Last updated: 2020-11-10

Checks: 7 0

Knit directory: Cant_eMLR/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200707) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version b13b596. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/
    Ignored:    data/GLODAPv1_1/
    Ignored:    data/GLODAPv2_2016b_MappedClimatologies/
    Ignored:    data/GLODAPv2_2020/
    Ignored:    data/Gruber_2019/
    Ignored:    data/WOCE/
    Ignored:    data/World_Ocean_Atlas_2013_Clement/
    Ignored:    data/World_Ocean_Atlas_2018/
    Ignored:    data/eMLR/
    Ignored:    data/mapping/
    Ignored:    data/pCO2_atmosphere/
    Ignored:    dump/

Untracked files:
    Untracked:  code/mapping_functions.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/analysis_this_study_vs_Gruber_2019.Rmd) and HTML (docs/analysis_this_study_vs_Gruber_2019.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd b13b596 jens-daniel-mueller 2020-11-10 create and apply global base map layer
html 89a9c26 jens-daniel-mueller 2020-11-10 Build site.
Rmd d4b3011 jens-daniel-mueller 2020-11-10 updated plain text
html d4b3011 jens-daniel-mueller 2020-11-10 updated plain text
html fc70a34 jens-daniel-mueller 2020-11-10 Build site.
html f84ad34 jens-daniel-mueller 2020-11-09 Build site.
Rmd bc94e5e jens-daniel-mueller 2020-11-09 updated legend title in map
html ccf6623 jens-daniel-mueller 2020-11-09 Build site.
Rmd 41acc9e jens-daniel-mueller 2020-11-09 rescales plots
html 01461a9 jens-daniel-mueller 2020-11-09 Build site.
Rmd 8d5695c jens-daniel-mueller 2020-11-09 rescales plots
html 99e3391 jens-daniel-mueller 2020-11-09 Build site.
Rmd b3eb762 jens-daniel-mueller 2020-11-09 added offset all cant values
html d55beda jens-daniel-mueller 2020-11-09 Build site.
Rmd b7cfc42 jens-daniel-mueller 2020-11-09 added offset plots
html 042043c jens-daniel-mueller 2020-11-09 Build site.
Rmd b21ea65 jens-daniel-mueller 2020-11-09 added offset plots
html 3bdad86 jens-daniel-mueller 2020-11-09 Build site.
Rmd d98acd6 jens-daniel-mueller 2020-11-09 included diverging maps
html 7c7bb6c jens-daniel-mueller 2020-11-09 Build site.
Rmd 1d87871 jens-daniel-mueller 2020-11-09 included diverging maps
html 68c0bbd jens-daniel-mueller 2020-11-09 Build site.
Rmd aa35b80 jens-daniel-mueller 2020-11-09 included negative Cant data
html 280c425 jens-daniel-mueller 2020-11-09 Build site.
Rmd 7786901 jens-daniel-mueller 2020-11-09 created comparison plots
html b170b79 jens-daniel-mueller 2020-11-03 Build site.
Rmd bfa7a21 jens-daniel-mueller 2020-11-03 added comparison to Gruber 2019, revised basin mask

library(tidyverse)
library(patchwork)
library(scico)
library(scales)
library(metR)
library(kableExtra)
library(collapse)
library(marelac)
library(gt)

1 Data sources

Following Cant estimates from this study (JDM) and Gruber 2019 (G19) are used:

  • Zonal mean (basin, lat, depth)
  • Inventories (lat, lon)

1.1 This study

# cant_3d_JDM <-
#   read_csv(here::here("data/mapping/_summarized_files",
#                          "cant_3d.csv"))
# 
# cant_3d_JDM <- cant_3d_JDM %>%
#   filter(eras == "JGOFS_GO") %>%
#   select(lon,
#          lat,
#          depth,
#          basin_AIP,
#          cant,
#          cant_pos) %>%
#   mutate(estimate = "JDM")


cant_zonal_JDM <-
  read_csv(here::here("data/mapping/_summarized_files",
                         "cant_zonal.csv"))

cant_zonal_JDM <- cant_zonal_JDM %>%
  filter(eras == "JGOFS_GO") %>%
  select(lat,
         depth,
         basin_AIP,
         cant_mean,
         cant_pos_mean,
         cant_sd,
         cant_pos_sd)


cant_inventory_JDM <-
  read_csv(here::here("data/mapping/_summarized_files",
                         "cant_inv.csv"))

cant_inventory_JDM <- cant_inventory_JDM %>% 
  rename(cant_pos_inv = cant_inv_pos)

cant_inventory_JDM <- cant_inventory_JDM %>% 
  filter(eras == "JGOFS_GO") %>% 
  select(-c(eras, basin))

1.2 Gruber 2019

# cant_3d_G19 <- 
#   read_csv(here::here("data/Gruber_2019/_summarized_files",
#                        "G19_cant_3d.csv"))
# 
# cant_3d_G19 <- cant_3d_G19 %>% 
#   mutate(estimate = "G19") %>% 
#   select(-eras)

cant_inventory_G19 <- 
  read_csv(here::here("data/Gruber_2019/_summarized_files",
                       "G19_cant_inv.csv"))

cant_inventory_G19 <- cant_inventory_G19 %>% 
  select(-eras)

cant_zonal_G19 <- 
  read_csv(here::here("data/Gruber_2019/_summarized_files",
                       "G19_cant_zonal.csv"))

cant_zonal_G19 <- cant_zonal_G19 %>%
  filter(eras == "JGOFS_GO") %>%
  select(lat,
         depth,
         basin_AIP,
         cant_mean,
         cant_pos_mean,
         cant_sd,
         cant_pos_sd)

1.3 Join data sets

cant_inventory_long <- bind_rows(
  cant_inventory_JDM %>%  mutate(estimate = "JDM"),
  cant_inventory_G19 %>%  mutate(estimate = "G19")
  )

cant_inventory_wide <- cant_inventory_long %>% 
  pivot_wider(names_from = estimate, values_from = cant_pos_inv:cant_inv) %>% 
  drop_na()

cant_inventory_wide <- cant_inventory_wide %>% 
  mutate(cant_pos_inv_delta = cant_pos_inv_JDM - cant_pos_inv_G19,
         cant_inv_delta = cant_inv_JDM - cant_inv_G19)
cant_zonal_long <- bind_rows(
  cant_zonal_JDM %>%  mutate(estimate = "JDM"),
  cant_zonal_G19 %>%  mutate(estimate = "G19")
  )

cant_zonal_wide <- cant_zonal_long %>% 
  pivot_wider(names_from = estimate, values_from = cant_mean:cant_pos_sd) %>% 
  drop_na()

cant_zonal_wide <- cant_zonal_wide %>% 
  mutate(cant_pos_mean_delta = cant_pos_mean_JDM - cant_pos_mean_G19,
         cant_mean_delta = cant_mean_JDM - cant_mean_G19)

2 Color scale

For ease of comparison with Gruber et al (2019) we adapt their color scale, including the ranges and breaks applied in various types of visualizations.

rgb2hex <- function(r, g, b)
  rgb(r, g, b, maxColorValue = 100)

cols = c(rgb2hex(95, 95, 95),
         rgb2hex(0, 0, 95),
         rgb2hex(100, 0, 0),
         rgb2hex(100, 100, 0))

Gruber_rainbow <- colorRampPalette(cols)

rm(rgb2hex, cols)

3 Cant budgets

Global Cant inventories were estimated in Pg-C, based on all vs positive only Cant estimates. Please note that here we only added cant values in the upper 3000m and do not apply additional corrections for areas not covered.

cant_inventory_budget <- cant_inventory_long %>% 
  mutate(surface_area = earth_surf(lat, lon),
         cant_inv_grid = cant_inv*surface_area,
         cant_pos_inv_grid = cant_pos_inv*surface_area) %>% 
  group_by(basin_AIP, estimate) %>% 
  summarise(cant_total = sum(cant_inv_grid)*12*1e-15,
            cant_total = round(cant_total,1),
            cant_pos_total = sum(cant_pos_inv_grid)*12*1e-15,
            cant_pos_total = round(cant_pos_total,1)) %>% 
  ungroup()


cant_inventory_budget %>%
  gt(rowname_col = "basin_AIP",
     groupname_col = c("estimate")) %>% 
  summary_rows(
    groups = TRUE,
    fns = list(total = "sum")
  )
cant_total cant_pos_total
G19
Atlantic 10.8 11.0
Indian 5.6 6.9
Pacific 12.5 13.2
total 28.90 31.10
JDM
Atlantic 9.9 10.3
Indian 10.1 10.3
Pacific 17.5 18.1
total 37.50 38.70
rm(cant_inventory_budget)

4 Cant - positive only

In a first series of plots we explore the distribution of cant, taking only positive estimates into account (positive here refers to the mean cant estimate across 10 eMLR model predictions available for each grid cell). Negative values were set to zero before calculating mean sections and inventories.

4.1 Inventory map

4.1.1 Absolute values

Column inventory of positive cant between the surface and 3000m water depth per horizontal grid cell (lat x lon).

breaks <- c(seq(0, 16, 2), Inf)
breaks_n <- length(breaks) - 1

cant_inventory_long <- cant_inventory_long %>%
  mutate(cant_pos_inv_int = cut(cant_pos_inv,
                                breaks,
                                right = FALSE))

map +
  geom_raster(data = cant_inventory_long,
              aes(lon, lat, fill = cant_pos_inv_int)) +
  # scale_fill_manual(values = Gruber_rainbow(breaks_n)) +
  scale_fill_scico_d(palette = "batlow", direction = -1) +
  facet_wrap(~ estimate, ncol = 1)

4.1.2 Offset

Column inventory of positive cant between the surface and 3000m water depth per horizontal grid cell (lat x lon).

breaks <- c(-Inf, seq(-15, 15, 3), Inf)

map +
  geom_raster(data = cant_inventory_wide,
              aes(lon, lat, fill = cut(cant_pos_inv_delta, breaks))) +
  scale_fill_scico_d(palette = "vik", drop = FALSE,
                     name = expression(atop(Delta~C[ant],
                                            "JDM-G19")))

4.2 Zonal mean sections

4.2.1 Absolute values

breaks <- c(seq(0,18,1),Inf)
breaks_n <- length(breaks) - 1

cant_zonal_long <- cant_zonal_long %>% 
  mutate(cant_pos_mean_int = cut(cant_pos_mean, 
                                breaks,
                                right = FALSE))

zonal_section <- function(df, i_basin_AIP, i_estimate, var) {
  
  name_var <- var
  var <- sym(var)
  
  lat_max <- max(df$lat)
  lat_min <- min(df$lat)
  
  df_sub <- df %>% 
    filter(basin_AIP == i_basin_AIP,
           estimate == i_estimate)
  
  surface <- df_sub %>%
    ggplot(aes(lat, depth, z = !!var)) +
    geom_contour_filled(breaks = breaks) +
    scale_fill_manual(values = Gruber_rainbow(breaks_n),
                      name = "cant") +
    coord_cartesian(expand = 0,
                    ylim = c(500, 0),
                    xlim = c(lat_min, lat_max)) +
    scale_y_reverse() +
    scale_x_continuous(breaks = seq(-100,100,20)) +
    theme(
      axis.title.x = element_blank(),
      axis.text.x = element_blank(),
      axis.ticks.x = element_blank()
    ) +
    labs(y = "Depth (m)",
         title = paste("Basin:", i_basin_AIP, "| estimate:", i_estimate))
  
  deep <- df_sub %>%
    ggplot(aes(lat, depth, z = !!var)) +
    geom_contour_filled(breaks = breaks) +
    scale_fill_manual(values = Gruber_rainbow(breaks_n),
                      name = "cant") +
    scale_y_reverse() +
    scale_x_continuous(breaks = seq(-100,100,20)) +
    coord_cartesian(expand = 0,
                    ylim = c(3000, 500),
                    xlim = c(lat_min, lat_max)) +
    labs(x = "latitude (°N)", y = "Depth (m)")
  
  surface / deep +
    plot_layout(guides = "collect")
  
}


for (i_basin_AIP in unique(cant_zonal_long$basin_AIP)) {
  for (i_estimate in unique(cant_zonal_long$estimate)) {

  print(zonal_section(cant_zonal_long,
                        i_basin_AIP = i_basin_AIP,
                        i_estimate = i_estimate,
                        "cant_pos_mean"))
    
  }
}

rm(breaks, breaks_n)

4.2.2 Offset

breaks <- c(-Inf,seq(-16,16,2),Inf)
breaks_n <- length(breaks) - 1

zonal_section <- function(df, i_basin_AIP, var) {
  
  # df <- cant_zonal_wide
  # i_basin_AIP <- unique(cant_zonal_wide$basin_AIP)[1]
  # var <- "cant_pos_mean_delta"
  
  name_var <- var
  var <- sym(var)
  
  lat_max <- max(df$lat)
  lat_min <- min(df$lat)
  
  df_sub <- df %>% 
    filter(basin_AIP == i_basin_AIP)
  
  surface <- df_sub %>%
    ggplot(aes(lat, depth, z = !!var)) +
    geom_contour_filled(breaks = breaks) +
    scale_fill_scico_d(palette = "vik", drop = FALSE) +
    coord_cartesian(expand = 0,
                    ylim = c(500, 0),
                    xlim = c(lat_min, lat_max)) +
    scale_y_reverse() +
    scale_x_continuous(breaks = seq(-100,100,20)) +
    theme(
      axis.title.x = element_blank(),
      axis.text.x = element_blank(),
      axis.ticks.x = element_blank()
    ) +
    labs(y = "Depth (m)",
         title = paste("Basin:", i_basin_AIP))
  
  deep <- df_sub %>%
    ggplot(aes(lat, depth, z = !!var)) +
    geom_contour_filled(breaks = breaks) +
    scale_fill_scico_d(palette = "vik", drop = FALSE) +
    scale_y_reverse() +
    scale_x_continuous(breaks = seq(-100,100,20)) +
    coord_cartesian(expand = 0,
                    ylim = c(3000, 500),
                    xlim = c(lat_min, lat_max)) +
    labs(x = "latitude (°N)", y = "Depth (m)")
  
  surface / deep +
    plot_layout(guides = "collect")
  
}


for (i_basin_AIP in unique(cant_zonal_long$basin_AIP)) {

  print(zonal_section(cant_zonal_wide,
                        i_basin_AIP = i_basin_AIP,
                        "cant_pos_mean_delta"))
    
}

rm(breaks, breaks_n)

5 Cant - all

In a first series of plots we explore the distribution of cant, taking only positive estimates into account (positive here refers to the mean cant estimate across 10 eMLR model predictions available for each grid cell). Negative values were set to zero before calculating mean sections and inventories.

5.1 Inventory map

5.1.1 Absolute values

Column inventory of Cant (including positive and negative values) between the surface and 3000m water depth per horizontal grid cell (lat x lon).

breaks <- c(-Inf,seq(-16,16,2),Inf)

map +
  geom_raster(data = cant_inventory_long,
              aes(lon, lat, fill = cut(cant_inv, breaks))) +
  scale_fill_scico_d(palette = "vik", drop = FALSE) +
  facet_wrap(~ estimate, labeller = label_both, ncol = 1)

5.1.2 Offset

breaks <- c(-Inf,seq(-15,15,3),Inf)

map +
   geom_raster(data = cant_inventory_wide,
               aes(lon, lat, fill = cut(cant_inv_delta, breaks))) +
    scale_fill_scico_d(palette = "vik", drop = FALSE,
                     name = expression(atop(Delta~C[ant],
                                            "JDM-G19")))

5.2 Zonal mean sections

5.2.1 Absolute values

breaks <- c(-Inf,seq(-16,16,2),Inf)
breaks_n <- length(breaks) - 1

zonal_section <- function(df, i_basin_AIP, i_estimate, var) {
  
  # df <- cant_zonal_long
  # i_basin_AIP <- unique(cant_zonal_long$basin_AIP)[1]
  # i_estimate <- unique(cant_zonal_long$estimate)[1]
  # var <- "cant_mean"
  
  name_var <- var
  var <- sym(var)
  
  lat_max <- max(df$lat)
  lat_min <- min(df$lat)
  
  df_sub <- df %>% 
    filter(basin_AIP == i_basin_AIP,
           estimate == i_estimate)
  
  surface <- df_sub %>%
    ggplot(aes(lat, depth, z = !!var)) +
    geom_contour_filled(breaks = breaks) +
    scale_fill_scico_d(palette = "vik", drop = FALSE) +
    coord_cartesian(expand = 0,
                    ylim = c(500, 0),
                    xlim = c(lat_min, lat_max)) +
    scale_y_reverse() +
    scale_x_continuous(breaks = seq(-100,100,20)) +
    theme(
      axis.title.x = element_blank(),
      axis.text.x = element_blank(),
      axis.ticks.x = element_blank()
    ) +
    labs(y = "Depth (m)",
         title = paste("Basin:", i_basin_AIP))
  
  deep <- df_sub %>%
    ggplot(aes(lat, depth, z = !!var)) +
    geom_contour_filled(breaks = breaks) +
    scale_fill_scico_d(palette = "vik", drop = FALSE) +
    scale_y_reverse() +
    scale_x_continuous(breaks = seq(-100,100,20)) +
    coord_cartesian(expand = 0,
                    ylim = c(3000, 500),
                    xlim = c(lat_min, lat_max)) +
    labs(x = "latitude (°N)", y = "Depth (m)")
  
  surface / deep +
    plot_layout(guides = "collect")
  
}


for (i_basin_AIP in unique(cant_zonal_long$basin_AIP)) {
  for (i_estimate in unique(cant_zonal_long$estimate)) {

  print(zonal_section(cant_zonal_long,
                        i_basin_AIP = i_basin_AIP,
                        i_estimate = i_estimate,
                        "cant_mean"))
    
  }
}

rm(breaks, breaks_n)

5.2.2 Offset

breaks <- c(-Inf,seq(-15,15,3),Inf)
breaks_n <- length(breaks) - 1

zonal_section <- function(df, i_basin_AIP, i_estimate, var) {
  
  df <- cant_zonal_wide
  i_basin_AIP <- unique(cant_zonal_long$basin_AIP)[1]
  var <- "cant_mean_delta"
  
  name_var <- var
  var <- sym(var)
  
  lat_max <- max(df$lat)
  lat_min <- min(df$lat)
  
  df_sub <- df %>% 
    filter(basin_AIP == i_basin_AIP)
  
  surface <- df_sub %>%
    ggplot(aes(lat, depth, z = !!var)) +
    geom_contour_filled(breaks = breaks) +
    scale_fill_scico_d(palette = "vik", drop = FALSE) +
    coord_cartesian(expand = 0,
                    ylim = c(500, 0),
                    xlim = c(lat_min, lat_max)) +
    scale_y_reverse() +
    scale_x_continuous(breaks = seq(-100,100,20)) +
    theme(
      axis.title.x = element_blank(),
      axis.text.x = element_blank(),
      axis.ticks.x = element_blank()
    ) +
    labs(y = "Depth (m)",
         title = paste("Basin:", i_basin_AIP))
  
  deep <- df_sub %>%
    ggplot(aes(lat, depth, z = !!var)) +
    geom_contour_filled(breaks = breaks) +
    scale_fill_scico_d(palette = "vik", drop = FALSE) +
    scale_y_reverse() +
    scale_x_continuous(breaks = seq(-100,100,20)) +
    coord_cartesian(expand = 0,
                    ylim = c(3000, 500),
                    xlim = c(lat_min, lat_max)) +
    labs(x = "latitude (°N)", y = "Depth (m)")
  
  surface / deep +
    plot_layout(guides = "collect")
  
}


for (i_basin_AIP in unique(cant_zonal_long$basin_AIP)) {

  print(zonal_section(cant_zonal_wide,
                        i_basin_AIP = i_basin_AIP,
                        "cant_mean_delta"))
    

}

rm(breaks, breaks_n)

6 Known issues

Deviations between this study and the results by Gruber et al (2019), short G19, for the same period, might be attributable to following known differences in the implementation of the eMLR(C*) method:

  • GLODAPv2_2020 here vs an extended version of GLODAPv2 in G19
  • flagging: Here, we accept f flags 0 and 2 (except for tco2, where only 0 is accepted). G19 claim to use 0 throughout, yet have a high coverage of talk observations in the SE Pacific
  • Neutral density calculation: Here and in GLODAPv2_2020 a polynomial approximation is used, whereas G19 uses the original Matlab code
  • Predictor climatology: Here we used WOA18, whereas G19 used WOA13
  • Missing data in the GLODAP mapped climatology, eg NO3 at surface, where not filled in this study
  • cant on neutral density levels calculate as slab mean, rather than on one surface
  • Here, surface delta cant were calculated based on Luecker constants, rather than Mehrbach as in G19
  • Here, pCO2 was calculated from DIC/TA Climatology

sessionInfo()
R version 4.0.2 (2020-06-22)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 18363)

Matrix products: default

locale:
[1] LC_COLLATE=English_Germany.1252  LC_CTYPE=English_Germany.1252   
[3] LC_MONETARY=English_Germany.1252 LC_NUMERIC=C                    
[5] LC_TIME=English_Germany.1252    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] gt_0.2.2         marelac_2.1.10   shape_1.4.4      collapse_1.3.2  
 [5] kableExtra_1.1.0 metR_0.7.0       scales_1.1.1     scico_1.2.0     
 [9] patchwork_1.0.1  forcats_0.5.0    stringr_1.4.0    dplyr_1.0.0     
[13] purrr_0.3.4      readr_1.3.1      tidyr_1.1.0      tibble_3.0.3    
[17] ggplot2_3.3.2    tidyverse_1.3.0  workflowr_1.6.2 

loaded via a namespace (and not attached):
 [1] fs_1.4.2          lubridate_1.7.9   gsw_1.0-5         webshot_0.5.2    
 [5] httr_1.4.2        rprojroot_1.3-2   tools_4.0.2       backports_1.1.8  
 [9] R6_2.4.1          DBI_1.1.0         colorspace_1.4-1  withr_2.2.0      
[13] tidyselect_1.1.0  compiler_4.0.2    git2r_0.27.1      cli_2.0.2        
[17] rvest_0.3.6       xml2_1.3.2        isoband_0.2.2     sandwich_2.5-1   
[21] labeling_0.3      sass_0.2.0        checkmate_2.0.0   digest_0.6.25    
[25] rmarkdown_2.3     oce_1.2-0         pkgconfig_2.0.3   htmltools_0.5.0  
[29] dbplyr_1.4.4      rlang_0.4.7       readxl_1.3.1      rstudioapi_0.11  
[33] generics_0.0.2    farver_2.0.3      zoo_1.8-8         jsonlite_1.7.0   
[37] magrittr_1.5      Formula_1.2-3     Matrix_1.2-18     Rcpp_1.0.5       
[41] munsell_0.5.0     fansi_0.4.1       lifecycle_0.2.0   stringi_1.4.6    
[45] whisker_0.4       yaml_2.2.1        grid_4.0.2        blob_1.2.1       
[49] parallel_4.0.2    promises_1.1.1    crayon_1.3.4      lattice_0.20-41  
[53] haven_2.3.1       hms_0.5.3         seacarb_3.2.13    knitr_1.30       
[57] pillar_1.4.6      reprex_0.3.0      glue_1.4.1        evaluate_0.14    
[61] data.table_1.13.0 modelr_0.1.8      vctrs_0.3.2       httpuv_1.5.4     
[65] testthat_2.3.2    cellranger_1.1.0  gtable_0.3.0      assertthat_0.2.1 
[69] xfun_0.16         xtable_1.8-4      broom_0.7.0       lfe_2.8-5.1      
[73] later_1.1.0.1     viridisLite_0.3.0 ellipsis_0.3.1    here_0.1