details on the dataset, as well as the version used here, can be found on its homepage. Note that the current version of this report is produced using version 1.2.
Load packages.
library(tidyverse)
library(readr)
library(ggthemes)
library(knitr)
library(kableExtra)
library(lubridate)
We start by importing the dataset. To get a sense of how read_csv
would parse the dataset, run spec_csv()
on the dataset beforehand.
specs <- spec_csv("data/geopko.csv")
Parsed with column specification:
cols(
.default = col_double(),
Source = col_character(),
Mission = col_character(),
location = col_character(),
country = col_character(),
No.troops = col_character(),
RPF = col_logical(),
RPF_No = col_logical(),
No.TCC = col_character(),
name.of.TCC1 = col_character(),
No.troops.per.TCC1 = col_character(),
name.of.TCC2 = col_character(),
No.troops.per.TCC2 = col_character(),
name.of.TCC3 = col_character(),
name.of.TCC4 = col_character(),
name.of.TCC5 = col_character(),
name.of.TCC6 = col_character(),
name.of.TCC7 = col_character(),
name.of.TCC8 = col_character(),
name.of.TCC9 = col_character(),
name.of.TCC10 = col_logical()
# ... with 18 more columns
)
See spec(...) for full column specifications.
This shows that R might arbitrarily parse our columns as logical, which may mess up the data. Here, we are going to dodge this issue by telling R to parse all columns as character.
GeoPKO <- read_csv("data/geopko.csv",
col_types = cols(.default="c"))
Let’s have a quick look at the dataset.
str(GeoPKO)
tibble [12,190 x 71] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
$ Source : chr [1:12190] "Map no. 4309" "Map no. 4309 Rev. 1" "Map no. 4203 Rev. 2" "Map no. 4203 Rev. 3" ...
$ Mission : chr [1:12190] "BINUB" "BINUB" "MINUCI" "MINUCI" ...
$ year : chr [1:12190] "2007" "2009" "2003" "2003" ...
$ month : chr [1:12190] "3" "8" "8" "11" ...
$ location : chr [1:12190] "Bujumbura" "Bujumbura" "Abidjan" "Abidjan" ...
$ country : chr [1:12190] "Burundi" "Burundi" "Ivory Coast" "Ivory Coast" ...
$ latitude : chr [1:12190] "-3.3822" "-3.3822" "5.309657" "5.309657" ...
$ longitude : chr [1:12190] "29.3644" "29.3644" "-4.012656" "-4.012656" ...
$ No.troops : chr [1:12190] "0" "0" "0" "0" ...
$ RPF : chr [1:12190] NA NA NA NA ...
$ RPF_No : chr [1:12190] NA NA NA NA ...
$ RES : chr [1:12190] "0" "0" "0" "0" ...
$ RES_No : chr [1:12190] "0" "0" "0" "0" ...
$ FP : chr [1:12190] "0" "0" "0" "0" ...
$ FP_No : chr [1:12190] "0" "0" "0" "0" ...
$ No.TCC : chr [1:12190] "0" "0" "0" "0" ...
$ name.of.TCC1 : chr [1:12190] NA NA NA NA ...
$ No.troops.per.TCC1 : chr [1:12190] NA NA NA NA ...
$ name.of.TCC2 : chr [1:12190] NA NA NA NA ...
$ No.troops.per.TCC2 : chr [1:12190] NA NA NA NA ...
$ name.of.TCC3 : chr [1:12190] NA NA NA NA ...
$ No.troops.per.TCC3 : chr [1:12190] NA NA NA NA ...
$ name.of.TCC4 : chr [1:12190] NA NA NA NA ...
$ No.troops.per.TCC4 : chr [1:12190] NA NA NA NA ...
$ name.of.TCC5 : chr [1:12190] NA NA NA NA ...
$ No.troops.per.TCC5 : chr [1:12190] NA NA NA NA ...
$ name.of.TCC6 : chr [1:12190] NA NA NA NA ...
$ No.troops.per.TCC6 : chr [1:12190] NA NA NA NA ...
$ name.of.TCC7 : chr [1:12190] NA NA NA NA ...
$ No.troops.per.TCC7 : chr [1:12190] NA NA NA NA ...
$ name.of.TCC8 : chr [1:12190] NA NA NA NA ...
$ No.troops.per.TCC8 : chr [1:12190] NA NA NA NA ...
$ name.of.TCC9 : chr [1:12190] NA NA NA NA ...
$ No.troops.per.TCC9 : chr [1:12190] NA NA NA NA ...
$ name.of.TCC10 : chr [1:12190] NA NA NA NA ...
$ No.troops.per.TCC10: chr [1:12190] NA NA NA NA ...
$ name.of.TCC11 : chr [1:12190] NA NA NA NA ...
$ No.troops.per.TCC11: chr [1:12190] NA NA NA NA ...
$ name.of.TCC12 : chr [1:12190] NA NA NA NA ...
$ No.troops.per.TCC12: chr [1:12190] NA NA NA NA ...
$ name.of.TCC13 : chr [1:12190] NA NA NA NA ...
$ No.troops.per.TCC13: chr [1:12190] NA NA NA NA ...
$ name.of.TCC14 : chr [1:12190] NA NA NA NA ...
$ No.troops.per.TCC14: chr [1:12190] NA NA NA NA ...
$ UNPOL..dummy. : chr [1:12190] "0" "0" "0" "0" ...
$ UNMO..dummy. : chr [1:12190] "0" "0" "0" "0" ...
$ HQ : chr [1:12190] "3" "3" "3" "3" ...
$ LO : chr [1:12190] "0" "0" "0" "0" ...
$ comments : chr [1:12190] NA NA "MINUCI HQ; Also ECOWAS main HQ; France HQ" "MINUCI HQ; Also ECOWAS main HQ; France HQ; Fanci HQ" ...
$ cow_code : chr [1:12190] "516" "516" "437" "437" ...
$ gwno : chr [1:12190] "516" "516" "437" "437" ...
$ name : chr [1:12190] "Burundi" "Burundi" "Cote D’Ivoire" "Cote D’Ivoire" ...
$ TCC1 : chr [1:12190] NA NA NA NA ...
$ TCC2 : chr [1:12190] NA NA NA NA ...
$ TCC3 : chr [1:12190] NA NA NA NA ...
$ TCC4 : chr [1:12190] NA NA NA NA ...
$ TCC5 : chr [1:12190] NA NA NA NA ...
$ TCC6 : chr [1:12190] NA NA NA NA ...
$ TCC7 : chr [1:12190] NA NA NA NA ...
$ TCC8 : chr [1:12190] NA NA NA NA ...
$ TCC9 : chr [1:12190] NA NA NA NA ...
$ TCC10 : chr [1:12190] NA NA NA NA ...
$ TCC11 : chr [1:12190] NA NA NA NA ...
$ TCC12 : chr [1:12190] NA NA NA NA ...
$ TCC13 : chr [1:12190] NA NA NA NA ...
$ TCC14 : chr [1:12190] NA NA NA NA ...
$ ADM1_id : chr [1:12190] "3348" "3348" "3411" "3411" ...
$ ADM1_name : chr [1:12190] "Bujumbura Mairie" "Bujumbura Mairie" "Lagunes" "Lagunes" ...
$ ADM2_id : chr [1:12190] "20147" "20147" "40389" "40389" ...
$ ADM2_name : chr [1:12190] "Roherero" "Roherero" "Abidjan" "Abidjan" ...
$ PRIOID : chr [1:12190] "124979" "124979" "137152" "137152" ...
- attr(*, "spec")=
.. cols(
.. .default = col_character(),
.. Source = col_character(),
.. Mission = col_character(),
.. year = col_character(),
.. month = col_character(),
.. location = col_character(),
.. country = col_character(),
.. latitude = col_character(),
.. longitude = col_character(),
.. No.troops = col_character(),
.. RPF = col_character(),
.. RPF_No = col_character(),
.. RES = col_character(),
.. RES_No = col_character(),
.. FP = col_character(),
.. FP_No = col_character(),
.. No.TCC = col_character(),
.. name.of.TCC1 = col_character(),
.. No.troops.per.TCC1 = col_character(),
.. name.of.TCC2 = col_character(),
.. No.troops.per.TCC2 = col_character(),
.. name.of.TCC3 = col_character(),
.. No.troops.per.TCC3 = col_character(),
.. name.of.TCC4 = col_character(),
.. No.troops.per.TCC4 = col_character(),
.. name.of.TCC5 = col_character(),
.. No.troops.per.TCC5 = col_character(),
.. name.of.TCC6 = col_character(),
.. No.troops.per.TCC6 = col_character(),
.. name.of.TCC7 = col_character(),
.. No.troops.per.TCC7 = col_character(),
.. name.of.TCC8 = col_character(),
.. No.troops.per.TCC8 = col_character(),
.. name.of.TCC9 = col_character(),
.. No.troops.per.TCC9 = col_character(),
.. name.of.TCC10 = col_character(),
.. No.troops.per.TCC10 = col_character(),
.. name.of.TCC11 = col_character(),
.. No.troops.per.TCC11 = col_character(),
.. name.of.TCC12 = col_character(),
.. No.troops.per.TCC12 = col_character(),
.. name.of.TCC13 = col_character(),
.. No.troops.per.TCC13 = col_character(),
.. name.of.TCC14 = col_character(),
.. No.troops.per.TCC14 = col_character(),
.. UNPOL..dummy. = col_character(),
.. UNMO..dummy. = col_character(),
.. HQ = col_character(),
.. LO = col_character(),
.. comments = col_character(),
.. cow_code = col_character(),
.. gwno = col_character(),
.. name = col_character(),
.. TCC1 = col_character(),
.. TCC2 = col_character(),
.. TCC3 = col_character(),
.. TCC4 = col_character(),
.. TCC5 = col_character(),
.. TCC6 = col_character(),
.. TCC7 = col_character(),
.. TCC8 = col_character(),
.. TCC9 = col_character(),
.. TCC10 = col_character(),
.. TCC11 = col_character(),
.. TCC12 = col_character(),
.. TCC13 = col_character(),
.. TCC14 = col_character(),
.. ADM1_id = col_character(),
.. ADM1_name = col_character(),
.. ADM2_id = col_character(),
.. ADM2_name = col_character(),
.. PRIOID = col_character()
.. )
kable(GeoPKO[1:5,]) %>% kable_styling() %>%
scroll_box(width = "100%", height = "200px") #displaying the first five rows
Source | Mission | year | month | location | country | latitude | longitude | No.troops | RPF | RPF_No | RES | RES_No | FP | FP_No | No.TCC | name.of.TCC1 | No.troops.per.TCC1 | name.of.TCC2 | No.troops.per.TCC2 | name.of.TCC3 | No.troops.per.TCC3 | name.of.TCC4 | No.troops.per.TCC4 | name.of.TCC5 | No.troops.per.TCC5 | name.of.TCC6 | No.troops.per.TCC6 | name.of.TCC7 | No.troops.per.TCC7 | name.of.TCC8 | No.troops.per.TCC8 | name.of.TCC9 | No.troops.per.TCC9 | name.of.TCC10 | No.troops.per.TCC10 | name.of.TCC11 | No.troops.per.TCC11 | name.of.TCC12 | No.troops.per.TCC12 | name.of.TCC13 | No.troops.per.TCC13 | name.of.TCC14 | No.troops.per.TCC14 | UNPOL..dummy. | UNMO..dummy. | HQ | LO | comments | cow_code | gwno | name | TCC1 | TCC2 | TCC3 | TCC4 | TCC5 | TCC6 | TCC7 | TCC8 | TCC9 | TCC10 | TCC11 | TCC12 | TCC13 | TCC14 | ADM1_id | ADM1_name | ADM2_id | ADM2_name | PRIOID |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Map no. 4309 | BINUB | 2007 | 3 | Bujumbura | Burundi | -3.3822 | 29.3644 | 0 | NA | NA | 0 | 0 | 0 | 0 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 0 | 0 | 3 | 0 | NA | 516 | 516 | Burundi | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 3348 | Bujumbura Mairie | 20147 | Roherero | 124979 |
Map no. 4309 Rev. 1 | BINUB | 2009 | 8 | Bujumbura | Burundi | -3.3822 | 29.3644 | 0 | NA | NA | 0 | 0 | 0 | 0 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 0 | 0 | 3 | 0 | NA | 516 | 516 | Burundi | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 3348 | Bujumbura Mairie | 20147 | Roherero | 124979 |
Map no. 4203 Rev. 2 | MINUCI | 2003 | 8 | Abidjan | Ivory Coast | 5.309657 | -4.012656 | 0 | NA | NA | 0 | 0 | 0 | 0 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 0 | 0 | 3 | 0 | MINUCI HQ; Also ECOWAS main HQ; France HQ | 437 | 437 | Cote D’Ivoire | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 3411 | Lagunes | 40389 | Abidjan | 137152 |
Map no. 4203 Rev. 3 | MINUCI | 2003 | 11 | Abidjan | Ivory Coast | 5.309657 | -4.012656 | 0 | NA | NA | 0 | 0 | 0 | 0 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 0 | 0 | 3 | 0 | MINUCI HQ; Also ECOWAS main HQ; France HQ; Fanci HQ | 437 | 437 | Cote D’Ivoire | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 3411 | Lagunes | 40389 | Abidjan | 137152 |
Map no. 4203 Rev. 4 | MINUCI | 2004 | 1 | Abidjan | Ivory Coast | 5.309657 | -4.012656 | 0 | NA | NA | 0 | 0 | 0 | 0 | 0 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 0 | 0 | 3 | 0 | MINUCI HQ; ECOWAS main HQ; France HQ; Fanci HQ | 437 | 437 | Cote D’Ivoire | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 3411 | Lagunes | 40389 | Abidjan | 137152 |
Whew, this list was kind of long, but this was because the GeoPKO includes 12,190 rows and 73 columns.
unique(GeoPKO$Mission)
[1] "BINUB" "MINUCI" "MINURCA" "MINURCAT" "MINURSO"
[6] "MINUSCA" "MINUSMA" "MONUA" "MONUC" "MONUSCO"
[11] "ONUB" "ONUMOZ" "UNAMID" "UNAMIR" "UNAMSIL"
[16] "UNAVEM II" "UNAVEM III" "UNIOSIL" "UNIPSIL" "UNISFA"
[21] "UNMIL" "UNMIS" "UNMISS" "UNOCI" "UNOMIL"
[26] "UNOMSIL" "UNOSOM II"
In total there are 27 missions in 23 different countries included in the version 1.2 of the dataset.
str(TotalCount <- with(GeoPKO, table(Mission, country)))
'table' int [1:27, 1:23] 0 0 0 0 75 0 0 0 0 0 ...
- attr(*, "dimnames")=List of 2
..$ Mission: chr [1:27] "BINUB" "MINUCI" "MINURCA" "MINURCAT" ...
..$ country: chr [1:23] "Algeria" "Angola" "Burundi" "Central African Republic" ...
The following table shows missions (bottom row) and countries (top row). It can so be derived that 40 missions are active in only 1 country. Only 1 mission is active in 9 countries at the same time.
table(TotalCount. <- rowSums(TotalCount>0))
1 2 3 4 9
21 2 2 1 1
To see what missions are active in more than three countries we can do the following:
rownames(TotalCount)[TotalCount.>3]
[1] "MONUC" "UNMIS"
The dataset covers the period of 1994-2018. Some missions are still ongoing to this day, while others begun before 1994. From when till when are these missions covered?
GeoPKO %>% select(Mission, year, month) %>%
mutate(date=zoo::as.yearmon(str_c(year, month, sep="-"))) %>% group_by(Mission) %>%
summarize(start_date=min(date), end_date=max(date)) %>% arrange(start_date) -> mission.period
kable(mission.period, caption= "Missions arranged by the earliest start date",
col.names=c("Mission", "Starting point", "End point")) %>% kable_styling() %>%
scroll_box(width = "100%", height = "300px")
Mission | Starting point | End point |
---|---|---|
ONUMOZ | Feb 1994 | Oct 1994 |
UNOMIL | Apr 1994 | Sep 1997 |
UNAMIR | May 1994 | Nov 1995 |
UNOSOM II | Jun 1994 | Jun 1994 |
UNAVEM II | Jul 1994 | Jul 1994 |
MINURSO | Mar 1995 | Sep 2018 |
UNAVEM III | Mar 1995 | Apr 1997 |
MONUA | Aug 1997 | Feb 1999 |
MINURCA | Jun 1998 | Jan 2000 |
UNOMSIL | Aug 1998 | Sep 1999 |
MONUC | Nov 1999 | Apr 2010 |
UNAMSIL | Dec 1999 | Dec 2005 |
MINUCI | Aug 2003 | Jan 2004 |
UNMIL | Dec 2003 | Mar 2018 |
ONUB | Mar 2004 | Dec 2006 |
UNOCI | May 2004 | Jan 2017 |
UNMIS | Jun 2005 | Apr 2011 |
UNIOSIL | Mar 2006 | Apr 2008 |
BINUB | Mar 2007 | Aug 2009 |
UNAMID | Apr 2008 | Oct 2018 |
UNIPSIL | Sep 2008 | Sep 2008 |
MINURCAT | Dec 2008 | Nov 2010 |
MONUSCO | Jul 2010 | Dec 2018 |
UNISFA | Oct 2011 | Oct 2018 |
UNMISS | Oct 2011 | Nov 2018 |
MINUSMA | Mar 2014 | Dec 2018 |
MINUSCA | Oct 2014 | Oct 2018 |
One thing to note from the above table: the starting and end points are not necessarily the official start and end dates of the missions. Since data in GeoPKO is collected from deployment maps, these timestamps reflect the publication dates.
We can also extract the numbers of active missions during 1994-2018 and present the results with a simple line plot.
NoMission <- GeoPKO %>% select(year, Mission) %>% distinct(year, Mission) %>% count(year)
Plot1 <- ggplot(NoMission, aes(x=(as.numeric(year)), y=n)) + geom_point() + geom_line(size=0.5) +
scale_x_continuous("Year", breaks=seq(1994, 2018, 1))+theme_classic()+
scale_y_continuous("Number of missions", breaks=seq(0,10,1)) +
theme(panel.grid=element_blank(),
axis.text.x=element_text(angle=45, vjust=0.5))
Plot1
Placeholder for average troops by year calculation.
Placeholder for other queries related to HQ, UNMO, UNPOL, etc.
sessionInfo()
R version 3.5.2 (2018-12-20)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 18362)
Matrix products: default
locale:
[1] LC_COLLATE=English_Sweden.1252 LC_CTYPE=English_Sweden.1252
[3] LC_MONETARY=English_Sweden.1252 LC_NUMERIC=C
[5] LC_TIME=English_Sweden.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] lubridate_1.7.8 kableExtra_1.1.0 knitr_1.29.3 ggthemes_4.2.0
[5] forcats_0.5.0 stringr_1.4.0 dplyr_0.8.3 purrr_0.3.4
[9] readr_1.3.1 tidyr_1.0.0 tibble_3.0.1 ggplot2_3.3.2
[13] tidyverse_1.3.0 workflowr_1.6.2
loaded via a namespace (and not attached):
[1] Rcpp_1.0.4.6 lattice_0.20-38 zoo_1.8-8 assertthat_0.2.1
[5] rprojroot_1.3-2 digest_0.6.25 R6_2.4.1 cellranger_1.1.0
[9] backports_1.1.7 reprex_0.3.0 evaluate_0.14 httr_1.4.1
[13] highr_0.8 pillar_1.4.4 rlang_0.4.7 readxl_1.3.1
[17] rstudioapi_0.11 whisker_0.4 rmarkdown_1.18 webshot_0.5.2
[21] munsell_0.5.0 broom_0.5.6 compiler_3.5.2 httpuv_1.5.2
[25] modelr_0.1.5 xfun_0.15 pkgconfig_2.0.3 htmltools_0.5.0
[29] tidyselect_0.2.5 fansi_0.4.1 viridisLite_0.3.0 crayon_1.3.4
[33] dbplyr_1.4.2 withr_2.2.0 later_1.0.0 grid_3.5.2
[37] nlme_3.1-137 jsonlite_1.6.1 gtable_0.3.0 lifecycle_0.2.0
[41] DBI_1.1.0 git2r_0.27.1 magrittr_1.5 scales_1.1.1
[45] cli_2.0.2 stringi_1.4.6 farver_2.0.3 fs_1.4.1
[49] promises_1.1.0 xml2_1.3.2 ellipsis_0.3.1 generics_0.0.2
[53] vctrs_0.3.1 tools_3.5.2 glue_1.4.1 hms_0.5.3
[57] yaml_2.2.1 colorspace_1.4-1 rvest_0.3.5 haven_2.2.0