Last updated: 2020-11-25
Checks: 7 0
Knit directory: Cant_eMLR/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20200707)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 44d4ef3. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rproj.user/
Ignored: data/
Ignored: dump/
Untracked files:
Untracked: code/biogeochemical_functions.R
Untracked: code/test_scripts/analysis_previous_studies.Rmd
Untracked: code/test_scripts/read_World_Ocean_Atlas_2013_Clement.Rmd
Unstaged changes:
Modified: analysis/_site.yml
Deleted: analysis/analysis_previous_studies.Rmd
Modified: analysis/analysis_this_study.Rmd
Modified: analysis/analysis_this_study_vs_Gruber_2019.Rmd
Modified: analysis/child/setup.Rmd
Modified: analysis/mapping_cant_calculation.Rmd
Modified: analysis/mapping_cstar_calculation.Rmd
Deleted: analysis/read_World_Ocean_Atlas_2013_Clement.Rmd
Modified: code/Workflowr_project_managment.R
Modified: code/mapping_functions.R
Modified: code/plotting_functions.R
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/mapping_predictor_preparation.Rmd
) and HTML (docs/mapping_predictor_preparation.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 44d4ef3 | jens-daniel-mueller | 2020-11-25 | republish after creating functions |
html | b9cbd4f | jens-daniel-mueller | 2020-11-20 | Build site. |
html | e563eef | jens-daniel-mueller | 2020-11-20 | Build site. |
Rmd | 6b50088 | jens-daniel-mueller | 2020-11-20 | rebuild all with seperate set-up and harmonized variable names |
html | 064d52f | jens-daniel-mueller | 2020-11-20 | Build site. |
Rmd | 7ffabe6 | jens-daniel-mueller | 2020-11-20 | use setup child Rmd file |
html | fc70a34 | jens-daniel-mueller | 2020-11-10 | Build site. |
html | b170b79 | jens-daniel-mueller | 2020-11-03 | Build site. |
html | 411a35b | jens-daniel-mueller | 2020-10-02 | Build site. |
html | 0d38979 | jens-daniel-mueller | 2020-10-01 | Build site. |
html | 4578cfa | jens-daniel-mueller | 2020-09-19 | Build site. |
html | d59f716 | jens-daniel-mueller | 2020-09-18 | Build site. |
html | f5a20ac | jens-daniel-mueller | 2020-09-17 | Build site. |
html | cf64460 | jens-daniel-mueller | 2020-09-17 | Build site. |
html | d43d9e2 | jens-daniel-mueller | 2020-09-16 | Build site. |
Rmd | 9529ad2 | jens-daniel-mueller | 2020-09-16 | PO4 and silicate included for pCO2 and revelle factor calculation |
html | 1f3319a | jens-daniel-mueller | 2020-09-16 | Build site. |
html | 2e57b3f | jens-daniel-mueller | 2020-09-16 | Build site. |
Rmd | e45d875 | jens-daniel-mueller | 2020-09-16 | jonied surface predictor fields |
html | da91d98 | jens-daniel-mueller | 2020-09-10 | Build site. |
html | 4c73801 | jens-daniel-mueller | 2020-09-10 | Build site. |
Rmd | da66d06 | jens-daniel-mueller | 2020-09-10 | global section plots modified |
html | f6f30c0 | jens-daniel-mueller | 2020-09-10 | Build site. |
Rmd | f74449b | jens-daniel-mueller | 2020-09-10 | global section plots added |
html | a34a239 | jens-daniel-mueller | 2020-09-10 | Build site. |
Rmd | 143fbd7 | jens-daniel-mueller | 2020-09-10 | global section plot added |
html | e60e13c | jens-daniel-mueller | 2020-09-09 | Build site. |
Rmd | 7040b80 | jens-daniel-mueller | 2020-09-09 | remove basin_AIP not covered by mapping |
html | c3ffdfd | jens-daniel-mueller | 2020-09-08 | Build site. |
Rmd | 04ee730 | jens-daniel-mueller | 2020-09-08 | rebuild after revision |
html | a50f053 | jens-daniel-mueller | 2020-09-07 | Build site. |
html | da445a6 | jens-daniel-mueller | 2020-09-04 | Build site. |
html | fa11a74 | jens-daniel-mueller | 2020-09-02 | Build site. |
html | 429aab3 | jens-daniel-mueller | 2020-09-01 | Build site. |
html | f4216dd | jens-daniel-mueller | 2020-09-01 | Build site. |
Rmd | 8f3ce45 | jens-daniel-mueller | 2020-09-01 | rebuild without PO4 star selection, oxygen only |
html | 13a76d5 | jens-daniel-mueller | 2020-08-28 | Build site. |
Rmd | 2e6a4ca | jens-daniel-mueller | 2020-08-28 | XXX |
html | 27404de | jens-daniel-mueller | 2020-08-27 | Build site. |
html | 78feb87 | jens-daniel-mueller | 2020-08-27 | Build site. |
Rmd | 42e98c8 | jens-daniel-mueller | 2020-08-27 | section plots for all regular longitude added |
html | 9ba6c6f | jens-daniel-mueller | 2020-08-27 | Build site. |
Rmd | a503cab | jens-daniel-mueller | 2020-08-27 | section plots for all regular longitude added |
html | cbb9282 | jens-daniel-mueller | 2020-08-27 | Build site. |
Rmd | bdb5c02 | jens-daniel-mueller | 2020-08-27 | section plots for all regular longitude added |
html | 533920b | jens-daniel-mueller | 2020-08-27 | Build site. |
Rmd | 94fbf0f | jens-daniel-mueller | 2020-08-27 | section plots for all regular longitude added |
html | 2ddebe0 | jens-daniel-mueller | 2020-08-27 | Build site. |
Rmd | 7bf17cd | jens-daniel-mueller | 2020-08-27 | removed control plots |
html | b6d0e6a | jens-daniel-mueller | 2020-08-27 | Build site. |
html | f40e48b | jens-daniel-mueller | 2020-08-26 | Build site. |
html | ec20f40 | jens-daniel-mueller | 2020-08-24 | Build site. |
Rmd | a804955 | jens-daniel-mueller | 2020-08-24 | split mapping into 2 rmds, po4star selection in parameters, use po4star nitrate |
Loading libraries specific to the the analysis performed in this section.
library(metR)
library(marelac)
library(gsw)
All required data sets were subsetted spatially in the read-in section Data base. Currently, following data sets are used for mapping:
Following variables are currently used:
variables <-
c("oxygen", "PO4", "silicate")
for (i_variable in variables) {
temp <- read_csv(
here::here(
"data/interim",
paste("GLODAPv2_2016_MappedClimatology",i_variable, ".csv", sep = "")
)
)
if (exists("GLODAP_predictors")) {
GLODAP_predictors <- full_join(GLODAP_predictors, temp)
}
if (!exists("GLODAP_predictors")) {
GLODAP_predictors <- temp
}
}
rm(temp, i_variable, variables)
GLODAP_predictors <- GLODAP_predictors %>%
rename(phosphate = PO4)
# removed na's attributable to slightly different coverage of predictor fields
GLODAP_predictors <- GLODAP_predictors %>%
drop_na()
variables <-
c("PO4", "silicate", "TAlk", "TCO2")
for (i_variable in variables) {
temp <- read_csv(
here::here(
"data/interim",
paste("GLODAPv2_2016_MappedClimatology",i_variable, ".csv", sep = "")
)
)
if (exists("GLODAP_predictors_CO2")) {
GLODAP_predictors_CO2 <- full_join(GLODAP_predictors_CO2, temp)
}
if (!exists("GLODAP_predictors_CO2")) {
GLODAP_predictors_CO2 <- temp
}
}
rm(temp, i_variable, variables)
GLODAP_predictors_CO2 <- GLODAP_predictors_CO2 %>%
rename(phosphate = PO4)
# removed na's attributable to slightly different coverage of predictor fields
GLODAP_predictors_CO2 <- GLODAP_predictors_CO2 %>%
drop_na()
WOA18_predictors <-
read_csv(
here::here(
"data/interim",
"WOA18_sal_tem.csv"
)
)
WOA18_predictors_surface <-
read_csv(
here::here(
"data/interim",
"WOA18_sal_tem_surface.csv"
)
)
WOA18 and GLODAP predictor climatologies are merged. Only horizontal grid cells with observations from both predictor fields are kept.
CAVEAT: Coverage of GLODAP climatologies differs slightly for parameters (some are NA in some regions)
predictors <- full_join(
GLODAP_predictors,
WOA18_predictors)
predictors <- predictors %>%
drop_na()
rm(GLODAP_predictors, WOA18_predictors)
predictors_surface <- full_join(
GLODAP_predictors_CO2,
WOA18_predictors_surface)
predictors_surface <- predictors_surface %>%
drop_na()
rm(GLODAP_predictors_CO2, WOA18_predictors_surface)
Three maps are generated to control successful merging of data sets.
p_map_climatology_continous(predictors, "phosphate")
p_map_climatology_continous(predictors, "tem")
Three maps are generated to control successful merging of data sets.
p_map_climatology_continous(predictors_surface, "TAlk")
p_map_climatology_continous(predictors_surface, "TCO2")
p_map_climatology_continous(predictors_surface, "sal")
p_map_climatology_continous(predictors_surface, "tem")
Likewise, predictor profiles for the North Atlantic (40.5 / 335.5) are plotted to control successful merging of the data sets.
N_Atl <- predictors %>%
filter(lat == parameters$lat_Atl_profile,
lon == parameters$lon_Atl_section)
N_Atl <- N_Atl %>%
select(-c(basin, basin_AIP)) %>%
pivot_longer(oxygen:gamma, names_to = "parameter", values_to = "value")
N_Atl %>%
ggplot(aes(value, depth)) +
geom_path() +
geom_point() +
scale_y_reverse() +
facet_wrap(~parameter,
scales = "free_x",
ncol = 2)
rm(N_Atl)
The predictor PO4* was be calculated according to Clement and Gruber (2018), ie based on oxygen. Please note that an errornous equations for PO4* calculation is given in the supplement of Gruber et al (2019), based on nitrate.
predictors <- predictors %>%
mutate(phosphate_star = b_phosphate_star(phosphate, oxygen))
p_map_climatology_divergent(predictors, "phosphate_star")
p_section_global_divergent(predictors, "phosphate_star")
AOU was calculated as the difference between saturation concentration and observed concentration. CAVEAT: Algorithms used to calculate oxygen saturation concentration are not yet identical in GLODAP data set (fitting) and predictor climatologies (mapping).
predictors <- predictors %>%
mutate(aou = b_aou(sal, tem, depth, oxygen))
p_map_climatology_continous(predictors, "aou")
p_section_global_divergent(predictors, "aou")
The following boundaries for isoneutral slabs were defined:
Continuous neutral density (gamma) values based on WOA18 are grouped into isoneutral slabs.
predictors <- m_cut_gamma(predictors, "gamma")
Predictor sections along with lines are shown below for each (potential) predictor variable.
map +
geom_bin2d(data = predictors,
aes(lon, lat),
binwidth = c(1,1)) +
geom_vline(xintercept = parameters$longitude_sections_regular,
col = "white") +
scale_fill_viridis_c(direction = -1) +
theme(legend.position = "bottom")
vars <-
c(
"gamma",
"sal",
"tem",
"phosphate",
"phosphate_star",
"oxygen",
"aou",
"silicate"
)
# i_var <- vars[1]
for (i_var in vars) {
print(p_section_climatology_regular_continous(predictors, i_var))
}
Predictor sections along with lines are shown below for each (potential) predictor variable.
map +
geom_bin2d(data = predictors_surface,
aes(lon, lat),
binwidth = c(1,1)) +
geom_vline(xintercept = parameters$longitude_sections_regular,
col = "white") +
scale_fill_viridis_c(direction = -1) +
theme(legend.position = "bottom")
vars <-
c(
"gamma",
"sal",
"tem",
"TCO2",
"TAlk"
)
for (i_var in vars) {
print(p_section_climatology_regular_continous(predictors_surface, i_var))
}
predictors %>%
write_csv(here::here("data/mapping",
"W18_st_G16_opsn.csv"))
predictors_surface %>%
write_csv(here::here("data/mapping",
"W18_st_G16_opsn_surface.csv"))
sessionInfo()
R version 4.0.2 (2020-06-22)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 18363)
Matrix products: default
locale:
[1] LC_COLLATE=English_Germany.1252 LC_CTYPE=English_Germany.1252
[3] LC_MONETARY=English_Germany.1252 LC_NUMERIC=C
[5] LC_TIME=English_Germany.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] gsw_1.0-5 testthat_2.3.2 marelac_2.1.10 shape_1.4.4
[5] metR_0.7.0 scico_1.2.0 patchwork_1.0.1 collapse_1.3.2
[9] forcats_0.5.0 stringr_1.4.0 dplyr_1.0.0 purrr_0.3.4
[13] readr_1.3.1 tidyr_1.1.0 tibble_3.0.3 ggplot2_3.3.2
[17] tidyverse_1.3.0 workflowr_1.6.2
loaded via a namespace (and not attached):
[1] httr_1.4.2 viridisLite_0.3.0 jsonlite_1.7.0 here_0.1
[5] modelr_0.1.8 Formula_1.2-3 assertthat_0.2.1 blob_1.2.1
[9] cellranger_1.1.0 yaml_2.2.1 pillar_1.4.6 backports_1.1.8
[13] lattice_0.20-41 glue_1.4.1 digest_0.6.25 promises_1.1.1
[17] checkmate_2.0.0 rvest_0.3.6 colorspace_1.4-1 sandwich_2.5-1
[21] htmltools_0.5.0 httpuv_1.5.4 Matrix_1.2-18 pkgconfig_2.0.3
[25] broom_0.7.0 seacarb_3.2.13 haven_2.3.1 xtable_1.8-4
[29] scales_1.1.1 whisker_0.4 later_1.1.0.1 git2r_0.27.1
[33] farver_2.0.3 generics_0.0.2 ellipsis_0.3.1 withr_2.2.0
[37] cli_2.0.2 magrittr_1.5 crayon_1.3.4 readxl_1.3.1
[41] evaluate_0.14 fs_1.4.2 fansi_0.4.1 xml2_1.3.2
[45] oce_1.2-0 tools_4.0.2 data.table_1.13.0 hms_0.5.3
[49] lifecycle_0.2.0 munsell_0.5.0 reprex_0.3.0 isoband_0.2.2
[53] compiler_4.0.2 lfe_2.8-5.1 rlang_0.4.7 grid_4.0.2
[57] rstudioapi_0.11 labeling_0.3 rmarkdown_2.3 gtable_0.3.0
[61] DBI_1.1.0 R6_2.4.1 zoo_1.8-8 lubridate_1.7.9
[65] knitr_1.30 rprojroot_1.3-2 stringi_1.4.6 parallel_4.0.2
[69] Rcpp_1.0.5 vctrs_0.3.2 dbplyr_1.4.4 tidyselect_1.1.0
[73] xfun_0.16