Last updated: 2020-03-12
Checks: 7 0
Knit directory: BloomSail/
This reproducible R Markdown analysis was created with workflowr (version 1.6.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20191021)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: data/Maps/
Ignored: data/TinaV/
Ignored: data/_merged_data_files/
Ignored: data/_summarized_data_files/
Untracked files:
Untracked: output/Plots/sensor_data/
Unstaged changes:
Deleted: analysis/sensor_data.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
There are no past versions. Publish this analysis with wflow_publish()
to start tracking its development.
library(tidyverse)
library(patchwork)
library(seacarb)
library(metR)
library(scico)
# library(broom)
# library(lubridate)
# library(tibbletime)
Profiles data are prepared by:
Remove all incomplete profiles (2 or more missing observation in 1m depth intervals), except at P14.
df <-
read_csv(here::here("data/_merged_data_files",
"BloomSail_CTD_HydroC_track_RT.csv"),
col_types = cols(ID = col_character(),
pCO2_analog = col_double(),
pCO2 = col_double(),
Zero = col_character(),
Flush = col_character(),
mixing = col_character(),
Zero_ID = col_integer(),
deployment = col_integer(),
lon = col_double(),
lat = col_double(),
pCO2_RT = col_double()))
# Filter relevant rows and columns
df <- df %>%
filter(type == "P",
Flush == "0",
Zero == "0",
ID != "180616",
!(station %in% c("PX1", "PX2"))) %>%
select(date_time, ID, type, station, lat, lon, dep, sal, tem, pCO2_raw = pCO2, pCO2 = pCO2_RT_mean, duration)
# Assign meta information
df <- df %>%
group_by(ID, station) %>%
mutate(duration = as.numeric(date_time - min(date_time))) %>%
arrange(date_time) %>%
ungroup()
meta <- read_csv(here::here("Data/_summarized_data_files",
"Tina_V_Sensor_meta.csv"),
col_types = cols(ID = col_character()))
meta <- meta %>%
filter(ID != "180616",
!(station %in% c("PX1", "PX2")))
df <- full_join(df, meta)
rm(meta)
# creating descriptive variables
df <- df %>%
mutate(phase = "standby",
phase = if_else(duration >= start & duration < down & !is.na(down) & !is.na(start), "down", phase),
phase = if_else(duration >= down & duration < lift & !is.na(lift) & !is.na(down ), "low", phase),
phase = if_else(duration >= lift & duration < up & !is.na(up ) & !is.na(lift ), "mid", phase),
phase = if_else(duration >= up & duration < end & !is.na(end ) & !is.na(up ), "up", phase))
df <- df %>%
select(-c(start, down, lift, up, end, comment, p_type, duration, type))
# select downcasst only
df <- df %>%
filter(phase == "down") %>%
select(-phase)
# grid observation to 1m depth intervals
df <- df %>%
mutate(dep_int = as.numeric(as.character( cut(dep, seq(0,40,1), seq(0.5,39.5,1))))) %>%
group_by(ID, station, dep_int) %>%
summarise_all("mean", na.rm = TRUE) %>%
ungroup() %>%
select(-dep, dep=dep_int)
# subset complete profiles
profiles_in <- df %>%
filter(dep < 20) %>%
group_by(ID, station) %>%
summarise(nr = n()) %>%
mutate(select = if_else(nr > 18 | station == "P14", "in", "out")) %>%
select(-nr) %>%
ungroup()
df <- full_join(df, profiles_in)
rm(profiles_in)
df %>%
filter(dep < 30) %>%
arrange(date_time) %>%
ggplot(aes(pCO2, dep, col=select))+
geom_point()+
geom_path()+
scale_y_reverse()+
scale_color_brewer(palette = "Set1", direction = -1)+
coord_cartesian(xlim = c(0,400))+
facet_grid(station~ID)
df <- df %>%
filter(select == "in") %>%
select(-select)
map <- read_csv(here::here("data/Maps","Bathymetry_Gotland_east_small.csv"))
df %>%
ggplot()+
geom_raster(data=map, aes(lon, lat, fill=elev))+
scale_fill_scico(palette = "grayC", na.value = "grey", name="Depth [m]", direction = -1)+
geom_point(aes(lon, lat, col=station))+
coord_quickmap(expand = 0, xlim = c(18.7, 19.9), ylim = c(57.25,57.6))+
theme_bw()
rm(map)
cover <- df %>%
group_by(ID, station) %>%
summarise(date = mean(date_time)) %>%
ungroup()
cover %>%
ggplot(aes(date, station, fill=ID))+
geom_point(shape=21)+
scale_fill_viridis_d()
rm(cover)
At stations P07 and P10 discrete samples for lab measurments of CT and AT were collected. Please not that - in contrast to the pCO2 profiles - samples were taken on June 16.
CO2 <-
read_csv(here::here("Data/_summarized_data_files", "Tina_V_Bottle_CO2_lab.csv"),
col_types = cols(ID = col_character()))
CO2 <- CO2 %>%
filter(station %in% c("P07", "P10")) %>%
select(-pH_Mosley) %>%
mutate(CT_AT_ratio = CT/AT)
CO2_long <- CO2 %>%
pivot_longer(4:7, names_to = "parameter", values_to = "value")
CO2_long %>%
ggplot(aes(value, dep))+
geom_path(aes(col=ID))+
geom_point(aes(fill=ID), shape=21)+
scale_y_reverse()+
scale_fill_viridis_d()+
scale_color_viridis_d()+
facet_grid(station~parameter, scales = "free_x")
CO2_ts <- CO2_long %>%
filter(dep<10) %>%
group_by(ID, parameter, station) %>%
summarise(value = mean(value, na.rm = TRUE)) %>%
ungroup()
rm(CO2_long)
CO2_ts %>%
ggplot(aes(lubridate::ymd(ID), value, col=station))+
geom_point()+
geom_path()+
scale_fill_viridis_d()+
scale_color_brewer(palette = "Set1")+
facet_grid(parameter~., scales = "free_y")+
labs(x="Transect starting date (from ID)")
In order to derive CT from measured pCO2 profiles, the mean alkalinity in the upper 20 m and both stations was calculated as:
AT_mean <- CO2 %>%
filter(dep <= 20) %>%
summarise(AT = mean(AT, na.rm = TRUE)) %>%
pull()
AT_mean
[1] 1716.205
sal_mean <- CO2 %>%
filter(dep <= 20) %>%
summarise(sal = mean(sal, na.rm = TRUE)) %>%
pull()
sal_mean
[1] 6.920357
CT profiles were calculated from sensor pCO2 and T profiles, and constant salinity and alkalinity values. Note that the impact of fixed vs. measured salinity has only a negligible impact on CT profiles.
df <- df %>%
drop_na()
df <- df %>%
filter(pCO2 > 0)
df <- df %>%
mutate(CT = carb(24, var1=pCO2, var2=1720*1e-6,
S=sal_mean, T=tem, P=dep/10, k1k2="m10", kf="dg", ks="d",
gas="insitu")[,16]*1e6)
rm(sal_mean, AT_mean)
df %>%
write_csv(here::here("Data/_merged_data_files", "BloomSail_CTD_HydroC_CT.csv"))
Mean vertical profiles are displayed for each cruise day (ID). Note that:
# df %>%
# filter(dep < 20) %>%
# arrange(date_time) %>%
# ggplot(aes(CT, dep))+
# geom_point()+
# geom_path()+
# scale_y_reverse()+
# coord_cartesian(ylim = c(30,0))+
# facet_grid(station~ID)
mean_profiles <- df %>%
filter(station != "P14", dep < 25) %>%
select(-c(station,lat, lon, pCO2_raw)) %>%
group_by(ID, dep) %>%
summarise_all(list(mean), na.rm=TRUE) %>%
ungroup()
mean_profiles_long <- mean_profiles %>%
pivot_longer(4:7, names_to = "parameter", values_to = "value")
mean_profiles_long %>%
ggplot(aes(value, dep, col=ID))+
geom_point()+
geom_path()+
scale_y_reverse()+
scale_color_viridis_d()+
facet_wrap(~parameter, scales = "free_x")
mean_profiles_long <- mean_profiles_long %>%
group_by(parameter, dep) %>%
arrange(date_time) %>%
mutate(diff_value = value - lag(value, default = first(value)),
diff_time = as.numeric(date_time - lag(date_time)),
diff_value_daily = diff_value / diff_time,
cum_value = cumsum(diff_value)) %>%
ungroup()
mean_profiles_long %>%
arrange(dep) %>%
ggplot(aes(diff_value_daily, dep, col=ID))+
geom_vline(xintercept = 0)+
geom_point()+
geom_path()+
scale_y_reverse()+
scale_color_viridis_d()+
facet_wrap(~parameter, scales = "free_x")
mean_profiles_long %>%
arrange(dep) %>%
ggplot(aes(cum_value, dep, col=ID))+
geom_vline(xintercept = 0)+
geom_point()+
geom_path()+
scale_y_reverse()+
scale_color_viridis_d()+
facet_wrap(~parameter, scales = "free_x")
mean_profiles_long <- mean_profiles_long %>%
mutate(sign = if_else(diff_value < 0, "neg", "pos")) %>%
group_by(parameter, dep, sign) %>%
arrange(date_time) %>%
mutate(cum_value_sign = cumsum(diff_value)) %>%
ungroup()
mean_profiles_long %>%
arrange(dep) %>%
ggplot(aes(cum_value_sign, dep, col=ID))+
geom_vline(xintercept = 0)+
geom_point()+
geom_path()+
scale_y_reverse()+
scale_color_viridis_d()+
scale_fill_viridis_d()+
facet_grid(sign~parameter, scales = "free_x")
timeseries <- mean_profiles_long %>%
mutate(dep = cut(dep, seq(0,30,5))) %>%
group_by(ID, dep, parameter) %>%
summarise_all(list(mean), na.rm=TRUE)
timeseries %>%
ggplot(aes(date_time, value, col=as.factor(dep)))+
geom_path()+
geom_point()+
scale_color_viridis_d(name="Depth [m]")+
facet_wrap(~parameter, scales = "free_y", ncol=1)
NCP <- mean_profiles_long %>%
filter(parameter == "CT") %>%
group_by(ID, sign) %>%
summarise(date_time = mean(date_time),
dCT = sum(cum_value_sign)/1000) %>%
ungroup()
NCP <- NCP %>%
group_by(sign) %>%
arrange(date_time) %>%
mutate(dCT_cum = cumsum(dCT)) %>%
ungroup()
NCP %>%
ggplot(aes(date_time, dCT_cum, col=sign))+
geom_hline(yintercept = 0)+
geom_point()+
geom_path()+
scale_color_brewer(palette = "Set1")+
labs(y="integrated, cumulative, directional CT changes [mol/m2]", x="date")
mean_profiles %>%
ggplot(aes(date_time, dep, col=CT))+
geom_point()+
scale_color_viridis_c(direction = -1)+
scale_y_reverse()
mean_profiles_long %>%
filter(parameter == "CT") %>%
ggplot(aes(date_time, dep, col=diff))+
geom_point()+
scale_color_divergent()+
scale_y_reverse()
mean_profiles_long %>%
filter(parameter == "tem") %>%
ggplot(aes(date_time, dep, col=diff))+
geom_point()+
scale_color_divergent()+
scale_y_reverse()
pdf(file=here::here("output/Plots/sensor_data",
"profiles_check.pdf"), onefile = TRUE, width = 9, height = 5)
for(i_ID in unique(df$ID)){
for(i_station in unique(df$station)){
if (nrow(df %>% filter(ID == i_ID, station == i_station)) > 0){
# i_ID <- unique(df$ID)[1]
# i_station <- unique(df$station)[1]
p_pCO2 <-
df %>%
arrange(date_time) %>%
filter(ID == i_ID,
station == i_station) %>%
ggplot(aes(pCO2, dep))+
geom_point(aes(pCO2_raw, dep), col="lightgrey")+
geom_point()+
geom_path()+
scale_y_reverse()+
scale_color_brewer(palette = "Set1")+
labs(y="Depth [m]", x="pCO2 [µatm]", title = str_c(i_ID," | ",i_station))+
coord_cartesian(xlim = c(0,200), ylim = c(30,0))+
theme_bw()+
theme(legend.position = "left")
p_tem <-
df %>%
arrange(date_time) %>%
filter(ID == i_ID,
station == i_station) %>%
ggplot(aes(tem, dep))+
geom_point()+
geom_path()+
scale_y_reverse()+
labs(y="Depth [m]", x="Tem [°C]")+
coord_cartesian(xlim = c(14,26), ylim = c(30,0))+
theme_bw()
p_sal <-
df %>%
arrange(date_time) %>%
filter(ID == i_ID,
station == i_station) %>%
ggplot(aes(sal, dep))+
geom_point()+
geom_path()+
scale_y_reverse()+
labs(y="Depth [m]", x="Tem [°C]")+
coord_cartesian(xlim = c(6.5,7.5), ylim = c(30,0))+
theme_bw()
p_CT <-
df %>%
arrange(date_time) %>%
filter(ID == i_ID,
station == i_station) %>%
ggplot(aes(CT, dep))+
geom_point()+
geom_path()+
scale_y_reverse()+
labs(y="Depth [m]", x="CT* [µmol/kg]")+
coord_cartesian(xlim = c(1400,1700), ylim = c(30,0))+
theme_bw()
print(
p_pCO2 + p_tem + p_sal + p_CT
)
rm(p_pCO2, p_sal, p_tem, p_CT)
}
}
}
dev.off()
rm(i_ID, i_station)
sessionInfo()
R version 3.5.0 (2018-04-23)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 18363)
Matrix products: default
locale:
[1] LC_COLLATE=English_United States.1252
[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] scico_1.1.0 metR_0.5.0 seacarb_3.2.12 oce_1.2-0
[5] gsw_1.0-5 testthat_2.3.1 patchwork_1.0.0 forcats_0.4.0
[9] stringr_1.4.0 dplyr_0.8.3 purrr_0.3.3 readr_1.3.1
[13] tidyr_1.0.0 tibble_2.1.3 ggplot2_3.3.0 tidyverse_1.3.0
loaded via a namespace (and not attached):
[1] nlme_3.1-137 bitops_1.0-6 fs_1.3.1
[4] lubridate_1.7.4 RColorBrewer_1.1-2 httr_1.4.1
[7] rprojroot_1.3-2 tools_3.5.0 backports_1.1.5
[10] R6_2.4.0 DBI_1.0.0 colorspace_1.4-1
[13] withr_2.1.2 sp_1.3-2 tidyselect_0.2.5
[16] gridExtra_2.3 compiler_3.5.0 git2r_0.26.1
[19] cli_1.1.0 rvest_0.3.5 xml2_1.2.2
[22] labeling_0.3 scales_1.0.0 checkmate_1.9.4
[25] digest_0.6.22 foreign_0.8-70 rmarkdown_2.0
[28] pkgconfig_2.0.3 htmltools_0.4.0 dbplyr_1.4.2
[31] highr_0.8 maps_3.3.0 rlang_0.4.5
[34] readxl_1.3.1 rstudioapi_0.10 generics_0.0.2
[37] jsonlite_1.6 RCurl_1.95-4.12 magrittr_1.5
[40] Formula_1.2-3 dotCall64_1.0-0 Matrix_1.2-14
[43] Rcpp_1.0.2 munsell_0.5.0 lifecycle_0.1.0
[46] stringi_1.4.3 yaml_2.2.0 plyr_1.8.4
[49] grid_3.5.0 maptools_0.9-8 formula.tools_1.7.1
[52] promises_1.1.0 crayon_1.3.4 lattice_0.20-35
[55] haven_2.2.0 hms_0.5.2 zeallot_0.1.0
[58] knitr_1.26 pillar_1.4.2 reprex_0.3.0
[61] glue_1.3.1 evaluate_0.14 data.table_1.12.6
[64] modelr_0.1.5 operator.tools_1.6.3 vctrs_0.2.0
[67] spam_2.3-0.2 httpuv_1.5.2 cellranger_1.1.0
[70] gtable_0.3.0 assertthat_0.2.1 xfun_0.10
[73] broom_0.5.3 later_1.0.0 viridisLite_0.3.0
[76] memoise_1.1.0 fields_9.9 workflowr_1.6.0
[79] ellipsis_0.3.0 here_0.1