Last updated: 2020-08-05

Checks: 7 0

Knit directory: Cant_eMLR/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200707) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 392f594. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/
    Ignored:    data/GLODAPv2_2016b_MappedClimatologies/
    Ignored:    data/GLODAPv2_2020/
    Ignored:    data/WOCE/
    Ignored:    data/World_Ocean_Atlas_2018/
    Ignored:    data/dclement/
    Ignored:    data/eMLR/
    Ignored:    data/pCO2_atmosphere/
    Ignored:    dump/

Untracked files:
    Untracked:  analysis/test_scripts/

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/mapping.Rmd) and HTML (docs/mapping.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 392f594 jens-daniel-mueller 2020-08-05 included inventory maps
html 55d928f jens-daniel-mueller 2020-08-05 Build site.
Rmd baee222 jens-daniel-mueller 2020-08-05 Cant sd included and maps updated
html 478024a jens-daniel-mueller 2020-08-04 Build site.
Rmd 1356e56 jens-daniel-mueller 2020-08-04 Cant plots per basin
html a95daf0 jens-daniel-mueller 2020-08-04 Build site.
Rmd 810fc7b jens-daniel-mueller 2020-08-04 first completed Cant map
html eb244fb jens-daniel-mueller 2020-08-04 Build site.
Rmd c834496 jens-daniel-mueller 2020-08-04 formatting
html e29d39d jens-daniel-mueller 2020-08-04 Build site.
Rmd 1443a30 jens-daniel-mueller 2020-08-04 Included gamma values from Clement based on WOA13
html 9dc5d7f jens-daniel-mueller 2020-07-29 Build site.
html 21524b4 jens-daniel-mueller 2020-07-29 Build site.
html 4f80a27 jens-daniel-mueller 2020-07-28 Build site.
Rmd c63f537 jens-daniel-mueller 2020-07-28 included model coeffcients in mapping
html 4eebe14 jens-daniel-mueller 2020-07-24 Build site.
Rmd 12f9ef2 jens-daniel-mueller 2020-07-24 started neutral density calculation
html 2e08795 jens-daniel-mueller 2020-07-24 Build site.
html 64978a1 jens-daniel-mueller 2020-07-24 Build site.
Rmd 7cbc7ec jens-daniel-mueller 2020-07-24 first publish

library(tidyverse)
library(lubridate)
library(oce)
library(marelac)
library(metR)

1 Required data

Currently we use following data sets for mapping:

  • GLODAPv2_2016b_MappedClimatologies
    • Salinity
    • Temperature
    • Phosphate
    • Nitrate
    • Silicate
    • oxygen
  • World Ocean Atlas 2013
    • Neutral densities calculated by D Clement
  • World Ocean Atlas 2018
    • basin mask
  • eMLR model coefficients

We aim to use WOA18 instead of WOA13, but still need to implement neutral density calculation.

variables <- c("salinity", "temperature", "NO3", "oxygen", "PO4", "silicate")

for (i_variable in variables) {
  
  # i_variable <- variables[2]
  # print(i_variable)
  temp <- read_csv(
    here::here("data/GLODAPv2_2016b_MappedClimatologies/_summarized_files",
               paste(i_variable,".csv", sep = "")))
  
  if (exists("GLODAP_predictors")) {
     GLODAP_predictors <- full_join(GLODAP_predictors, temp)
  }
  
  if (!exists("GLODAP_predictors")) {
    GLODAP_predictors <- temp
  }

}

rm(temp, i_variable, variables)

# GLODAP_depths <- unique(GLODAP_predictors$depth)
# GLODAP_lon <- unique(GLODAP_predictors$lon)
# min(GLODAP_lon)
# max(GLODAP_lon)
WOA18_predictors <-
  read_csv(here::here("data/World_Ocean_Atlas_2018/_summarized_files",
                       "WOA18_predictors.csv"))

WOA18_predictors <- WOA18_predictors %>% 
  rename(salinity = s_an, temperature = t_an)

# WOA18_depths <- unique(WOA18_predictors$depth)
WOA13 <-
  read_csv(here::here("data/World_Ocean_Atlas_2018/_summarized_files",
                       "WOA13_mask_gamma.csv"))

WOA13_gamma <- WOA13 %>% 
  select(-mask)

WOA13_gamma <- WOA13_gamma %>% 
  rename(lat = latitude, lon = longitude) %>% 
  mutate(lon = if_else(lon > 180, lon - 360, lon))

rm(WOA13)

# WOA13_depths <- unique(WOA13_gamma$depth)
# GLODAP_depths - WOA13_depths
basinmask <- read_csv(here::here("data/World_Ocean_Atlas_2018/_summarized_files",
                                 "basin_mask_WOA18.csv"))
all_lm <- read_csv(here::here("data/eMLR",
                              "all_lm.csv"))

2 Join predictor climatologies

CAVEAT: Coverage of GLODAP climatologies differs slightly for parameters (some are NA in some regions)

2.1 Control plots

Maps of number of observations per horizontal grid cell.

2.1.1 GLODAP climatology

GLODAP_n <- GLODAP_predictors %>% 
  drop_na() %>% 
  group_by(lat, lon) %>% 
  summarise(n = n()) %>% 
  ungroup()

GLODAP_n %>%
  ggplot(aes(lon, lat, fill = n)) +
  geom_raster() +
  scale_fill_viridis_c(direction = -1) +
  coord_quickmap(expand = 0) +
  theme(legend.position = "bottom")

rm(GLODAP_n)

2.1.2 WOA13 climatology

WOA13_gamma_n <- WOA13_gamma %>% 
  drop_na() %>% 
  group_by(lat, lon) %>% 
  summarise(n = n()) %>% 
  ungroup()

WOA13_gamma_n %>%
  ggplot(aes(lon, lat, fill = n)) +
  geom_raster() +
  scale_fill_viridis_c(direction = -1) +
  coord_quickmap(expand = 0) +
  theme(legend.position = "bottom")

rm(WOA13_gamma_n)

2.2 WOA13 + GLODAP

predictors <- full_join(GLODAP_predictors, WOA13_gamma)
rm(GLODAP_predictors, WOA13_gamma)

predictors <- predictors %>% 
  group_by(lat, lon) %>% 
  mutate(n_NO3 = sum(!is.na(NO3)),
         n_oxygen = sum(!is.na(oxygen)),
         n_PO4 = sum(!is.na(PO4)),
         n_silicate = sum(!is.na(silicate)),
         n_salinity = sum(!is.na(salinity)),
         n_temperature = sum(!is.na(temperature)),
         n_gamma = sum(!is.na(gamma))) %>% 
  ungroup()

predictors <- predictors %>% 
  filter(n_NO3 > 0,
         n_oxygen > 0,
         n_PO4 > 0,
         n_silicate > 0, 
         n_salinity > 0, 
         n_temperature > 0, 
         n_gamma > 0) %>% 
  select(-c(n_NO3, 
            n_oxygen, 
            n_PO4, 
            n_silicate, 
            n_salinity, 
            n_temperature,
            n_gamma))


predictors <- predictors %>% 
  drop_na()

2.2.1 Spatial boundaries

min_depth <- 150
min_bottomdepth <- 500
max_lat <- 65

Only mapped variables were taken into consideration with:

  • minimum depth: 150m
  • minimum bottom depth: 500m
  • maximum latitude: 65°N
predictors <- predictors %>% 
  filter(depth >= min_depth)

predictors <- predictors %>% 
  filter(lat <= max_lat)

predictors <- predictors %>% 
  group_by(lat, lon) %>% 
  mutate(bottomdepth = max(depth)) %>% 
  ungroup()

predictors <- predictors %>% 
  filter(bottomdepth >= min_bottomdepth) %>% 
  select(-bottomdepth)

rm(min_depth, max_lat, min_bottomdepth)

2.2.2 Basin mask

Please note that some predictor variables are available outside the WOA18 basin mask and will be removed for further analysis.

predictors <- inner_join(predictors, basinmask)
rm(basinmask)

2.2.3 Maps

predictors %>%
  ggplot(aes(lon, lat)) +
  geom_bin2d(binwidth = c(1,1)) +
  scale_fill_viridis_c(direction = -1) +
  coord_quickmap(expand = 0) +
  theme(legend.position = "bottom")

predictors %>%
  filter(depth == 150) %>% 
  ggplot(aes(lon, lat, fill = PO4)) +
  geom_raster() +
  scale_fill_viridis_c() +
  coord_quickmap(expand = 0) +
  theme(legend.position = "bottom") +
  labs(title = "150m values")

predictors %>%
  filter(depth == 150) %>% 
  ggplot(aes(lon, lat, fill = gamma)) +
  geom_raster() +
  scale_fill_viridis_c() +
  coord_quickmap(expand = 0) +
  theme(legend.position = "bottom") +
  labs(title = "150m values")

2.2.4 Predictor profiles

N_Atl <- predictors %>% 
  filter(lat == 40.5, lon == -20.5)

N_Atl <- N_Atl %>% 
  pivot_longer(salinity:gamma, names_to = "parameter", values_to = "value")

N_Atl %>% 
  ggplot(aes(value, depth)) +
  geom_path() +
  geom_point() +
  scale_y_reverse() +
  facet_wrap(~parameter,
             scales = "free_x",
             ncol = 2)

rm(N_Atl)

2.3 WOA18 + GLODAP

WOA18 data are currently not used. Code chunks in this section are not executed.

predictors <- full_join(GLODAP_predictors, WOA18_predictors)
rm(GLODAP_predictors, WOA18_predictors)

predictors <- predictors %>% 
  group_by(lat, lon) %>% 
  mutate(n_NO3 = sum(!is.na(NO3)),
         n_oxygen = sum(!is.na(oxygen)),
         n_PO4 = sum(!is.na(PO4)),
         n_silicate = sum(!is.na(silicate)),
         n_salinity = sum(!is.na(salinity)),
         n_temperature = sum(!is.na(temperature))) %>% 
  ungroup()

predictors <- predictors %>% 
  filter(n_NO3 > 1,
         n_oxygen > 1,
         n_PO4 > 1,
         n_silicate > 1, 
         n_salinity > 1, 
         n_temperature > 1) %>% 
  select(-c(n_NO3 , n_oxygen , n_PO4 , n_silicate , n_salinity , n_temperature))

predictors %>%
  ggplot(aes(lon, lat)) +
  geom_bin2d(binwidth = c(1,1)) +
  scale_fill_viridis_c(direction = -1) +
  coord_quickmap(expand = 0) +
  theme(legend.position = "bottom")

predictors %>%
  filter(depth == 0) %>% 
  ggplot(aes(lon, lat, fill = PO4)) +
  geom_raster() +
  scale_fill_viridis_c() +
  coord_quickmap(expand = 0) +
  theme(legend.position = "bottom") +
  labs(title = "Surface values")

predictors %>%
  filter(depth == 0) %>% 
  ggplot(aes(lon, lat, fill = temperature)) +
  geom_raster() +
  scale_fill_viridis_c() +
  coord_quickmap(expand = 0) +
  theme(legend.position = "bottom") +
  labs(title = "Surface values")
predictors <- predictors %>% 
  group_by(lat, lon) %>% 
  arrange(depth) %>% 
  mutate(temperature = approxfun(depth, temperature, rule = 2)(depth),
         salinity = approxfun(depth, salinity, rule = 2)(depth)) %>% 
  ungroup()


predictors <- predictors %>% 
  filter(depth %in% GLODAP_depths)

3 Map Cant

3.1 PO4* calculation

Currently, the predictor PO4* is calculated according to Clement and Gruber (2018), ie based on oxygen rather than nitrate.

predictors <- predictors %>% 
  rename(phosphate = PO4) %>% 
  mutate(phosphate_star = phosphate + (oxygen / 170)  - 1.95)

3.2 AOU climatology

3.2.1 Calculation

predictors <- predictors %>% 
  mutate(oxygen_sat = gas_satconc(S = salinity,
                                  t = temperature,
                                  P = 1.013253,
                                  species = "O2"),
         aou = oxygen_sat - oxygen) %>% 
  select(-oxygen_sat)

3.2.2 Atlantic section

Atl_lon <- 335.5 - 360

predictors %>% 
  filter(lon == Atl_lon) %>% 
  ggplot(aes(lat, depth, z = aou)) +
  geom_contour_filled() +
  scale_y_reverse() +
  coord_cartesian(expand = 0) +
  theme(legend.position = "top")

rm(Atl_lon)

3.3 Isoneutral slabs

slabs_Atl <- c(
-Inf,
26.00,
26.50,
26.75,
27.00,
27.25,
27.50,
27.75,
27.85,
27.95,
28.05,
28.10,
28.15,
28.20,
Inf)

slabs_Ind_Pac <- c(
-Inf,
26.00,
26.50,
26.75,
27.00,
27.25,
27.50,
27.75,
27.85,
27.95,
28.05,
28.10,
Inf)

The following boundaries for isoneutral slabs were defined:

  • Atlantic: -, 26, 26.5, 26.75, 27, 27.25, 27.5, 27.75, 27.85, 27.95, 28.05, 28.1, 28.15, 28.2,
  • Indo-Pacific: -, 26, 26.5, 26.75, 27, 27.25, 27.5, 27.75, 27.85, 27.95, 28.05, 28.1,

Continous neutral densities (gamma) values from GLODAP are grouped into isoneutral slabs.

predictors_Atl <- predictors %>% 
  filter(basin == "Atlantic") %>% 
  mutate(gamma_slab = cut(gamma, slabs_Atl))

predictors_Ind_Pac <- predictors %>% 
  filter(basin == "Indo-Pacific") %>% 
  mutate(gamma_slab = cut(gamma, slabs_Ind_Pac))

predictors <- bind_rows(predictors_Atl, predictors_Ind_Pac)

rm(predictors_Atl, predictors_Ind_Pac, slabs_Atl, slabs_Ind_Pac)

3.4 Prepare model coefficients

all_lm <- all_lm %>% 
  select(term, estimate, basin, era, gamma_slab, model)

all_lm <- all_lm %>% 
  mutate(estimate = if_else(is.na(estimate), 0, estimate))

all_lm_wide <- all_lm %>% 
  pivot_wider(names_from = era, values_from = estimate,
              names_prefix = "coeff_")

all_lm_wide <- all_lm_wide %>% 
  mutate(JGOFS_GO = coeff_GO_SHIP - coeff_JGOFS_WOCE,
         GO_new = coeff_new_era - coeff_GO_SHIP) %>% 
  select(-c(coeff_JGOFS_WOCE,
            coeff_GO_SHIP,
            coeff_new_era))

all_lm_long <- all_lm_wide %>% 
  pivot_longer(JGOFS_GO:GO_new, names_to = "eras", values_to = "delta_coeff")

all_lm_wide <- all_lm_long %>% 
  pivot_wider(values_from = delta_coeff,
              names_from = term,
              names_prefix = "delta_coeff_",
              values_fill = 0)

rm(all_lm_long, all_lm)

3.5 Merge model + climatology

Cant <- full_join(predictors, all_lm_wide)

rm(predictors, all_lm_wide)

3.6 Calculate Cant

Cant <- Cant %>% 
  mutate(Cant = `delta_coeff_(Intercept)` +
           delta_coeff_aou * aou +
           delta_coeff_oxygen * oxygen +
           delta_coeff_phosphate * phosphate +
           delta_coeff_phosphate_star * phosphate_star +
           delta_coeff_silicate * silicate +
           delta_coeff_salinity * salinity + 
           delta_coeff_temperature * temperature)
Cant_model_average <- Cant %>% 
  mutate(Cant_pos = if_else(Cant < 0, 0, Cant)) %>% 
  group_by(lon, lat, depth, eras, basin) %>% 
  summarise(Cant_mean = mean(Cant),
            Cant_sd = sd(Cant),
            Cant_pos_mean = mean(Cant_pos),
            Cant_pos_sd = sd(Cant_pos),
            gamma_mean = mean(gamma)) %>% 
  ungroup()

Cant_model_average_zonal <- Cant_model_average %>% 
  group_by(lat, depth, eras, basin) %>% 
  summarise(Cant_mean_sd = sd(Cant_mean, na.rm = TRUE),
            Cant_mean = mean(Cant_mean, na.rm = TRUE),
            Cant_sd_mean = mean(Cant_sd, na.rm = TRUE),
            Cant_pos_mean_sd = sd(Cant_pos_mean, na.rm = TRUE),
            Cant_pos_mean = mean(Cant_pos_mean, na.rm = TRUE),
            Cant_pos_sd_mean = mean(Cant_pos_sd, na.rm = TRUE),
            gamma_mean = mean(gamma_mean)) %>% 
  ungroup()

4 Neutral density section

4.1 Mean values

The mean zonal distribution of neutral densities was calculated. CAVEAT: The binning here does not reflect the isoneutral density slabs used for MLR fitting.

Cant_model_average_zonal %>% 
  filter(depth <= 4500,
         lat > -60) %>% 
  ggplot(aes(lat, depth, z = gamma_mean)) +
  geom_contour_filled(binwidth = 0.25) +
  scale_fill_viridis_d(name = "Gamma",
                       direction = -1) +
  scale_y_reverse() +
  coord_cartesian(expand = 0) +
  guides(fill = guide_colorsteps(barheight = unit(10, "cm"))) +
  facet_grid(basin~eras)

5 Cant sections

5.1 Mean values

Cant_model_average_zonal %>% 
  filter(depth <= 4500,
         lat > -60) %>% 
  ggplot(aes(lat, depth, z = Cant_mean)) +
  geom_contour_fill(breaks = MakeBreaks(5),
                    na.fill = TRUE) +
  scale_fill_divergent(guide = "colorstrip",
                       breaks = MakeBreaks(5),
                       name = "Cant") +
  scale_y_reverse() +
  coord_cartesian(expand = 0) +
  guides(fill = guide_colorsteps(barheight = unit(10, "cm"))) +
  facet_grid(basin~eras)

5.2 Mean zonal standard deviation across MLR models

Standard deviation across Cant from all MLR models was calculate for each grid cell (XYZ). The zonal mean of this standard deviation should reflect the uncertainty associated to the predictor selection within each slab and era.

Cant_model_average_zonal %>% 
  filter(depth <= 4500,
         lat > -60) %>% 
  ggplot(aes(lat, depth, z = Cant_sd_mean)) +
  geom_contour_filled() +
  scale_fill_viridis_d(name = "Cant") +
  scale_y_reverse() +
  coord_cartesian(expand = 0) +
  guides(fill = guide_colorsteps(barheight = unit(10, "cm"))) +
  facet_grid(basin~eras)

5.3 Zonal standard deviation of mean Cant estimates

Standard deviation of mean Cant values was calculate across all longitudes. This standard deviation should reflect the zonal variability of Cant within the basin and era.

Cant_model_average_zonal %>% 
  filter(depth <= 4500,
         lat > -60) %>% 
  ggplot(aes(lat, depth, z = Cant_mean_sd)) +
  geom_contour_filled() +
  scale_fill_viridis_d(name = "Cant") +
  scale_y_reverse() +
  coord_cartesian(expand = 0) +
  guides(fill = guide_colorsteps(barheight = unit(10, "cm"))) +
  facet_grid(basin~eras)

5.4 Mean positive values

Cant_model_average_zonal %>% 
  filter(depth <= 4500,
         lat > -60) %>% 
  ggplot(aes(lat, depth, z = Cant_pos_mean)) +
  geom_contour_filled() +
  scale_fill_viridis_d(name = "Cant") +
  scale_y_reverse() +
  coord_cartesian(expand = 0) +
  guides(fill = guide_colorsteps(barheight = unit(10, "cm"))) +
  facet_grid(basin~eras)

6 Cant maps

depth_level_volume <- tibble(
  depth = unique(Cant_model_average_zonal$depth))

depth_level_volume <- depth_level_volume %>% 
  mutate(layer_thickness_above = replace_na((depth - lag(depth)) / 2, 0),
         layer_thickness_below = replace_na((lead(depth) - depth) / 2, 0),
         layer_thickness = layer_thickness_above + layer_thickness_below) %>% 
  select(-c(layer_thickness_above,
         layer_thickness_below))

Cant_model_average <- full_join(Cant_model_average, depth_level_volume)

rm(depth_level_volume)
Cant_model_average <- Cant_model_average %>% 
  mutate(Cant_layer = Cant_mean * layer_thickness)

Cant_inventory <- Cant_model_average %>% 
  filter(depth < 3000,
         Cant_layer >= 0) %>% 
  group_by(lon, lat, basin, eras) %>% 
  summarise(Cant_inventory = sum(Cant_layer, na.rm = TRUE) / 1000) %>% 
  ungroup()

6.1 Depth layers

mapWorld <- borders("world", colour = "gray60", fill = "gray60")

Cant_model_average %>%
  filter(depth %in% c(150, 500, 1000, 3000)) %>% 
  ggplot(aes(lon, lat, fill = Cant_mean)) + 
  mapWorld +
  geom_raster() +
  scale_fill_steps2(breaks = seq(-100,100,10)) +
  guides(fill = guide_colorsteps(barheight = unit(10, "cm"))) +
  coord_quickmap(expand = 0) +
  facet_grid(depth~eras)

6.2 Inventories

Cant_inventory %>% 
  ggplot(aes(lon, lat, fill = Cant_inventory)) + 
  mapWorld +
  geom_raster() +
  scale_fill_viridis_c() +
  coord_quickmap(expand = 0) +
  facet_wrap(~eras, ncol = 1)

7 Neutral density calculation

GLODAP <- read_csv(here::here("data/GLODAPv2_2020/_summarized_data_files",
                                "GLODAP_MLR_fitting_ready.csv"))

cruises_meridional <- c("1041")

GLODAP_cruise <- GLODAP %>% 
  filter(cruise %in% cruises_meridional)


GLODAP_cruise <- GLODAP_cruise %>% 
  mutate(gamma_calc = swRho(salinity = salinity,
                            temperature = temperature,
                            pressure = depth,
                            longitude = lon,
                            latitude = lat,
                            eos = "gsw"))


GLODAP_cruise <- GLODAP_cruise %>% 
  mutate(gamma_calc = gamma_calc - 1000,
         delta_gamma = gamma - gamma_calc)


lat_section <- 
GLODAP_cruise %>%
  ggplot(aes(lat, depth)) +
  scale_y_reverse() +
  scale_color_viridis_c() +
  theme(legend.position = "bottom")

lat_section +
  geom_point(aes(col = gamma))

lat_section +
  geom_point(aes(col = gamma_calc))

lat_section +
  geom_point(aes(col = delta_gamma))

sessionInfo()
R version 4.0.2 (2020-06-22)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 18363)

Matrix products: default

locale:
[1] LC_COLLATE=English_Germany.1252  LC_CTYPE=English_Germany.1252   
[3] LC_MONETARY=English_Germany.1252 LC_NUMERIC=C                    
[5] LC_TIME=English_Germany.1252    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] metR_0.7.0      marelac_2.1.10  shape_1.4.4     oce_1.2-0      
 [5] gsw_1.0-5       testthat_2.3.2  lubridate_1.7.9 forcats_0.5.0  
 [9] stringr_1.4.0   dplyr_1.0.0     purrr_0.3.4     readr_1.3.1    
[13] tidyr_1.1.0     tibble_3.0.3    ggplot2_3.3.2   tidyverse_1.3.0
[17] workflowr_1.6.2

loaded via a namespace (and not attached):
 [1] httr_1.4.2        maps_3.3.0        jsonlite_1.7.0    viridisLite_0.3.0
 [5] here_0.1          modelr_0.1.8      assertthat_0.2.1  sp_1.4-2         
 [9] blob_1.2.1        cellranger_1.1.0  yaml_2.2.1        lattice_0.20-41  
[13] pillar_1.4.6      backports_1.1.8   glue_1.4.1        digest_0.6.25    
[17] promises_1.1.1    checkmate_2.0.0   rvest_0.3.6       colorspace_1.4-1 
[21] htmltools_0.5.0   httpuv_1.5.4      plyr_1.8.6        pkgconfig_2.0.3  
[25] broom_0.7.0       seacarb_3.2.13    haven_2.3.1       scales_1.1.1     
[29] whisker_0.4       later_1.1.0.1     git2r_0.27.1      generics_0.0.2   
[33] farver_2.0.3      ellipsis_0.3.1    withr_2.2.0       cli_2.0.2        
[37] magrittr_1.5      crayon_1.3.4      readxl_1.3.1      memoise_1.1.0    
[41] evaluate_0.14     fs_1.4.2          fansi_0.4.1       xml2_1.3.2       
[45] tools_4.0.2       data.table_1.13.0 hms_0.5.3         lifecycle_0.2.0  
[49] munsell_0.5.0     reprex_0.3.0      isoband_0.2.2     compiler_4.0.2   
[53] rlang_0.4.7       grid_4.0.2        rstudioapi_0.11   labeling_0.3     
[57] rmarkdown_2.3     gtable_0.3.0      DBI_1.1.0         R6_2.4.1         
[61] knitr_1.29        rprojroot_1.3-2   stringi_1.4.6     Rcpp_1.0.5       
[65] vctrs_0.3.2       dbplyr_1.4.4      tidyselect_1.1.0  xfun_0.16