Last updated: 2020-09-18

Checks: 7 0

Knit directory: Cant_eMLR/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200707) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version bf31773. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/
    Ignored:    data/GLODAPv1_1/
    Ignored:    data/GLODAPv2_2016b_MappedClimatologies/
    Ignored:    data/GLODAPv2_2020/
    Ignored:    data/Gruber_2019/
    Ignored:    data/WOCE/
    Ignored:    data/World_Ocean_Atlas_2013_Clement/
    Ignored:    data/World_Ocean_Atlas_2018/
    Ignored:    data/eMLR/
    Ignored:    data/mapping/
    Ignored:    data/pCO2_atmosphere/
    Ignored:    dump/

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/analysis_this_study.Rmd) and HTML (docs/analysis_this_study.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd bf31773 jens-daniel-mueller 2020-09-18 rearranged plots
html e120224 jens-daniel-mueller 2020-09-18 Build site.
Rmd 39fe9d0 jens-daniel-mueller 2020-09-18 rearranged plots
html 96e3f0a jens-daniel-mueller 2020-09-18 Build site.
Rmd 6ebc455 jens-daniel-mueller 2020-09-18 rearranged and revised plots
html 8ddeeac jens-daniel-mueller 2020-09-18 Build site.
Rmd 3fe7f52 jens-daniel-mueller 2020-09-18 rearranged plots
html 88e474a jens-daniel-mueller 2020-09-18 Build site.
Rmd cf9b9d7 jens-daniel-mueller 2020-09-18 zonal mean section gruber color scale
html 21668f6 jens-daniel-mueller 2020-09-18 Build site.
Rmd 3838220 jens-daniel-mueller 2020-09-18 zonal mean section gruber color scale
html 9b35dd0 jens-daniel-mueller 2020-09-18 Build site.
Rmd 4b8cb4e jens-daniel-mueller 2020-09-18 zonal mean section gruber color scale
html b68196d jens-daniel-mueller 2020-09-18 Build site.
Rmd 7c0354d jens-daniel-mueller 2020-09-18 mean sections with gruber color scale
html 59e9bcd jens-daniel-mueller 2020-09-18 Build site.
Rmd df65c0a jens-daniel-mueller 2020-09-18 applied Gruber 2019 color scale
html f5a20ac jens-daniel-mueller 2020-09-17 Build site.
Rmd 10c1a10 jens-daniel-mueller 2020-09-17 added Cant along slab
html cf64460 jens-daniel-mueller 2020-09-17 Build site.
html 9d9a553 jens-daniel-mueller 2020-09-17 Build site.
Rmd a7e8ba5 jens-daniel-mueller 2020-09-17 rebuild after complete collapse averaging
html abc176a jens-daniel-mueller 2020-09-17 Build site.
Rmd ca05234 jens-daniel-mueller 2020-09-17 collapse averaging for all big data sets
html 1ea7231 jens-daniel-mueller 2020-09-17 Build site.
html d43d9e2 jens-daniel-mueller 2020-09-16 Build site.
html 605e13b jens-daniel-mueller 2020-09-16 Build site.
html 1f3319a jens-daniel-mueller 2020-09-16 Build site.
html 19d4d56 jens-daniel-mueller 2020-09-16 Build site.
html 55f86a6 jens-daniel-mueller 2020-09-15 Build site.
Rmd b9d37ab jens-daniel-mueller 2020-09-15 observations per density slab included
html 2cd847c jens-daniel-mueller 2020-09-14 Build site.
Rmd 1a13af4 jens-daniel-mueller 2020-09-14 replace all model sections plots chunk
html da91d98 jens-daniel-mueller 2020-09-10 Build site.
html 454e665 jens-daniel-mueller 2020-09-10 Build site.
Rmd c7ae6ab jens-daniel-mueller 2020-09-10 updated plots
html 1124ca5 jens-daniel-mueller 2020-09-10 Build site.
Rmd 27c5ab1 jens-daniel-mueller 2020-09-10 updated plots
html 382ffba jens-daniel-mueller 2020-09-10 Build site.
Rmd d37bb48 jens-daniel-mueller 2020-09-10 updated plots
html a34a239 jens-daniel-mueller 2020-09-10 Build site.
html 2458576 jens-daniel-mueller 2020-09-09 Build site.
html e60e13c jens-daniel-mueller 2020-09-09 Build site.
Rmd 7040b80 jens-daniel-mueller 2020-09-09 remove basin_AIP not covered by mapping
html c3ffdfd jens-daniel-mueller 2020-09-08 Build site.
Rmd 04ee730 jens-daniel-mueller 2020-09-08 rebuild after revision
html 793f996 jens-daniel-mueller 2020-09-07 Build site.
Rmd 2d1300a jens-daniel-mueller 2020-09-07 added all predictor plots
html 148db18 jens-daniel-mueller 2020-09-07 Build site.
Rmd 0bea059 jens-daniel-mueller 2020-09-07 plotted predictor contribution zonal mean
html a50f053 jens-daniel-mueller 2020-09-07 Build site.
html da445a6 jens-daniel-mueller 2020-09-04 Build site.
Rmd 6a302ca jens-daniel-mueller 2020-09-04 rebuild after new data cleaning and mapping Cant to surface
html fa11a74 jens-daniel-mueller 2020-09-02 Build site.
html 429aab3 jens-daniel-mueller 2020-09-01 Build site.
html f4216dd jens-daniel-mueller 2020-09-01 Build site.
html 13a76d5 jens-daniel-mueller 2020-08-28 Build site.
Rmd 2e6a4ca jens-daniel-mueller 2020-08-28 XXX
html 1f05c5d jens-daniel-mueller 2020-08-28 Build site.
Rmd 5ad6a52 jens-daniel-mueller 2020-08-28 added gamma maps and switched to depth levels 150, 500, 1000, 2000
html 27404de jens-daniel-mueller 2020-08-27 Build site.
html cfdb312 jens-daniel-mueller 2020-08-27 Build site.
Rmd a4d0f62 jens-daniel-mueller 2020-08-27 plotting with functions
html b6d0e6a jens-daniel-mueller 2020-08-27 Build site.
html fc4f889 jens-daniel-mueller 2020-08-26 Build site.
Rmd a3e427c jens-daniel-mueller 2020-08-26 Cant vs regional SD added
html f37f6b6 jens-daniel-mueller 2020-08-26 Build site.
Rmd ce109c0 jens-daniel-mueller 2020-08-26 Cant vs SD plotted
html e951135 jens-daniel-mueller 2020-08-26 Build site.
Rmd 7f3a671 jens-daniel-mueller 2020-08-26 Cant vs SD plotted
html f40e48b jens-daniel-mueller 2020-08-26 Build site.
Rmd b577ec6 jens-daniel-mueller 2020-08-26 Analysis split in this and previous studies

library(tidyverse)
library(patchwork)
library(scico)
library(scales)
library(metR)

1 Data sources

Cant estimates from this study:

  • Mean and SD per grid cell (lat, lon, depth)
  • Zonal mean and SD (basin, lat, depth)
  • Inventories (lat, lon)
Cant_average <-
  read_csv(here::here("data/mapping/_summarized_files",
                         "Cant_average.csv"))

Cant_average_zonal <-
  read_csv(here::here("data/mapping/_summarized_files",
                         "Cant_average_zonal.csv"))

Cant_predictor_average_zonal <-
  read_csv(here::here("data/mapping/_summarized_files",
                         "Cant_predictor_average_zonal.csv"))

Cant_inv <-
  read_csv(here::here("data/mapping/_summarized_files",
                         "Cant_inv.csv"))

C* estimates from this study:

  • Mean and SD per grid cell (lat, lon, depth)
  • Zonal mean and SD (basin, lat, depth)
Cstar_average <-
  read_csv(here::here("data/mapping/_summarized_files",
                         "Cstar_average.csv"))

Cstar_average_zonal <-
  read_csv(here::here("data/mapping/_summarized_files",
                         "Cstar_average_zonal.csv"))

Cleaned GLODAPv2_2020 file as used in this study

GLODAP <-
  read_csv(
    here::here(
      "data/GLODAPv2_2020/_summarized_data_files",
      "GLODAP_MLR_fitting_ready.csv"
    )
  )

2 Color scale

For ease of comparison with Gruber et al (2019) we adapt their color scale, including the ranges and breaks applied in various types of visualizations.

rgb2hex <- function(r, g, b)
  rgb(r, g, b, maxColorValue = 100)

cols = c(rgb2hex(95, 95, 95),
         rgb2hex(0, 0, 95),
         rgb2hex(100, 0, 0),
         rgb2hex(100, 100, 0))

Gruber_rainbow <- colorRampPalette(cols)

rm(rgb2hex, cols)

3 Cant budgets

4 Cant - positive

In a first series of plots we explore the distribution of Cant, taking only positive estimates into account (positive here refers to the mean Cant estimate across 10 eMLR model predictions available for each grid cell). Negative values were set to zero before calculating mean sections and inventories.

4.1 Zonal mean sections

breaks <- c(seq(0,18,1),Inf)
breaks_n <- length(breaks) - 1

Cant_average_zonal <- Cant_average_zonal %>% 
  mutate(Cant_pos_mean_int = cut(Cant_pos_mean, 
                                breaks,
                                right = FALSE))


zonal_section <- function(df, i_basin_AIP, i_eras, var) {
  
  name_var <- var
  var <- sym(var)
  
  lat_max <- max(df$lat)
  lat_min <- min(df$lat)
  
  df_sub <- df %>% 
    filter(eras == i_eras,
           basin_AIP == i_basin_AIP)
  
  surface <- df_sub %>%
    ggplot(aes(lat, depth, z = !!var)) +
    geom_contour_filled(breaks = breaks) +
    scale_fill_manual(values = Gruber_rainbow(breaks_n),
                      name = "Cant") +
    coord_cartesian(expand = 0,
                    ylim = c(500, 0),
                    xlim = c(lat_min, lat_max)) +
    scale_y_reverse() +
    theme(
      axis.title.x = element_blank(),
      axis.text.x = element_blank(),
      axis.ticks.x = element_blank()
    ) +
    labs(y = "Depth (m)",
         title = paste("Basin:", i_basin_AIP, "| eras:", i_eras))
  
  deep <- df_sub %>%
    ggplot(aes(lat, depth, z = !!var)) +
    geom_contour_filled(breaks = breaks) +
    scale_fill_manual(values = Gruber_rainbow(breaks_n),
                      name = "Cant") +
    scale_y_reverse() +
    coord_cartesian(expand = 0,
                    ylim = c(3000, 500),
                    xlim = c(lat_min, lat_max)) +
    labs(x = "latitude (°N)", y = "Depth (m)")
  
  surface / deep +
    plot_layout(guides = "collect")
  
}


for (i_basin_AIP in unique(Cant_average_zonal$basin_AIP)) {
  for (i_eras in rev(unique(Cant_average_zonal$eras))) {
    
    print(zonal_section(Cant_average_zonal,
                        i_basin_AIP = i_basin_AIP,
                        i_eras = i_eras,
                        "Cant_pos_mean"))
    
  }
  
}

rm(breaks, breaks_n)

4.2 Isoneutral slab distribution

Mean of positive Cant within each horizontal grid cell (lon x lat) per isoneutral slab.

Please note that:

  • density slabs covering values >28.1 occur by definition only either in the Atlantic or Indo-Pacific basin
  • gaps in the maps represent areas where (thin) density layers fit between discrete depth levels used for mapping
Cant_gamma_maps <- Cant_average %>% 
  group_by(lat, lon, gamma_slab, eras) %>% 
  summarise(Cant_pos = mean(Cant_pos, na.rm = TRUE)) %>% 
  ungroup()


breaks <- c(seq(0,16,2),Inf)
breaks_n <- length(breaks) - 1

Cant_gamma_maps <- Cant_gamma_maps %>% 
  mutate(Cant_pos_int = cut(Cant_pos, 
                                breaks,
                                right = FALSE))

ggplot() +
  geom_raster(data = landmask,
              aes(lon, lat),
              fill = "grey30") +
  geom_raster(data = Cant_gamma_maps,
              aes(lon, lat, fill = Cant_pos_int)) +
  scale_fill_manual(values = Gruber_rainbow(breaks_n)) +
  facet_grid(gamma_slab ~ eras) +
  coord_quickmap(expand = 0) +
  theme(axis.title = element_blank(),
        axis.ticks = element_blank(),
        axis.text = element_blank(),
        legend.position = "top")

rm(Cant_gamma_maps, breaks, breaks_n)

4.3 Inventory map

Column inventory of positive Cant between the surface and 3000m water depth per horizontal grid cell (lat x lon).

breaks <- c(seq(0,16,2),Inf)
breaks_n <- length(breaks) - 1

Cant_inv <- Cant_inv %>% 
  mutate(cant_inv_pos_int = cut(cant_inv_pos, 
                                breaks,
                                right = FALSE))
Cant_inv %>%
  ggplot() +
  geom_raster(data = landmask,
              aes(lon, lat), fill = "grey30") +
  geom_raster(aes(lon, lat, fill = cant_inv_pos_int)) +
  coord_quickmap(expand = 0) +
  scale_fill_manual(values = Gruber_rainbow(breaks_n)) +
  facet_wrap( ~ eras, ncol = 1) +
  theme(axis.title = element_blank())

rm(breaks, breaks_n)

5 Global section

5.1 JGOFS_GO

section_global(Cant_average %>% filter(eras == "JGOFS_GO"),
                    "Cant_pos")

5.2 GO_new

section_global(Cant_average %>% filter(eras == "GO_new"),
                    "Cant_pos")

6 Cant - all

In a second series of plots we explore the distribution of Cant, taking positive and negative estimates into account.

6.1 Zonal mean sections

section_zonal_average_divergent(Cant_average_zonal,
                                "Cant_mean",
                                "gamma_mean")

6.2 Isoneutral slab distribution

Mean of Cant within each horizontal grid cell (lon x lat) per isoneutral slab.

Please note that:

  • density slabs covering values >28.1 occur by definition only either in the Atlantic or Indo-Pacific basin
  • gaps in the maps represent areas where (thin) density layers fit between discrete depth levels used for mapping
Cant_gamma_maps <- Cant_average %>%
  group_by(lat, lon, gamma_slab, eras) %>%
  summarise(Cant = mean(Cant, na.rm = TRUE)) %>%
  ungroup()


breaks <- c(-Inf, seq(-16, 16, 4), Inf)
breaks_n <- length(breaks) - 1

Cant_gamma_maps <- Cant_gamma_maps %>%
  mutate(Cant_int = cut(Cant,
                        breaks,
                        right = FALSE))

ggplot() +
  geom_raster(data = landmask,
              aes(lon, lat),
              fill = "grey30") +
  geom_raster(data = Cant_gamma_maps,
              aes(lon, lat, fill = Cant_int)) +
  scale_fill_brewer(palette = "RdBu",
                    direction = -1) +
  facet_grid(gamma_slab ~ eras) +
  coord_quickmap(expand = 0) +
  theme(
    axis.title = element_blank(),
    axis.ticks = element_blank(),
    axis.text = element_blank(),
    legend.position = "top"
  )

rm(Cant_gamma_maps, breaks, breaks_n)

6.3 Inventory map

Column inventory of positive Cant between the surface and 3000m water depth per horizontal grid cell (lat x lon).

breaks <- c(-Inf, seq(-16,16,4),Inf)
breaks_n <- length(breaks) - 1

Cant_inv <- Cant_inv %>% 
  mutate(cant_inv_int = cut(cant_inv, 
                                breaks,
                                right = FALSE))
Cant_inv %>% 
  ggplot() +
    geom_raster(data = landmask,
                aes(lon, lat), fill = "grey80") +
    geom_raster(aes(lon, lat, fill = cant_inv_int)) +
    coord_quickmap(expand = 0) +
  scale_fill_brewer(palette = "RdBu",
                    direction = -1) +
  facet_wrap(~eras, ncol = 1) +
    theme(
      axis.title = element_blank()
    )

rm(breaks, breaks_n)

7 Cant - standard deviation

7.1 Across models

Standard deviation across Cant from all MLR models was calculate for each grid cell (XYZ). The zonal mean of this standard deviation should reflect the uncertainty associated to the predictor selection within each slab and era.

section_zonal_average_continous(Cant_average_zonal,
                                "Cant_sd_mean",
                                "gamma_mean")

7.2 Across basins

Standard deviation of mean Cant values was calculate across all longitudes. This standard deviation should reflect the zonal variability of Cant within the basin and era.

section_zonal_average_continous(Cant_average_zonal,
                                "Cant_sd",
                                "gamma_mean")

7.3 Correlation

7.3.1 Cant vs model SD

Cant_average %>% 
  ggplot(aes(Cant, Cant_sd)) +
  geom_vline(xintercept = 0) +
  geom_hline(yintercept = 10) +
  geom_bin2d() +
  scale_fill_viridis_c(option = "magma",
                       direction = -1,
                       trans = "log10",
                       name = "log10(n)") +
  facet_grid(basin_AIP ~ eras)

Cant_average %>% 
  ggplot(aes(Cant, Cant_sd)) +
  geom_vline(xintercept = 0) +
  geom_hline(yintercept = 10) +
  geom_bin2d() +
  scale_fill_viridis_c(option = "magma",
                       direction = -1,
                       trans = "log10",
                       name = "log10(n)") +
  facet_grid(gamma_slab ~ basin_AIP)

7.3.2 Cant vs regional SD

Cant_average_zonal %>% 
  ggplot(aes(Cant_mean, Cant_sd)) +
  geom_vline(xintercept = 0) +
  geom_hline(yintercept = 10) +
  geom_bin2d() +
  scale_fill_viridis_c(option = "magma",
                       direction = -1,
                       trans = "log10",
                       name = "log10(n)") +
  facet_grid(basin_AIP ~ eras)

Cant_average_zonal %>% 
  ggplot(aes(Cant_mean, Cant_sd)) +
  geom_vline(xintercept = 0) +
  geom_hline(yintercept = 10) +
  geom_bin2d() +
  scale_fill_viridis_c(option = "magma",
                       direction = -1,
                       trans = "log10",
                       name = "log10(n)") +
  facet_grid(gamma_slab ~ basin_AIP)

8 Cant - predictor contribution

for (variable in c(
  "Cant_intercept",
  "Cant_aou",
  "Cant_oxygen",
  "Cant_phosphate",
  "Cant_phosphate_star",
  "Cant_silicate",
  "Cant_tem",
  "Cant_sal")) {

print(
section_zonal_average_continous(Cant_predictor_average_zonal,
                                variable,
                                "gamma")
)
    
}

rm(variable)

9 Neutral density

9.1 Slab depth

Please note that:

  • density slabs covering values >28.1 occur by definition only either in the Atlantic or Indo-Pacific basin
  • predictor density slabs are only shown for the upper 3000m as used for the mapping, whereas GLODAP observations are displayed for the entire water column as used for fitting eMLRs (in both cases shallow waters are excluded at low density)
gamma_maps <- Cant_average %>% 
  group_by(lat, lon, gamma_slab) %>% 
  summarise(depth_max = max(depth, na.rm = TRUE)) %>% 
  ungroup()

GLODAP_obs_coverage <- GLODAP %>% 
  count(lat, lon, gamma_slab, era)
  

ggplot() +
  geom_raster(data = landmask,
              aes(lon, lat),
              fill = "grey80") +
  geom_raster(data = gamma_maps,
              aes(lon, lat, fill = depth_max)) +
  geom_raster(data = GLODAP_obs_coverage,
              aes(lon, lat), fill = "red") +
  facet_grid(gamma_slab ~ era) +
  coord_quickmap(expand = 0) +
  scale_fill_viridis_c(direction = -1) +
  theme(axis.title = element_blank(),
        axis.ticks = element_blank(),
        axis.text = element_blank(),
        legend.position = "top")

rm(gamma_maps, GLODAP_obs_coverage)

9.2 Surface maps

map_climatology(Cant_average, "gamma")

9.3 Zonal sections

The mean zonal distribution of neutral densities was calculated. CAVEAT: Due to practical reasons, binning here does not include the two highest isoneutral density slabs in the Atlantic, yet.

9.3.1 Mean

Cant_average_zonal %>% 
  filter(eras == "JGOFS_GO") %>% 
  ggplot(aes(lat, depth, z = gamma_mean)) +
  geom_contour_filled(breaks = slab_breaks) +
  geom_contour(breaks = slab_breaks,
               col = "white") +
  geom_text_contour(breaks = slab_breaks,
               col = "white",
               skip = 1) +
  scale_fill_viridis_d(name = "Gamma",
                       direction = -1) +
  scale_y_reverse() +
  scale_x_continuous(breaks = seq(-100, 100, 20)) +
  coord_cartesian(expand = 0) +
  guides(fill = guide_colorsteps(barheight = unit(10, "cm"))) +
  facet_grid(basin_AIP~.)

9.3.2 SD

Higher SD of gamma in shallow, subtropical waters results from a more pronounced longitudinal variability.

Cant_average_zonal %>% 
  filter(eras == "JGOFS_GO") %>% 
  ggplot(aes(lat, depth, z = gamma_sd)) +
  geom_contour_filled() +
  scale_fill_viridis_d(name = "Gamma SD",
                       direction = -1) +
  scale_y_reverse() +
  scale_x_continuous(breaks = seq(-100, 100, 20)) +
  coord_cartesian(expand = 0) +
  guides(fill = guide_colorsteps(barheight = unit(10, "cm"))) +
  facet_grid(basin_AIP~.)

10 Cstar

10.1 Zonal mean sections

Cstar_average_zonal <- Cstar_average_zonal %>% 
    mutate(era = factor(era, c("JGOFS_WOCE", "GO_SHIP", "new_era"))) 

Cstar_average_zonal %>% 
    ggplot(aes(lat, depth, z = Cstar_mean_mean)) +
    geom_contour_filled(bins = 11) +
    scale_fill_viridis_d(name = "Cstar") +
    geom_contour(aes(lat, depth, z = gamma_mean_mean),
                 breaks = slab_breaks,
                 col = "white") +
    geom_text_contour(
      aes(lat, depth, z = gamma_mean_mean),
      breaks = slab_breaks,
      col = "white",
      skip = 1
    ) +
    scale_y_reverse() +
    coord_cartesian(expand = 0) +
    guides(fill = guide_colorsteps(barheight = unit(10, "cm"))) +
    facet_grid(basin_AIP ~ era)

11 Sections by model

Zonal sections plots are produced for every 20° longitude, each era and for all models individually and can be downloaded here.


sessionInfo()
R version 4.0.2 (2020-06-22)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 18363)

Matrix products: default

locale:
[1] LC_COLLATE=English_Germany.1252  LC_CTYPE=English_Germany.1252   
[3] LC_MONETARY=English_Germany.1252 LC_NUMERIC=C                    
[5] LC_TIME=English_Germany.1252    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] metR_0.7.0      scales_1.1.1    scico_1.2.0     patchwork_1.0.1
 [5] forcats_0.5.0   stringr_1.4.0   dplyr_1.0.0     purrr_0.3.4    
 [9] readr_1.3.1     tidyr_1.1.0     tibble_3.0.3    ggplot2_3.3.2  
[13] tidyverse_1.3.0 workflowr_1.6.2

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.5         lattice_0.20-41    lubridate_1.7.9    here_0.1          
 [5] assertthat_0.2.1   rprojroot_1.3-2    digest_0.6.25      plyr_1.8.6        
 [9] R6_2.4.1           cellranger_1.1.0   backports_1.1.8    reprex_0.3.0      
[13] evaluate_0.14      httr_1.4.2         pillar_1.4.6       rlang_0.4.7       
[17] readxl_1.3.1       rstudioapi_0.11    data.table_1.13.0  whisker_0.4       
[21] blob_1.2.1         checkmate_2.0.0    rmarkdown_2.3      labeling_0.3      
[25] munsell_0.5.0      broom_0.7.0        compiler_4.0.2     httpuv_1.5.4      
[29] modelr_0.1.8       xfun_0.16          pkgconfig_2.0.3    htmltools_0.5.0   
[33] tidyselect_1.1.0   viridisLite_0.3.0  fansi_0.4.1        crayon_1.3.4      
[37] dbplyr_1.4.4       withr_2.2.0        later_1.1.0.1      grid_4.0.2        
[41] jsonlite_1.7.0     gtable_0.3.0       lifecycle_0.2.0    DBI_1.1.0         
[45] git2r_0.27.1       magrittr_1.5       cli_2.0.2          stringi_1.4.6     
[49] farver_2.0.3       fs_1.4.2           promises_1.1.1     sp_1.4-2          
[53] xml2_1.3.2         ellipsis_0.3.1     generics_0.0.2     vctrs_0.3.2       
[57] RColorBrewer_1.1-2 tools_4.0.2        glue_1.4.1         hms_0.5.3         
[61] yaml_2.2.1         colorspace_1.4-1   isoband_0.2.2      rvest_0.3.6       
[65] memoise_1.1.0      knitr_1.29         haven_2.3.1