Last updated: 2019-12-06

Checks: 7 0

Knit directory: PSYMETAB/

This reproducible R Markdown analysis was created with workflowr (version 1.5.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20191126) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .drake/
    Ignored:    analysis/QC/
    Ignored:    data/processed/
    Ignored:    data/raw/

Untracked files:
    Untracked:  post_impute_qc.out

Unstaged changes:
    Deleted:    post_imputation_qc.log
    Deleted:    pre_imputation_qc.log
    Modified:   pre_impute_qc.out
    Deleted:    qc_part2.out

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd 487b5f5 Sjaarda Jennifer Lynn 2019-12-06 update website, add qc description
html 9f1ba5e Jenny Sjaarda 2019-12-06 Build site.
Rmd d480e35 Jenny 2019-12-04 misc annotations
html 12223b3 Jenny Sjaarda 2019-12-02 Build site.
Rmd dafe346 Jenny 2019-12-02 modify index
Rmd 0dd02a7 Jenny 2019-12-02 modify website
html 2849dcb Jenny Sjaarda 2019-12-02 wflow_git_commit(all = T)
Rmd 3d512c2 Sjaarda Jennifer Lynn 2019-12-02 modify website and drake plans
Rmd 8e743a8 Sjaarda Jennifer Lynn 2019-11-27 drakeplan
html 97b2b48 Jenny 2019-11-26 Build site.
Rmd 2db9bcf Jenny 2019-11-26 wflow_publish(all = T)
html 2db9bcf Jenny 2019-11-26 wflow_publish(all = T)
html 5fb939e Jenny Sjaarda 2019-11-26 Build site.
Rmd 7bae873 Jenny Sjaarda 2019-11-26 Start workflowr project.

Last-changedate minimal R version

This workflowr site contains all information and results about this research project.

Project details and overview can be found in the About page.

See Data sources for details on data origins. See Setup for details on setting up the analyses for this project.

Result shortcuts

  1. Overview of processing in genomestudio
  2. Quality control
  3. Imputation report
  4. GWAS

Useful papers

Notes - Creating custom cluster files

Powered by drake + workflowr

Acknowledgements

This work has been supported by the Swiss National Science Foundation.


sessionInfo()
R version 3.5.3 (2019-03-11)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)

Matrix products: default
BLAS: /data/sgg2/jenny/bin/R-3.5.3/lib64/R/lib/libRblas.so
LAPACK: /data/sgg2/jenny/bin/R-3.5.3/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

loaded via a namespace (and not attached):
 [1] workflowr_1.5.0 Rcpp_1.0.3      rprojroot_1.3-2 digest_0.6.23  
 [5] later_1.0.0     R6_2.4.1        backports_1.1.5 git2r_0.26.1   
 [9] magrittr_1.5    evaluate_0.14   stringi_1.4.3   rlang_0.4.1    
[13] fs_1.3.1        promises_1.1.0  whisker_0.4     rmarkdown_1.18 
[17] tools_3.5.3     stringr_1.4.0   glue_1.3.1      httpuv_1.5.2   
[21] xfun_0.11       yaml_2.2.0      compiler_3.5.3  htmltools_0.4.0
[25] knitr_1.26