Last updated: 2020-03-30
Checks: 7 0
Knit directory: BloomSail/
This reproducible R Markdown analysis was created with workflowr (version 1.6.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20191021)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: data/Finnmaid_2018/
Ignored: data/GETM/
Ignored: data/Maps/
Ignored: data/Ostergarnsholm/
Ignored: data/TinaV/
Ignored: data/_merged_data_files/
Ignored: data/_summarized_data_files/
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
There are no past versions. Publish this analysis with wflow_publish()
to start tracking its development.
library(tidyverse)
library(patchwork)
library(seacarb)
library(marelac)
library(metR)
library(scico)
library(lubridate)
library(zoo)
Profile data are prepared by:
Please note that:
ts <-
read_csv(here::here("data/_merged_data_files",
"BloomSail_CTD_HydroC_track_RT.csv"),
col_types = cols(ID = col_character(),
pCO2_analog = col_double(),
pCO2 = col_double(),
Zero = col_character(),
Flush = col_character(),
mixing = col_character(),
Zero_ID = col_integer(),
deployment = col_integer(),
lon = col_double(),
lat = col_double(),
pCO2_RT = col_double()))
# Filter relevant rows and columns
ts_profiles <- ts %>%
filter(type == "P",
Flush == "0",
Zero == "0",
!ID %in% c("180616","180820"),
!(station %in% c("PX1", "PX2", "P14", "P13", "P01"))) %>%
select(date_time, ID, station, lat, lon, dep, sal, tem, pCO2_raw = pCO2, pCO2 = pCO2_RT_mean, duration)
# Assign meta information
ts_profiles <- ts_profiles %>%
group_by(ID, station) %>%
mutate(duration = as.numeric(date_time - min(date_time))) %>%
arrange(date_time) %>%
ungroup()
meta <- read_csv(here::here("Data/_summarized_data_files",
"Tina_V_Sensor_meta.csv"),
col_types = cols(ID = col_character()))
meta <- meta %>%
filter(!ID %in% c("180616","180820"),
!(station %in% c("PX1", "PX2", "P14", "P13", "P01")))
ts_profiles <- full_join(ts_profiles, meta)
rm(meta)
# creating descriptive variables
ts_profiles <- ts_profiles %>%
mutate(phase = "standby",
phase = if_else(duration >= start & duration < down & !is.na(down) & !is.na(start),
"down", phase),
phase = if_else(duration >= down & duration < lift & !is.na(lift) & !is.na(down ),
"low", phase),
phase = if_else(duration >= lift & duration < up & !is.na(up ) & !is.na(lift ),
"mid", phase),
phase = if_else(duration >= up & duration < end & !is.na(end ) & !is.na(up ),
"up", phase))
ts_profiles <- ts_profiles %>%
select(-c(start, down, lift, up, end, comment, p_type, duration))
# select downcasst only
ts_profiles <- ts_profiles %>%
filter(phase == "down") %>%
select(-phase)
# ts_profiles_highres <- ts_profiles
# grid observation to 1m depth intervals
ts_profiles <- ts_profiles %>%
mutate(dep_grid = as.numeric(as.character( cut(dep, seq(0,40,1), seq(0.5,39.5,1))))) %>%
group_by(ID, station, dep_grid) %>%
summarise_all("mean", na.rm = TRUE) %>%
ungroup() %>%
select(-dep, dep=dep_grid)
# subset complete profiles
profiles_in <- ts_profiles %>%
filter(dep < 20) %>%
group_by(ID, station) %>%
summarise(nr = n()) %>%
mutate(select = if_else(nr > 18 | station == "P14", "in", "out")) %>%
select(-nr) %>%
ungroup()
ts_profiles <- full_join(ts_profiles, profiles_in)
rm(profiles_in)
ts_profiles %>%
arrange(date_time) %>%
ggplot(aes(pCO2, dep, col=select))+
geom_hline(yintercept = 25)+
geom_point()+
geom_path()+
scale_y_reverse()+
scale_x_continuous(breaks = c(0, 600), labels = c(0, 600))+
scale_color_brewer(palette = "Set1", direction = -1)+
coord_cartesian(xlim = c(0,600))+
facet_grid(ID~station)
ts_profiles <- ts_profiles %>%
filter(select == "in") %>%
select(-select) %>%
filter(dep < 25)
# assign mean date_time stamp
cruise_dates <- ts_profiles %>%
group_by(ID) %>%
summarise(date_time_ID = mean(date_time)) %>%
ungroup()
# inner_join remove P14 observations lacking date_time_ID
ts_profiles <- inner_join(cruise_dates, ts_profiles)
map <- read_csv(here::here("data/Maps","Bathymetry_Gotland_east_small.csv"))
# ggplot()+
# geom_contour_fill(data=map, aes(x=lon, y=lat, z=-elev), na.fill = TRUE)+
# coord_quickmap(expand = 0, xlim = c(18.7, 19.9), ylim = c(57.25,57.6))+
# theme_bw()+
# theme(legend.position="bottom")
ts_profiles %>%
group_by(station) %>%
summarise(lat = mean(lat),
lon = mean(lon)) %>%
ungroup() %>%
ggplot()+
geom_raster(data=map, aes(lon, lat, fill=-elev))+
scale_fill_scico(palette = "oslo", na.value = "grey",
name="Depth [m]", direction = -1)+
geom_label(aes(lon, lat, label=station))+
coord_quickmap(expand = 0, xlim = c(18.7, 19.9), ylim = c(57.25,57.6))+
theme_bw()
rm(map)
cover <- ts_profiles %>%
group_by(ID, station) %>%
summarise(date = mean(date_time),
date_time_ID = mean(date_time_ID)) %>%
ungroup()
cover %>%
ggplot(aes(date, station, fill=ID))+
geom_vline(aes(xintercept = date_time_ID, col=ID))+
geom_point(shape=21)+
scale_color_viridis_d()+
scale_fill_viridis_d()
rm(cover)
At stations P07 and P10 discrete samples for lab measurments of CT and AT were collected. Please note that - in contrast to the pCO2 profiles - samples were taken on June 16, but removed here for harmonization of results.
tb <-
read_csv(here::here("Data/_summarized_data_files", "Tina_V_Bottle_CO2_lab.csv"),
col_types = cols(ID = col_character()))
tb <- tb %>%
filter(station %in% c("P07", "P10")) %>%
select(-pH_Mosley) %>%
mutate(CT_AT_ratio = CT/AT)
tb <- inner_join(tb, cruise_dates)
tb_long <- tb %>%
pivot_longer(4:7, names_to = "var", values_to = "value")
tb_long %>%
ggplot(aes(value, dep))+
geom_path(aes(col=ID))+
geom_point(aes(fill=ID), shape=21)+
scale_y_reverse()+
scale_fill_viridis_d()+
scale_color_viridis_d()+
facet_grid(station~var, scales = "free_x")+
theme(legend.position = "bottom")
Important notes: - Spatio-temporal variation of AT is small, which jusitfies conversion of pCO2 to CT based on a fixed mean AT - On July 30 we see a drop in surface salinity, associated with a rise in AT, clearly pointing at exchange of water masses, presumably later
tb_surface <- tb_long %>%
filter(dep<10) %>%
group_by(ID, date_time_ID, var, station) %>%
summarise(value = mean(value, na.rm = TRUE)) %>%
ungroup()
rm(tb_long)
tb_surface %>%
ggplot(aes(date_time_ID, value, col=station))+
#geom_point(aes(lubridate::ymd(ID), value, col=station))+
geom_point()+
geom_path()+
scale_fill_viridis_d()+
scale_color_brewer(palette = "Set1")+
facet_grid(var~., scales = "free_y")+
labs(x="Mean transect date")
AT_mean <- tb_surface %>%
filter(var == "AT") %>%
summarise(AT = mean(value, na.rm = TRUE)) %>%
pull()
tb_surface %>%
filter(var == "CT_AT_ratio") %>%
ggplot(aes(lubridate::ymd(ID), value*AT_mean, col=station))+
geom_point()+
geom_path()+
scale_fill_viridis_d()+
scale_color_brewer(palette = "Set1")+
labs(x="Mean transect date", y="CT-AT-ratio * mean AT")
Important notes: - CT drop and temporal patterns observed in the CT/AT time series agrees well with those found in the CT time series derived from pCO2 measurements
In order to derive CT from measured pCO2 profiles, the mean alkalinity in the upper 20 m and both stations was calculated as:
AT_mean <- tb %>%
filter(dep <= 20) %>%
summarise(AT = mean(AT, na.rm = TRUE)) %>%
pull()
AT_mean
[1] 1717.08
Likewise, the mean salinity amounts to:
sal_mean <- tb %>%
filter(dep <= 20) %>%
summarise(sal = mean(sal, na.rm = TRUE)) %>%
pull()
sal_mean
[1] 6.894127
bind_cols(start = min(ts$date_time),
end = max(ts$date_time),
AT = AT_mean,
sal = sal_mean) %>%
write_csv(here::here("Data/_summarized_data_files", "tb_fix.csv"))
rm(tb, tb_surface)
CT profiles were calculated from sensor pCO2 and T profiles, and constant salinity and alkalinity values. Note that the impact of fixed vs. measured salinity has only a negligible impact on CT profiles.
ts_profiles <- ts_profiles %>%
drop_na()
ts_profiles <- ts_profiles %>%
filter(pCO2 > 0)
ts_profiles <- ts_profiles %>%
mutate(CT = carb(24, var1=pCO2, var2=1720*1e-6,
S=sal_mean, T=tem, P=dep/10, k1k2="m10", kf="dg", ks="d",
gas="insitu")[,16]*1e6)
rm(sal_mean, AT_mean)
ts_profiles %>%
write_csv(here::here("Data/_merged_data_files", "ts_profiles_CT.csv"))
Mean vertical profiles were calculated for each cruise day (ID).
ts_profiles_ID_mean <- ts_profiles %>%
select(-c(station,lat, lon, pCO2_raw, date_time)) %>%
group_by(ID, date_time_ID, dep) %>%
summarise_all(list(mean), na.rm=TRUE) %>%
ungroup()
ts_profiles_ID_sd <- ts_profiles %>%
select(-c(station,lat, lon, pCO2_raw, date_time)) %>%
group_by(ID, date_time_ID, dep) %>%
summarise_all(list(sd), na.rm=TRUE) %>%
ungroup()
ts_profiles_ID_sd_long <- ts_profiles_ID_sd %>%
pivot_longer(4:7, names_to = "var", values_to = "sd")
ts_profiles_ID_mean_long <- ts_profiles_ID_mean %>%
pivot_longer(4:7, names_to = "var", values_to = "value")
ts_profiles_ID_long <- inner_join(ts_profiles_ID_mean_long, ts_profiles_ID_sd_long)
rm(ts_profiles_ID_sd_long, ts_profiles_ID_sd, ts_profiles_ID_mean_long, ts_profiles_ID_mean)
ts_profiles_ID_long %>%
ggplot(aes(value, dep, col=ID))+
geom_point()+
geom_path()+
scale_y_reverse()+
scale_color_viridis_d()+
facet_wrap(~var, scales = "free_x")
all <- ts_profiles_ID_long %>%
filter(var %in% c("CT", "tem")) %>%
rename(group = ID)
ts_profiles_ID_long %>%
filter(var %in% c("CT", "tem")) %>%
ggplot()+
geom_path(data=all, aes(value, dep, group=group))+
geom_ribbon(aes(xmin = value-sd, xmax=value+sd, y=dep, fill=ID), alpha=0.5)+
geom_path(aes(value, dep, col=ID))+
scale_y_reverse()+
scale_color_viridis_d()+
scale_fill_viridis_d()+
facet_grid(ID~var, scales = "free_x")
rm(all)
Important notes:
CT, pCO2, S, and T profiles were plotted individually pdf here and grouped by ID pdf here. The later gives an idea of the differences between stations at one point in time.
pdf(file=here::here("output/Plots/CT_dynamics",
"ts_profiles_pCO2_tem_sal_CT.pdf"), onefile = TRUE, width = 9, height = 5)
for(i_ID in unique(ts_profiles$ID)){
for(i_station in unique(ts_profiles$station)){
if (nrow(ts_profiles %>% filter(ID == i_ID, station == i_station)) > 0){
# i_ID <- unique(ts_profiles$ID)[1]
# i_station <- unique(ts_profiles$station)[1]
p_pCO2 <-
ts_profiles %>%
arrange(date_time) %>%
filter(ID == i_ID,
station == i_station) %>%
ggplot(aes(pCO2, dep, col="grid_RT"))+
geom_point(data = ts_profiles_highres %>% arrange(date_time) %>% filter(ID == i_ID, station == i_station),
aes(pCO2_raw, dep, col="raw"))+
geom_point(data = ts_profiles_highres %>% arrange(date_time) %>% filter(ID == i_ID, station == i_station),
aes(pCO2, dep, col="raw_RT"))+
geom_point(aes(pCO2_raw, dep, col="grid"))+
geom_point()+
geom_path()+
scale_y_reverse()+
scale_color_brewer(palette = "Set1")+
labs(y="Depth [m]", x="pCO2 [µatm]", title = str_c(i_ID," | ",i_station))+
coord_cartesian(xlim = c(0,200), ylim = c(30,0))+
theme_bw()+
theme(legend.position = "left")
p_tem <-
ts_profiles %>%
arrange(date_time) %>%
filter(ID == i_ID,
station == i_station) %>%
ggplot(aes(tem, dep))+
geom_point()+
geom_path()+
scale_y_reverse()+
labs(y="Depth [m]", x="Tem [°C]")+
coord_cartesian(xlim = c(14,26), ylim = c(30,0))+
theme_bw()
p_sal <-
ts_profiles %>%
arrange(date_time) %>%
filter(ID == i_ID,
station == i_station) %>%
ggplot(aes(sal, dep))+
geom_point()+
geom_path()+
scale_y_reverse()+
labs(y="Depth [m]", x="Tem [°C]")+
coord_cartesian(xlim = c(6.5,7.5), ylim = c(30,0))+
theme_bw()
p_CT <-
ts_profiles %>%
arrange(date_time) %>%
filter(ID == i_ID,
station == i_station) %>%
ggplot(aes(CT, dep))+
geom_point()+
geom_path()+
scale_y_reverse()+
labs(y="Depth [m]", x="CT* [µmol/kg]")+
coord_cartesian(xlim = c(1400,1700), ylim = c(30,0))+
theme_bw()
print(
p_pCO2 + p_tem + p_sal + p_CT
)
rm(p_pCO2, p_sal, p_tem, p_CT)
}
}
}
dev.off()
rm(i_ID, i_station, ts_profiles_highres)
ts_profiles_long <- ts_profiles %>%
select(-c(lat, lon, pCO2_raw)) %>%
pivot_longer(6:9, values_to = "value", names_to = "var")
pdf(file=here::here("output/Plots/CT_dynamics",
"ts_profiles_ID_pCO2_tem_sal_CT.pdf"), onefile = TRUE, width = 9, height = 5)
for(i_ID in unique(ts_profiles$ID)){
#i_ID <- unique(ts_profiles$ID)[1]
sub_ts_profiles_long <- ts_profiles_long %>%
arrange(date_time) %>%
filter(ID == i_ID)
print(
sub_ts_profiles_long %>%
ggplot()+
geom_path(data = ts_profiles_long, aes(value, dep, group=interaction(station, ID)), col="grey")+
geom_path(aes(value, dep, col=station))+
scale_y_reverse()+
labs(y="Depth [m]", title = str_c("ID: ", i_ID))+
theme_bw()+
facet_wrap(~var, scales = "free_x")
)
rm(sub_ts_profiles_long)
}
dev.off()
rm(i_ID, ts_profiles_long)
Changes of seawater vars at each depth are calculated from one cruise day to the next and divided by the number of days inbetween.
ts_profiles_ID_long <- ts_profiles_ID_long %>%
group_by(var, dep) %>%
arrange(date_time_ID) %>%
mutate(date_time_ID_diff = as.numeric(date_time_ID - lag(date_time_ID)),
date_time_ID_ref = date_time_ID - (date_time_ID - lag(date_time_ID))/2,
value_diff = value - lag(value, default = first(value)),
value_diff_daily = value_diff / date_time_ID_diff,
value_cum = cumsum(value_diff)) %>%
ungroup()
ts_profiles_ID_long %>%
arrange(dep) %>%
ggplot(aes(value_diff_daily, dep, col=ID))+
geom_vline(xintercept = 0)+
geom_point()+
geom_path()+
scale_y_reverse()+
scale_color_viridis_d()+
facet_wrap(~var, scales = "free_x")+
labs(x="Change of value inbetween cruises per day")
Cumulative changes of seawater vars were calculated at each depth relative to the first cruise day on July 5.
ts_profiles_ID_long %>%
arrange(dep) %>%
ggplot(aes(value_cum, dep, col=ID))+
geom_vline(xintercept = 0)+
geom_point()+
geom_path()+
scale_y_reverse()+
scale_color_viridis_d()+
facet_wrap(~var, scales = "free_x")+
labs(x="Cumulative change of value")
Important notes:
Cumulative positive and negative changes of seawater vars were calculated separately at each depth relative to the first cruise day on July 5.
ts_profiles_ID_long <- ts_profiles_ID_long %>%
mutate(sign = if_else(value_diff < 0, "neg", "pos")) %>%
group_by(var, dep, sign) %>%
arrange(date_time_ID) %>%
mutate(value_cum_sign = cumsum(value_diff)) %>%
ungroup()
ts_profiles_ID_long %>%
arrange(dep) %>%
ggplot(aes(value_cum_sign, dep, col=ID))+
geom_vline(xintercept = 0)+
geom_point()+
geom_path()+
scale_y_reverse()+
scale_color_viridis_d()+
scale_fill_viridis_d()+
facet_wrap(~interaction(sign, var), scales = "free_x", ncol=4)+
labs(x="Cumulative directional change of value")
ts_profiles_ID_long %>%
write_csv(here::here("Data/_merged_data_files", "ts_profiles_ID_long_cum.csv"))
Mean seawater parameters were calculated for 5m depth intervals.
ts_profiles_ID_long_grid <- ts_profiles_ID_long %>%
mutate(dep = cut(dep, seq(0,30,5))) %>%
group_by(ID, date_time_ID, dep, var) %>%
summarise_all(list(mean), na.rm=TRUE)
ts_profiles_ID_long_grid %>%
ggplot(aes(date_time_ID, value, col=as.factor(dep)))+
geom_path()+
#geom_errorbar(aes(date_time_ID, ymax=value+sd, ymin=value-sd, col=as.factor(dep)))+
geom_point()+
scale_color_viridis_d(name="Depth [m]")+
facet_wrap(~var, scales = "free_y", ncol=1)
rm(ts_profiles_ID_long_grid)
bin_CT <- 20
CT_hov <- ts_profiles_ID_long %>%
filter(var == "CT") %>%
ggplot()+
geom_contour_fill(aes(x=date_time_ID, y=dep, z=value),
breaks = MakeBreaks(bin_CT),
col="black")+
geom_point(aes(x=date_time_ID, y=c(24.5)), size=3, shape=24, fill="white")+
scale_fill_viridis_c(breaks = MakeBreaks(bin_CT),
guide = "colorstrip",
name="CT (µmol/kg)")+
scale_y_reverse()+
theme_bw()+
labs(y="Depth (m)")+
coord_cartesian(expand = 0)+
theme(axis.title.x = element_blank(),
axis.text.x = element_blank())
bin_Tem <- 2
Tem_hov <- ts_profiles_ID_long %>%
filter(var == "tem") %>%
ggplot()+
geom_contour_fill(aes(x=date_time_ID, y=dep, z=value),
breaks = MakeBreaks(bin_Tem),
col="black")+
geom_point(aes(x=date_time_ID, y=c(24.5)), size=3, shape=24, fill="white")+
scale_fill_viridis_c(breaks = MakeBreaks(bin_Tem),
guide = "colorstrip",
name="Tem (°C)",
option = "inferno")+
scale_y_reverse()+
theme_bw()+
labs(x="",y="Depth (m)")+
coord_cartesian(expand = 0)
CT_hov / Tem_hov
rm(CT_hov, bin_CT, Tem_hov, bin_Tem)
bin_CT <- 2.5
CT_hov <- ts_profiles_ID_long %>%
filter(var == "CT") %>%
ggplot()+
geom_contour_fill(aes(x=date_time_ID_ref, y=dep, z=value_diff_daily),
breaks = MakeBreaks(bin_CT),
col="black")+
geom_point(aes(x=date_time_ID, y=c(24.5)), size=3, shape=24, fill="white")+
scale_fill_divergent(breaks = MakeBreaks(bin_CT),
guide = "colorstrip",
name="CT (µmol/kg)")+
scale_y_reverse()+
theme_bw()+
labs(y="Depth (m)")+
coord_cartesian(expand = 0)+
theme(axis.title.x = element_blank(),
axis.text.x = element_blank())
bin_Tem <- 0.1
Tem_hov <- ts_profiles_ID_long %>%
filter(var == "tem") %>%
ggplot()+
geom_contour_fill(aes(x=date_time_ID_ref, y=dep, z=value_diff_daily),
breaks = MakeBreaks(bin_Tem),
col="black")+
geom_point(aes(x=date_time_ID, y=c(24.5)), size=3, shape=24, fill="white")+
scale_fill_divergent(breaks = MakeBreaks(bin_Tem),
guide = "colorstrip",
name="Tem (°C)")+
scale_y_reverse()+
theme_bw()+
labs(x="",y="Depth (m)")+
coord_cartesian(expand = 0)
CT_hov / Tem_hov
rm(CT_hov, bin_CT, Tem_hov, bin_Tem)
bin_CT <- 20
CT_hov <- ts_profiles_ID_long %>%
filter(var == "CT") %>%
ggplot()+
geom_contour_fill(aes(x=date_time_ID, y=dep, z=value_cum),
breaks = MakeBreaks(bin_CT),
col="black")+
geom_point(aes(x=date_time_ID, y=c(24.5)), size=3, shape=24, fill="white")+
scale_fill_divergent(breaks = MakeBreaks(bin_CT),
guide = "colorstrip",
name="CT (µmol/kg)")+
scale_y_reverse()+
theme_bw()+
labs(y="Depth (m)")+
coord_cartesian(expand = 0)+
theme(axis.title.x = element_blank(),
axis.text.x = element_blank())
bin_Tem <- 2
Tem_hov <- ts_profiles_ID_long %>%
filter(var == "tem") %>%
ggplot()+
geom_contour_fill(aes(x=date_time_ID, y=dep, z=value_cum),
breaks = MakeBreaks(bin_Tem),
col="black")+
geom_point(aes(x=date_time_ID, y=c(24.5)), size=3, shape=24, fill="white")+
scale_fill_divergent(breaks = MakeBreaks(bin_Tem),
guide = "colorstrip",
name="Tem (°C)")+
scale_y_reverse()+
theme_bw()+
labs(x="",y="Depth (m)")+
coord_cartesian(expand = 0)
CT_hov / Tem_hov
rm(CT_hov, bin_CT, Tem_hov, bin_Tem)
A critical first step for the determination of net community production (NCP) is the integration of observed changes in CT over depth to derive iCT. Two approaches were tested:
Both aproaches deliver depth-integrated, incremental changes of CT inbetween cruise dates. Those were summed up to derive a trajectory of cummulative iCT changes.
Incremental and cumulative CT changes inbetween cruise dates were integrated across the water colums down to predefined depth limits. This was done separately for observed positive/negative changes in CT, as well as for the total observed changes.
iCT_grid_sign <- ts_profiles_ID_long %>%
select(ID, date_time_ID, date_time_ID_ref) %>%
unique() %>%
expand_grid(sign = c("pos", "neg"))
iCT_grid_total <- ts_profiles_ID_long %>%
select(ID, date_time_ID, date_time_ID_ref) %>%
unique() %>%
expand_grid(sign = c("total"))
# dep_i <- 10
rm(iCT, dep_i)
for (dep_i in seq(5,20,5)) {
iCT_sign_temp <- ts_profiles_ID_long %>%
filter(var == "CT", dep < dep_i) %>%
mutate(sign = if_else(ID == "180705" & dep == 0.5, "neg", sign)) %>%
group_by(ID, date_time_ID, date_time_ID_ref, sign) %>%
summarise(CT_i_diff = sum(value_diff)/1000) %>%
ungroup()
iCT_sign_temp <- iCT_sign_temp %>%
group_by(sign) %>%
arrange(date_time_ID) %>%
mutate(CT_i_cum = cumsum(CT_i_diff)) %>%
ungroup()
iCT_sign_temp <- full_join(iCT_sign_temp, iCT_grid_sign) %>%
arrange(sign, date_time_ID) %>%
fill(CT_i_cum)
iCT_total_temp <- ts_profiles_ID_long %>%
filter(var == "CT", dep < dep_i) %>%
group_by(ID, date_time_ID, date_time_ID_ref) %>%
summarise(CT_i_diff = sum(value_diff)/1000) %>%
ungroup()
iCT_total_temp <- iCT_total_temp %>%
arrange(date_time_ID) %>%
mutate(CT_i_cum = cumsum(CT_i_diff)) %>%
ungroup() %>%
mutate(sign = "total")
iCT_total_temp <- full_join(iCT_total_temp, iCT_grid_total) %>%
arrange(sign, date_time_ID) %>%
fill(CT_i_cum)
iCT_temp <- bind_rows(iCT_sign_temp, iCT_total_temp) %>%
mutate(dep_i = dep_i)
if (exists("iCT")) {
iCT <- bind_rows(iCT, iCT_temp)
} else {iCT <- iCT_temp}
rm(iCT_temp, iCT_sign_temp, iCT_total_temp)
}
rm(iCT_grid_sign, iCT_grid_total)
iCT <- iCT %>%
mutate(dep_i = as.factor(dep_i))
iCT %>%
ggplot()+
geom_point(data = cruise_dates, aes(date_time_ID, 0), shape=21)+
geom_col(aes(date_time_ID_ref, CT_i_diff, fill=dep_i),
position = "dodge", alpha=0.3)+
geom_line(aes(date_time_ID, CT_i_cum, col=dep_i))+
scale_color_viridis_d(name="Depth limit (m)")+
scale_fill_viridis_d(name="Depth limit (m)")+
labs(y="iCT [mol/m2]", x="")+
facet_grid(sign~., scales = "free_y", space = "free_y")+
theme_bw()
iCT_fixed_dep <- iCT
rm(iCT, dep_i)
# iCT %>%
# write_csv(here::here("Data/_merged_data_files", "iCT_dep_limits.csv"))
As an alternative to fixed depth levels, vertical integration as low as the mixed layer depth was tested.
Seawater density Rho was determined from S, T, and p according to TEOS-10.
ts_profiles <- ts_profiles %>%
mutate(rho = swSigma(salinity = sal, temperature = tem, pressure = dep/10))
ts_profiles_ID_mean_hydro <- ts_profiles %>%
select(-c(station,lat, lon, pCO2_raw, pCO2, CT, date_time)) %>%
group_by(ID, date_time_ID, dep) %>%
summarise_all(list(mean), na.rm=TRUE) %>%
ungroup()
ts_profiles_ID_sd_hydro <- ts_profiles %>%
select(-c(station,lat, lon, pCO2_raw, pCO2, CT, date_time)) %>%
group_by(ID, date_time_ID, dep) %>%
summarise_all(list(sd), na.rm=TRUE) %>%
ungroup()
ts_profiles_ID_sd_hydro_long <- ts_profiles_ID_sd_hydro %>%
pivot_longer(4:6, names_to = "var", values_to = "sd")
ts_profiles_ID_mean_hydro_long <- ts_profiles_ID_mean_hydro %>%
pivot_longer(4:6, names_to = "var", values_to = "value")
ts_profiles_ID_hydro_long <- inner_join(ts_profiles_ID_mean_hydro_long, ts_profiles_ID_sd_hydro_long)
ts_profiles_ID_hydro <- ts_profiles_ID_mean_hydro
rm(ts_profiles_ID_mean_hydro_long,
ts_profiles_ID_mean_hydro,
ts_profiles_ID_sd_hydro_long,
ts_profiles_ID_sd_hydro)
ts_profiles_ID_hydro_long %>%
ggplot(aes(value, dep, col=ID))+
geom_point()+
geom_path()+
scale_y_reverse()+
scale_color_viridis_d()+
facet_wrap(~var, scales = "free_x")
Mixed layer depth (MLD) was determined based on the difference between density at the surface and at depth, for a range of density criteria
# density criterion
ts_profiles_ID_hydro <- expand_grid(ts_profiles_ID_hydro, rho_lim = c(0.1,0.2,0.5))
MLD <- ts_profiles_ID_hydro %>%
arrange(dep) %>%
group_by(ID, date_time_ID, rho_lim) %>%
mutate(d_rho = rho - first(rho)) %>%
filter(d_rho > rho_lim) %>%
summarise(MLD = min(dep)) %>%
ungroup()
ts_profiles_ID_hydro <-
full_join(ts_profiles_ID_hydro, MLD)
ts_profiles_ID_hydro %>%
arrange(dep) %>%
ggplot(aes(rho, dep))+
geom_hline(aes(yintercept = MLD, col=as.factor(rho_lim)))+
geom_path()+
scale_y_reverse()+
scale_color_brewer(palette = "Set1", name= "Rho limit")+
facet_wrap(~ID)+
theme_bw()
MLD %>%
ggplot(aes(date_time_ID, MLD, col=as.factor(rho_lim)))+
geom_point()+
geom_path()+
scale_color_brewer(palette = "Set1", name= "Rho limit")+
labs(x="")
# iCT_grid_sign <- ts_profiles_ID_long %>%
# select(ID, date_time_ID, date_time_ID_ref) %>%
# unique() %>%
# expand_grid(sign = c("pos", "neg"))
#
# iCT_grid_total <- ts_profiles_ID_long %>%
# select(ID, date_time_ID, date_time_ID_ref) %>%
# unique() %>%
# expand_grid(sign = c("total"))
iCT <- ts_profiles_ID_long %>%
filter(var == "CT")
iCT <- full_join(iCT, MLD)
iCT <- iCT %>%
filter(dep <= MLD)
iCT <- iCT %>%
group_by(ID, date_time_ID, date_time_ID_ref, rho_lim) %>%
summarise(CT_i_diff = sum(value_diff)/1000) %>%
ungroup()
iCT <- iCT %>%
group_by(rho_lim) %>%
arrange(date_time_ID) %>%
mutate(CT_i_cum = cumsum(CT_i_diff)) %>%
ungroup()
# iCT_total_temp <- full_join(iCT_total_temp, iCT_grid_total) %>%
# arrange(sign, date_time_ID) %>%
# fill(CT_i_cum)
iCT <- iCT %>%
mutate(rho_lim = as.factor(rho_lim))
iCT %>%
ggplot()+
geom_point(data = cruise_dates, aes(date_time_ID, 0), shape=21)+
geom_col(aes(date_time_ID_ref, CT_i_diff, fill=rho_lim),
position = "dodge", alpha=0.3)+
geom_line(aes(date_time_ID, CT_i_cum, col=rho_lim))+
scale_color_viridis_d(name="Rho limit")+
scale_fill_viridis_d(name="Rho limit")+
labs(y="iCT [mol/m2]", x="")+
#facet_grid(sign~., scales = "free_y", space = "free_y")+
theme_bw()
iCT_MLD <- iCT
rm(iCT, MLD)
# iCT %>%
# write_csv(here::here("Data/_merged_data_files", "iCT_dep_limits.csv"))
In the following, all cummulative iCT trajectories are displayed. Highlighted are those obtained for the fixed depth approach with 10 m limit, and the MLD approach with a high density threshold of 0.5 kg/m3.
iCT <- full_join(iCT_fixed_dep, iCT_MLD)
iCT <- iCT %>%
mutate(group = paste(as.character(sign), as.character(dep_i), as.character(rho_lim)))
iCT %>%
arrange(date_time_ID) %>%
ggplot()+
geom_hline(yintercept = 0)+
geom_point(data = cruise_dates, aes(date_time_ID, 0), shape=21)+
geom_line(aes(date_time_ID, CT_i_cum,
group=group), col="grey")+
geom_line(data = iCT_fixed_dep %>% filter(dep_i==10, sign=="total"),
aes(date_time_ID, CT_i_cum, col="10m - total"))+
geom_line(data = iCT_MLD %>% filter(rho_lim == 0.1),
aes(date_time_ID, CT_i_cum, col="MLD - 0.1"))+
scale_color_brewer(palette = "Set1", name="")+
labs(y="iCT [mol/m2]", x="")
rm(iCT, iCT_MLD)
In order to derive an estimate of the net community production NCP (which is equivalent to the formed organic matter that can be exported from the investigated surface layer), two steps are required:
The cummulative iCT trajectory determined by integration of CT to a fixed water depth of 10 m was used for NCP calculation for the following reasons:
ts_profiles_ID_long_180723 <- ts_profiles_ID_long %>%
filter(ID == 180723,
var == "CT")
p_ts_profiles_ID_long <- ts_profiles_ID_long_180723 %>%
arrange(dep) %>%
ggplot(aes(value_cum, dep, col="total"))+
geom_vline(xintercept = 0)+
geom_hline(yintercept = 10, col="red")+
geom_path(aes(value_cum_sign, dep, col="directional"))+
geom_point(aes(value_cum_sign, dep, col="directional"))+
geom_point()+
geom_path()+
scale_y_reverse()+
scale_color_brewer(palette = "Set1", name="estimate")+
labs(x="Cumulative change of CT on July 23 (180723)")+
theme(legend.position = "left")
ts_profiles_ID_long_180723_dep <- ts_profiles_ID_long_180723 %>%
select(dep, value_cum) %>%
filter(value_cum < 0) %>%
arrange(dep) %>%
mutate(value_cum_i = sum(value_cum),
value_cum_dep = cumsum(value_cum),
value_cum_i_rel = value_cum_dep/value_cum_i*100)
p_ts_profiles_ID_long_rel <- ts_profiles_ID_long_180723_dep %>%
ggplot(aes(value_cum_i_rel, dep))+
geom_hline(yintercept = 10, col="red")+
geom_vline(xintercept = 90)+
geom_point()+
geom_line()+
scale_y_reverse(limits = c(25,0))+
scale_x_continuous(breaks = seq(0,100,10))+
labs(y = "Depth (m)", x = "Relative contribution to ts_profiles_ID_long on July 23")+
theme_bw()
p_ts_profiles_ID_long + p_ts_profiles_ID_long_rel
rm(ts_profiles_ID_long_180723,
ts_profiles_ID_long_180723_dep,
p_ts_profiles_ID_long,
p_ts_profiles_ID_long_rel)
The cruise mean pCO2 recorded in profiling-mode (stations only) and depths < 3m was used for gas exchange calcualtions.
ts_profiles_surface <- ts_profiles %>%
filter(dep < 3) %>%
select(date_time_ID, ID, tem, pCO2_water = pCO2)
ts_profiles_surface_ID <- ts_profiles_surface %>%
group_by(ID) %>%
summarise_all(mean) %>%
ungroup() %>%
select(-ID, date_time = date_time_ID)
ts_profiles_surface_ID %>%
ggplot(aes(date_time, pCO2_water, col="Cruise mean"))+
geom_point(data=ts_profiles_surface,
aes(date_time_ID, pCO2_water, col="observed"))+
geom_path()+
geom_point()+
scale_color_brewer(palette = "Set1", name="")+
theme(axis.title.x = element_blank())
#rm(ts_profiles_surface)
start <- min(ts_profiles_surface_ID$date_time)
end <- max(ts_profiles_surface_ID$date_time)
Metrological data were recorded on the flux tower located on Ostergarnsholm island.
og <- read_delim(here::here("Data/Ostergarnsholm/Tower", "Oes_Jens_atm_water_June_to_August_2018.csv"),
delim = ";" )
og <- og %>%
mutate(date_time = ymd_hms( paste(paste(year, month, day, sep = "/"),
paste(hour, min, sec, sep = ":")))) %>%
select("date_time",
"CO2 12m [ppm]",
"w_c [ppm m/s]",
"WS 12m [m/s]",
"WD 12m [degrees]",
"T 12m [degrees C]",
"RIS [W/m^2]"
) %>%
filter(date_time > start,
date_time < end)
rm(end, start)
og <- og %>%
mutate(freq = "30 min") %>%
select(date_time, freq, pCO2_atm = "CO2 12m [ppm]", wind = "WS 12m [m/s]")
Data sets for atmospheric and seawater observations were merged and interpolated to a common time stamp.
ts_og <- full_join(og, ts_profiles_surface_ID) %>%
arrange(date_time)
ts_og <- ts_og %>%
mutate(pCO2_water = na.approx(pCO2_water, rule = 2),
tem = na.approx(tem, rule = 2),
wind = na.approx(wind, rule = 2)) %>%
filter(!is.na(pCO2_atm))
ts_og_daily <- ts_og %>%
mutate(day = yday(date_time)) %>%
group_by(day) %>%
summarise_all(mean, na.rm = TRUE) %>%
ungroup() %>%
select(-day) %>%
mutate(freq = "daily")
ts_og <- bind_rows(ts_og, ts_og_daily)
rm(ts_profiles_surface, ts_profiles_surface_ID, og, ts_og_daily)
ts_og_long <- ts_og %>%
gather("parameter", "value", 3:6)
ts_og_long %>%
ggplot(aes(date_time, value, col=freq))+
geom_line()+
facet_grid(parameter~., scales = "free_y")+
scale_color_brewer(palette = "Set1", direction = -1)+
theme(axis.title.x = element_blank())
F = k * dCO2
with
dCO2 = K0 * dpCO2 and
k = coeff * U^2 * (660/Sc)^0.5
Units used here are:
dCO2: µmol kg-1
wind speed U: m s-1
gas transfer velocities k: cm hr-1 (= 6060100 m s-1)
air sea CO2 flux F: mol m–2 d–1
conversion between the unit of k * dCO2 and F requires a factor of 10-5 * 24
Sc_W14 <- function(tem) {
2116.8 - 136.25 * tem + 4.7353 * tem^2 - 0.092307 * tem^3 + 0.0007555 * tem^4
}
# Sc_W14(20)
ts_og <- ts_og %>%
mutate(dpCO2 = pCO2_water - pCO2_atm,
dCO2 = dpCO2 * K0(S=6.92, T=tem),
W92 = gas_transfer(t = tem, u10 = wind, species = "CO2",
method = "Wanninkhof1")* 60^2 * 100,
#k_SM18 = 0.24 * wind^2 * ((1943-119.6*tem + 3.488*tem^2 - 0.0417*tem^3) / 660)^(-0.5),
W14 = 0.251 * wind^2 * (Sc_W14(tem)/660)^(-0.5)) %>%
pivot_longer(9:10, names_to = "k_para", values_to = "k_value")
# calculate flux F [mol m–2 d–1]
ts_og <- ts_og %>%
mutate(flux_daily = k_value*dCO2*1e-5*24)
rm(Sc_W14)
ts_og %>%
ggplot(aes(date_time, flux_daily, col=k_para))+
geom_line()+
labs(y="F (mol m-2 d-1)")+
scale_color_brewer(palette = "Set1")+
facet_wrap(~freq)+
theme(axis.title.x = element_blank())
# scale flux to time interval
ts_og <- ts_og %>%
mutate(scale = if_else(freq == "daily", 1, 24*2)) %>%
mutate(flux_scale = flux_daily / scale) %>%
group_by(freq, k_para) %>%
arrange(date_time) %>%
mutate(flux_cum = cumsum(flux_scale)) %>%
ungroup()
ts_og %>%
ggplot(aes(date_time, flux_cum, col=k_para, linetype=freq))+
geom_line()+
labs(y="F (mol m-2)")+
scale_color_brewer(palette = "Set1")+
theme(axis.title.x = element_blank())
The cumulative iCT time series obtained through integration across the upper 10m of the water column was used for further calculations of NCP.
Correction of iCT for air-sea CO2 fluxes will be based on estimates derived from observation with 30min measurement interval and calculation according to Wanninkhof (2014).
To derive an integrated NCP estimated, the observed change in iCT must be corrected for the air-sea flux of CO2. iCT was determined for the upper 10m of the water column. The MLD was always shallower 10m, except for the last cruise day. Therefore:
During the last cruise, deeper mixing up to 17m water depth was observed, resulting in increased CT values at 0-10 m and a decrease of CT in 10-17m. The loss of CT in 10-17m can be assumed to be entirely cause by mixing with low-CT surface water. Some CT loss is balanced through CT input attributable to the air-sea flux. Therefore, the observed loss, corrected for 7m/MLD-share of the air-sea-flux, was added to the integrated CT changes in 0-10m.
# extract CT data for fixed depth approach, depth limit 10m
iCT_10 <- iCT_fixed_dep %>%
filter(dep_i == 10, sign=="total") %>%
select(-c(sign, dep_i))
rm(iCT_fixed_dep)
iCT_10 <- iCT_10 %>%
select(ID, date_time = date_time_ID, date_time_ID_ref, CT_i_diff, CT_i_cum)
# date of the second last cruise
date_180806 <- unique(iCT_10$date_time)[7]
# calculate cumulative air-sea fluxes affecting 0-10m
ts_og_flux <- ts_og %>%
mutate(flux_scale = if_else(date_time > date_180806,
10/17 * flux_scale,
flux_scale)) %>%
group_by(freq, k_para) %>%
arrange(date_time) %>%
mutate(flux_cum = cumsum(flux_scale)) %>%
ungroup() %>%
filter(k_para == "W14", freq =="30 min") %>%
select(date_time, flux_cum)
# calculate cumulative air-sea fluxes affecting 10-17m
ts_og_flux_dep <- ts_og %>%
filter(date_time > date_180806) %>%
mutate(flux_scale = 7/17 * flux_scale) %>%
group_by(freq, k_para) %>%
arrange(date_time) %>%
mutate(flux_cum = cumsum(flux_scale)) %>%
ungroup() %>%
filter(k_para == "W14", freq =="30 min") %>%
select(date_time, flux_cum)
iCT_10_flux <- full_join(iCT_10, ts_og_flux) %>%
arrange(date_time)
rm(ts_og_flux, iCT_10, ts_og_long, ts_og)
# linear interpolation of cumulative changes to frequency of the flux estimates estimates
iCT_10_flux <- iCT_10_flux %>%
mutate(CT_i_cum = na.approx(CT_i_cum, rule = 2),
flux_cum = na.approx(flux_cum, rule = 2),
CT_i_flux_cum = CT_i_cum + flux_cum)
# calculate cumulative fluxes inbetween cruises
iCT_10_flux_diff <- iCT_10_flux %>%
filter(!is.na(date_time_ID_ref)) %>%
mutate(flux_diff = flux_cum - lag(flux_cum, default = 0)) %>%
select(date_time_ID_ref, observed=CT_i_diff, flux=flux_diff) %>%
pivot_longer(cols = 2:3, names_to = "var", values_to = "value_diff")
# calculate mixing with deep waters, corrected for air sea fluxes
iCT_10_mix <- ts_profiles_ID_long %>%
filter(ID == "180815",
var == "CT",
dep < 17,
dep > 10) %>%
group_by(ID, date_time_ID,
date_time_ID_ref) %>%
summarise(value_diff = sum(value_diff)/1000 + min(ts_og_flux_dep$flux_cum)) %>%
ungroup()
rm(ts_og_flux_dep)
iCT_10_mix_diff <- iCT_10_mix %>%
select(date_time_ID_ref, value_diff) %>%
mutate(var="mixing")
iCT_10_flux_mix_diff <-
full_join(iCT_10_flux_diff, iCT_10_mix_diff)
iCT_10_flux_mix <-
full_join(iCT_10_flux,
iCT_10_mix %>% rename(mix_cum = value_diff))
rm(iCT_10_mix, iCT_10_mix_diff, iCT_10_flux, iCT_10_flux_diff, date_180806)
iCT_10_flux_mix <- iCT_10_flux_mix %>%
arrange(date_time) %>%
fill(ID) %>%
mutate(mix_cum = if_else(ID %in% c("180806", 180815), mix_cum, 0),
mix_cum = na.approx(mix_cum),
CT_i_flux_mix_cum = CT_i_flux_cum + mix_cum)
iCT_10_flux_mix %>%
arrange(date_time) %>%
ggplot()+
geom_col(data = iCT_10_flux_mix_diff,
aes(date_time_ID_ref, value_diff, fill=var),
position = position_dodge2(preserve = "single"),
alpha=0.5)+
geom_hline(yintercept = 0)+
geom_point(data = cruise_dates, aes(date_time_ID, 0), shape=21)+
geom_line(aes(date_time, CT_i_cum, col="observed"))+
geom_line(aes(date_time, CT_i_flux_mix_cum, col="mixing + flux corrected"))+
geom_line(aes(date_time, CT_i_flux_cum, col="flux corrected"))+
scale_fill_brewer(palette = "Set1", name="Incremental")+
scale_color_brewer(palette = "Set1", name="Cumulative")+
labs(y="integrated CT [mol/m2]")+
theme(axis.title.x = element_blank())
iCT_10_flux_mix %>%
write_csv(here::here("Data/_merged_data_files", "ts_NCP_cum.csv"))
iCT_10_flux_mix_diff %>%
write_csv(here::here("Data/_merged_data_files", "ts_NCP_inc.csv"))
Should be identical for stored files and objectes in R environment
sessionInfo()
R version 3.5.0 (2018-04-23)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 18363)
Matrix products: default
locale:
[1] LC_COLLATE=English_United States.1252
[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] zoo_1.8-6 lubridate_1.7.4 scico_1.1.0 metR_0.5.0
[5] marelac_2.1.9 shape_1.4.4 seacarb_3.2.12 oce_1.2-0
[9] gsw_1.0-5 testthat_2.3.1 patchwork_1.0.0 forcats_0.4.0
[13] stringr_1.4.0 dplyr_0.8.3 purrr_0.3.3 readr_1.3.1
[17] tidyr_1.0.0 tibble_2.1.3 ggplot2_3.3.0 tidyverse_1.3.0
loaded via a namespace (and not attached):
[1] nlme_3.1-137 bitops_1.0-6 fs_1.3.1
[4] RColorBrewer_1.1-2 httr_1.4.1 rprojroot_1.3-2
[7] tools_3.5.0 backports_1.1.5 R6_2.4.0
[10] DBI_1.0.0 colorspace_1.4-1 withr_2.1.2
[13] sp_1.3-2 tidyselect_0.2.5 gridExtra_2.3
[16] compiler_3.5.0 git2r_0.26.1 cli_1.1.0
[19] rvest_0.3.5 xml2_1.2.2 labeling_0.3
[22] scales_1.0.0 checkmate_1.9.4 digest_0.6.22
[25] foreign_0.8-70 rmarkdown_2.0 pkgconfig_2.0.3
[28] htmltools_0.4.0 highr_0.8 dbplyr_1.4.2
[31] maps_3.3.0 rlang_0.4.5 readxl_1.3.1
[34] rstudioapi_0.10 generics_0.0.2 jsonlite_1.6
[37] RCurl_1.95-4.12 magrittr_1.5 Formula_1.2-3
[40] dotCall64_1.0-0 Matrix_1.2-14 Rcpp_1.0.2
[43] munsell_0.5.0 lifecycle_0.1.0 stringi_1.4.3
[46] yaml_2.2.0 plyr_1.8.4 grid_3.5.0
[49] maptools_0.9-8 formula.tools_1.7.1 promises_1.1.0
[52] crayon_1.3.4 lattice_0.20-35 haven_2.2.0
[55] hms_0.5.2 zeallot_0.1.0 knitr_1.26
[58] pillar_1.4.2 reprex_0.3.0 glue_1.3.1
[61] evaluate_0.14 data.table_1.12.6 modelr_0.1.5
[64] operator.tools_1.6.3 vctrs_0.2.0 spam_2.3-0.2
[67] httpuv_1.5.2 cellranger_1.1.0 gtable_0.3.0
[70] assertthat_0.2.1 xfun_0.10 broom_0.5.3
[73] later_1.0.0 viridisLite_0.3.0 memoise_1.1.0
[76] fields_9.9 workflowr_1.6.0 ellipsis_0.3.0
[79] here_0.1