Last updated: 2021-05-12
Checks: 7 0
Knit directory:
thesis/analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20210321)
was run prior to running the code in the R Markdown file.
Setting a seed ensures that any results that rely on randomness,
e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 7fd4ff2. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the
analysis have been committed to Git prior to generating the results (you can
use wflow_publish
or wflow_git_commit
). workflowr only
checks the R Markdown file, but you know if there are other scripts or data
files that it depends on. Below is the status of the Git repository when the
results were generated:
Ignored files:
Ignored: .Rproj.user/
Ignored: data/DB/
Ignored: data/raster/
Ignored: data/raw/
Ignored: data/vector/
Ignored: docker_command.txt
Ignored: output/acc/
Ignored: output/bayes/
Ignored: output/ffs/
Ignored: output/models/
Ignored: output/plots/
Ignored: output/test-results/
Ignored: renv/library/
Ignored: renv/staging/
Ignored: report/presentation/
Untracked files:
Untracked: analysis/assets/
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made
to the R Markdown (analysis/eda-gpp.Rmd
) and HTML (docs/eda-gpp.html
)
files. If you’ve configured a remote Git repository (see
?wflow_git_remote
), click on the hyperlinks in the table below to
view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | de8ce5a | Darius Görgen | 2021-04-05 | add content |
html | de8ce5a | Darius Görgen | 2021-04-05 | add content |
files = list.files("../data/vector/extraction/", pattern = "_GPP", full.names = T)
data = lapply(files, function(x){
filename = str_split(basename(x), "_")[[1]]
if(length(filename) == 3){
unit = filename[1]
buffer = as.numeric(filename[2])
var = str_remove(filename[3], ".gpkg")
} else {
unit = filename[1]
buffer = 0
var = str_remove(filename[2], ".gpkg")
}
layers = ogrListLayers(x)
layers = layers[grep("attr_", layers)]
data = do.call(cbind, lapply(layers, function(l){
tmp = st_read(x, layer = l, quiet = TRUE)
names(tmp) = l
tmp
}))
data$id = 1:nrow(data)
data %>%
as_tibble() %>%
mutate(unit = unit, buffer = buffer, var = var) %>%
gather("time", "value", -id, -unit, -buffer, -var) %>%
mutate(time = str_remove(time, "attr_"))
})
data = do.call(rbind, data)
str(data)
tibble [1,785,600 × 6] (S3: tbl_df/tbl/data.frame)
$ id : int [1:1785600] 1 2 3 4 5 6 7 8 9 10 ...
$ unit : chr [1:1785600] "basins" "basins" "basins" "basins" ...
$ buffer: num [1:1785600] 100 100 100 100 100 100 100 100 100 100 ...
$ var : chr [1:1785600] "GPP" "GPP" "GPP" "GPP" ...
$ time : chr [1:1785600] "2000-06" "2000-06" "2000-06" "2000-06" ...
$ value : num [1:1785600] 384.2 4.85 4.87 5.2 6.96 ...
data %>%
group_by(unit, buffer) %>%
summarise(N = n(), isna = sum(is.na(value)), isnotna = sum(!is.na(value)), perc = sum(is.na(value)) / n() * 100)
# A tibble: 8 x 6
# Groups: unit [2]
unit buffer N isna isnotna perc
<chr> <dbl> <int> <int> <int> <dbl>
1 basins 0 243120 39360 203760 16.2
2 basins 50 243120 22800 220320 9.38
3 basins 100 243120 15840 227280 6.52
4 basins 200 243120 6480 236640 2.67
5 states 0 203280 480 202800 0.236
6 states 50 203280 240 203040 0.118
7 states 100 203280 0 203280 0
8 states 200 203280 0 203280 0
data %>%
filter(buffer==0) %>%
mutate(time = as.Date(paste0(time, "-01"))) %>%
group_by(time, unit) %>%
summarise(value = mean(value, na.rm = T)) %>%
ggplot() +
geom_line(aes(x=time, y=value, color = unit)) +
theme_classic() +
labs(y="Precipitation [mm]", x = "Time", color = "Unit of Analysis")
Version | Author | Date |
---|---|---|
de8ce5a | Darius Görgen | 2021-04-05 |
data %>%
filter(unit == "basins", buffer == 0) %>%
mutate(time = as.Date(paste0(time, "-01"))) %>%
group_by(time) %>%
summarise(value = mean(value, na.rm = T)) %>%
pull(value) %>%
ts(start = c(2000,1), frequency = 12) %>%
decompose() -> dec_basins
data %>%
filter(unit == "states", buffer == 0) %>%
mutate(time = as.Date(paste0(time, "-01"))) %>%
group_by(time) %>%
summarise(value = mean(value, na.rm = T)) %>%
pull(value) %>%
ts(start = c(2000,1), frequency = 12) %>%
decompose() -> dec_states
dec_data = list(basins = dec_basins, states = dec_states)
dec_data = lapply(c("basins", "states"), function(x){
tmp = dec_data[[x]]
data.frame(type = x,
obsv = as.numeric(tmp$x),
seasonal = as.numeric(tmp$seasonal),
trend = as.numeric(tmp$trend),
random = as.numeric(tmp$random),
date = seq(as.Date("2000-01-01"), as.Date("2019-12-31"), by = "month"))
})
dec_data = do.call(rbind, dec_data)
dec_data %>%
as_tibble() %>%
gather(component, value, -type, -date) %>%
mutate(component = factor(component, levels = c("obsv", "trend", "seasonal", "random"))) %>%
ggplot() +
geom_line(aes(x=date, y=value, color=type)) +
facet_wrap(~component, nrow = 4, scales = "free_y") +
theme_classic() +
labs(y = "Precipitation [mm]", x = "Time", color = "Unit of Analysis") +
theme(legend.position="bottom")
Version | Author | Date |
---|---|---|
de8ce5a | Darius Görgen | 2021-04-05 |
data %>%
filter( buffer == 0) %>%
mutate(time = as.Date(paste0(time, "-01"))) %>%
group_by(unit, time) %>%
summarise(value = mean(value, na.rm = T)) %>%
spread(key = unit, value = value) -> acf_data
acf(acf_data$states, lag.max = 24, na.action = na.pass)
Version | Author | Date |
---|---|---|
de8ce5a | Darius Görgen | 2021-04-05 |
acf(acf_data$basins, lag.max = 24, na.action = na.pass)
Version | Author | Date |
---|---|---|
de8ce5a | Darius Görgen | 2021-04-05 |
poly_bas = st_read("../data/vector/basins_mask.gpkg", quiet = T)
crs <- st_crs("EPSG:3857")
poly_bas <- st_transform(poly_bas, crs)
poly_bas <- st_simplify(poly_bas, dTolerance = 1000, preserveTopology = T)
poly_bas$id = 1:nrow(poly_bas)
poly_adm = st_read("../data/vector/states_mask.gpkg", quiet = T)
poly_adm <- st_transform(poly_adm, crs)
poly_adm <- st_simplify(poly_adm, dTolerance = 1500, preserveTopology = T)
poly_adm$id = 1:nrow(poly_adm)
data %>%
filter(buffer == 0) %>%
mutate(time = as.Date(paste0(time, "-01")),
month = month(time)) %>%
group_by(unit, id, month) %>%
summarise(obsv = sum(is.na(value))) -> obs_data
data %>%
filter(buffer == 0) %>%
mutate(time = as.Date(paste0(time, "-01")),
month = month(time)) %>%
group_by(unit, id, month) %>%
summarise(value = mean(value, na.rm = T)) -> sum_data
poly_adm = left_join(poly_adm, filter(sum_data, unit == "states"))
poly_bas = left_join(poly_bas, filter(sum_data, unit == "basins"))
poly_adm = left_join(poly_adm, filter(obs_data, unit == "states"))
poly_bas = left_join(poly_bas, filter(obs_data, unit == "basins"))
tm_shape(poly_adm) +
tm_polygons("obsv", palette = "-RdBu", border.col = "white", lwd = .5) +
tm_facets("month")
Version | Author | Date |
---|---|---|
de8ce5a | Darius Görgen | 2021-04-05 |
tm_shape(poly_adm) +
tm_polygons(col = "value", palette = "-RdYlBu", style = "equal", border.col = "white", lwd = .5) +
tm_facets("month")
Version | Author | Date |
---|---|---|
de8ce5a | Darius Görgen | 2021-04-05 |
tm_shape(poly_bas) +
tm_polygons("obsv", palette = "-RdBu", border.col = "white", lwd = .5) +
tm_facets("month")
Version | Author | Date |
---|---|---|
de8ce5a | Darius Görgen | 2021-04-05 |
tm_shape(poly_bas) +
tm_polygons(col = "value", palette = "-RdYlBu", style = "equal", border.col = "white", lwd = .5) +
tm_facets("month")
Version | Author | Date |
---|---|---|
de8ce5a | Darius Görgen | 2021-04-05 |
sessionInfo()
R version 3.6.3 (2020-02-29)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Debian GNU/Linux 10 (buster)
Matrix products: default
BLAS/LAPACK: /usr/lib/x86_64-linux-gnu/libopenblasp-r0.3.5.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=C
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] lubridate_1.7.9.2 rgdal_1.5-18 countrycode_1.2.0 welchADF_0.3.2
[5] rstatix_0.6.0 ggpubr_0.4.0 scales_1.1.1 RColorBrewer_1.1-2
[9] latex2exp_0.4.0 cubelyr_1.0.0 gridExtra_2.3 ggtext_0.1.1
[13] magrittr_2.0.1 tmap_3.2 sf_0.9-7 raster_3.4-5
[17] sp_1.4-4 forcats_0.5.0 stringr_1.4.0 purrr_0.3.4
[21] readr_1.4.0 tidyr_1.1.2 tibble_3.0.6 tidyverse_1.3.0
[25] huwiwidown_0.0.1 kableExtra_1.3.1 knitr_1.31 rmarkdown_2.7.3
[29] bookdown_0.21 ggplot2_3.3.3 dplyr_1.0.2 devtools_2.3.2
[33] usethis_2.0.0
loaded via a namespace (and not attached):
[1] readxl_1.3.1 backports_1.2.0 workflowr_1.6.2
[4] lwgeom_0.2-5 splines_3.6.3 crosstalk_1.1.0.1
[7] leaflet_2.0.3 digest_0.6.27 htmltools_0.5.1.1
[10] fansi_0.4.2 memoise_1.1.0 openxlsx_4.2.3
[13] remotes_2.2.0 modelr_0.1.8 prettyunits_1.1.1
[16] colorspace_2.0-0 rvest_0.3.6 haven_2.3.1
[19] xfun_0.21 leafem_0.1.3 callr_3.5.1
[22] crayon_1.4.0 jsonlite_1.7.2 lme4_1.1-26
[25] glue_1.4.2 stars_0.4-3 gtable_0.3.0
[28] webshot_0.5.2 car_3.0-10 pkgbuild_1.2.0
[31] abind_1.4-5 DBI_1.1.0 Rcpp_1.0.5
[34] viridisLite_0.3.0 gridtext_0.1.4 units_0.6-7
[37] foreign_0.8-71 htmlwidgets_1.5.3 httr_1.4.2
[40] ellipsis_0.3.1 farver_2.0.3 pkgconfig_2.0.3
[43] XML_3.99-0.3 dbplyr_2.0.0 utf8_1.1.4
[46] labeling_0.4.2 tidyselect_1.1.0 rlang_0.4.10
[49] later_1.1.0.1 tmaptools_3.1 munsell_0.5.0
[52] cellranger_1.1.0 tools_3.6.3 cli_2.3.0
[55] generics_0.1.0 broom_0.7.2 evaluate_0.14
[58] yaml_2.2.1 processx_3.4.5 leafsync_0.1.0
[61] fs_1.5.0 zip_2.1.1 nlme_3.1-150
[64] whisker_0.4 xml2_1.3.2 compiler_3.6.3
[67] rstudioapi_0.13 curl_4.3 png_0.1-7
[70] e1071_1.7-4 testthat_3.0.1 ggsignif_0.6.0
[73] reprex_0.3.0 statmod_1.4.35 stringi_1.5.3
[76] highr_0.8 ps_1.5.0 desc_1.2.0
[79] lattice_0.20-41 Matrix_1.2-18 nloptr_1.2.2.2
[82] classInt_0.4-3 vctrs_0.3.6 pillar_1.4.7
[85] lifecycle_0.2.0 data.table_1.13.2 httpuv_1.5.5
[88] R6_2.5.0 promises_1.1.1 KernSmooth_2.23-18
[91] rio_0.5.16 sessioninfo_1.1.1 codetools_0.2-16
[94] dichromat_2.0-0 boot_1.3-25 MASS_7.3-53
[97] assertthat_0.2.1 pkgload_1.1.0 rprojroot_2.0.2
[100] withr_2.4.1 parallel_3.6.3 hms_1.0.0
[103] grid_3.6.3 minqa_1.2.4 class_7.3-17
[106] carData_3.0-4 git2r_0.27.1 base64enc_0.1-3