Last updated: 2020-07-23
Checks: 7 0
Knit directory: Cant_eMLR/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20200707)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 3b6658b. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rproj.user/
Ignored: data/GLODAPv2_2016b_MappedClimatologies/
Ignored: data/GLODAPv2_2020/
Ignored: data/World_Ocean_Atlas_2018/
Ignored: data/pCO2_atmosphere/
Ignored: dump/
Ignored: output/figure/
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/eMLR.Rmd
) and HTML (docs/eMLR.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 3b6658b | jens-daniel-mueller | 2020-07-23 | predictor correlation plots, bin2d map plots |
html | 2e3691a | jens-daniel-mueller | 2020-07-23 | Build site. |
Rmd | 26bdc0a | jens-daniel-mueller | 2020-07-23 | new era label, predictor correlation check started |
html | 556e6cc | jens-daniel-mueller | 2020-07-23 | Build site. |
Rmd | 1ce10e7 | jens-daniel-mueller | 2020-07-23 | read full GLODAP Cant data set rather than joining again |
Rmd | 0cb3db2 | jens-daniel-mueller | 2020-07-23 | started MLR fitting |
Rmd | cf8bc74 | jens-daniel-mueller | 2020-07-23 | started MLR fitting |
Rmd | 0252675 | jens-daniel-mueller | 2020-07-23 | modeling started |
html | fdfa7b9 | jens-daniel-mueller | 2020-07-22 | Build site. |
Rmd | 6416150 | jens-daniel-mueller | 2020-07-22 | cut gamma into slabs |
html | 0cecfbf | jens-daniel-mueller | 2020-07-22 | Build site. |
Rmd | 48cf01f | jens-daniel-mueller | 2020-07-22 | defined isoneutral slabs |
Rmd | 32ed280 | jens-daniel-mueller | 2020-07-22 | sign in Cstar delta plot |
html | 44334f8 | jens-daniel-mueller | 2020-07-22 | Build site. |
Rmd | c398496 | jens-daniel-mueller | 2020-07-22 | plot update |
html | 0ff656b | jens-daniel-mueller | 2020-07-22 | Build site. |
Rmd | 4b81f16 | jens-daniel-mueller | 2020-07-22 | plot update |
html | 23038c8 | jens-daniel-mueller | 2020-07-22 | Build site. |
Rmd | 09b3ca8 | jens-daniel-mueller | 2020-07-22 | eding plain text, restructuring some code |
html | ac6308d | jens-daniel-mueller | 2020-07-22 | Build site. |
Rmd | 77c9642 | jens-daniel-mueller | 2020-07-22 | formatted plots |
html | 40b99cb | jens-daniel-mueller | 2020-07-22 | Build site. |
Rmd | 8a49adf | jens-daniel-mueller | 2020-07-22 | adjustment to reference year implemented |
html | bb9c002 | jens-daniel-mueller | 2020-07-21 | Build site. |
Rmd | d2ed0f8 | jens-daniel-mueller | 2020-07-21 | harmonied lat lon labeling |
html | e1488e6 | jens-daniel-mueller | 2020-07-19 | Build site. |
Rmd | e688d6e | jens-daniel-mueller | 2020-07-19 | formating |
html | f7ea007 | jens-daniel-mueller | 2020-07-19 | Build site. |
Rmd | 0992256 | jens-daniel-mueller | 2020-07-19 | plotted individual Cstar terms |
html | 22b588c | jens-daniel-mueller | 2020-07-18 | Build site. |
html | fdfe5a0 | jens-daniel-mueller | 2020-07-17 | Build site. |
Rmd | f7485c6 | jens-daniel-mueller | 2020-07-17 | re run als emlr |
html | 56c3ed9 | jens-daniel-mueller | 2020-07-14 | Build site. |
html | 74d4abd | jens-daniel-mueller | 2020-07-14 | Build site. |
html | 1c511ce | jens-daniel-mueller | 2020-07-14 | Build site. |
Rmd | e03016e | jens-daniel-mueller | 2020-07-14 | split read in per data set |
html | 45ed0ea | jens-daniel-mueller | 2020-07-14 | Build site. |
Rmd | dc1c56e | jens-daniel-mueller | 2020-07-14 | tref calculated |
html | b1ece68 | jens-daniel-mueller | 2020-07-13 | Build site. |
Rmd | 8eb1b22 | jens-daniel-mueller | 2020-07-13 | cleaned data base file |
Rmd | 9e8f7f1 | jens-daniel-mueller | 2020-07-13 | untracked changes |
html | 79312b2 | jens-daniel-mueller | 2020-07-13 | Build site. |
Rmd | ffbc2a1 | jens-daniel-mueller | 2020-07-13 | added Cstar calculation |
html | 090cfeb | jens-daniel-mueller | 2020-07-13 | Build site. |
Rmd | e6a2ade | jens-daniel-mueller | 2020-07-13 | added Cstar calculation |
library(tidyverse)
library(lubridate)
library(patchwork)
library(broom)
library(GGally)
Required are:
GLODAP <- read_csv(here::here("data/GLODAPv2_2020/_summarized_data_files",
"GLODAPv2.2020_clean.csv"))
Cant_clim <- read_csv(here::here("data/GLODAPv2_2016b_MappedClimatologies/_summarized_files",
"Cant.csv"))
co2_atm <- read_csv(here::here("data/pCO2_atmosphere/_summarized_data_files",
"co2_atm.csv"))
rCP <- 117
rNP <- 16
The stoichiometric nutrient ratios for the production and mineralization of organic matter were set to:
GLODAP <- GLODAP %>%
mutate(rCP_phosphate = - rCP * phosphate,
talk_05 = - 0.5 * talk,
rNP_phosphate_05 = - 0.5 * rNP * phosphate,
Cstar = tco2 + rCP_phosphate + talk_05 + rNP_phosphate_05)
The scaling factor for the reference year adjustment is an apriori estiamte of Cant at a given location and depth. Here, Cant from the GLODAP mapped Climatology was used.
Note that eq. 6 in Clement and Gruber (2018) misses pCO2 pre-industrial in the denominator. Here we use the equation published in Gruber et al. (2019).
Cant_clim <- Cant_clim %>%
drop_na()
# GLODAP_Cant_full <- full_join(GLODAP, Cant_clim)
#
# GLODAP_Cant_full %>% write_csv(here::here("data/GLODAPv2_2020/_summarized_data_files",
# "GLODAP_Cant_full.csv"))
GLODAP_Cant_full <- read_csv(here::here("data/GLODAPv2_2020/_summarized_data_files",
"GLODAP_Cant_full.csv"))
The mapped Cant product was merged with GLODAP observation by:
GLODAP_Cant_observations_available <- GLODAP_Cant_full %>%
group_by(lat, lon) %>%
mutate(n_GLODAP = sum(!is.na(Cstar))) %>%
ungroup() %>%
filter(n_GLODAP > 0) %>%
select(-n_GLODAP)
rm(GLODAP_Cant_full)
GLODAP_Cant_observations_available <- GLODAP_Cant_observations_available %>%
group_by(lat, lon) %>%
arrange(depth) %>%
mutate(Cant_int = approxfun(depth, Cant, rule = 2)(depth)) %>%
ungroup()
ggplot()+
geom_path(data = GLODAP_Cant_observations_available %>%
filter(lat == 48.5, lon == 165.5, !is.na(Cant)) %>%
arrange(depth),
aes(Cant, depth, col="mapped"))+
geom_point(data = GLODAP_Cant_observations_available %>%
filter(lat == 48.5, lon == 165.5, !is.na(Cant)) %>%
arrange(depth),
aes(Cant, depth, col="mapped"))+
geom_point(data = GLODAP_Cant_observations_available %>%
filter(lat == 48.5, lon == 165.5, date == ymd("2018-06-27")),
aes(Cant_int, depth, col="interpolated"))+
scale_y_reverse()+
scale_color_brewer(palette = "Dark2", name="")+
labs(title = "Cant interpolation to sampling depth - example profile")
GLODAP <- GLODAP_Cant_observations_available %>%
filter(!is.na(Cstar)) %>%
mutate(Cant = Cant_int) %>%
select(-Cant_int)
rm(GLODAP_Cant_observations_available, Cant_clim)
GLODAP <- left_join(GLODAP, co2_atm)
GLODAP <- GLODAP %>%
group_by(era) %>%
mutate(tref = median(year)) %>%
ungroup()
tref <- GLODAP %>%
group_by(era) %>%
summarise(year = median(year)) %>%
ungroup()
co2_atm_tref <- right_join(co2_atm, tref) %>%
select(-year) %>%
rename(pCO2_tref = pCO2)
GLODAP <- full_join(GLODAP, co2_atm_tref)
rm(co2_atm, co2_atm_tref, tref)
GLODAP <- GLODAP %>%
mutate(Cstar_tref_delta =
( (pCO2 - pCO2_tref) / (pCO2_tref - 280) ) * Cant,
Cstar_tref = Cstar - Cstar_tref_delta)
GLODAP %>%
ggplot(aes(Cstar_tref_delta))+
geom_histogram()
GLODAP %>%
sample_n(10000) %>%
ggplot(aes(year - tref, Cstar_tref_delta, col=Cant))+
geom_point()+
scale_color_viridis_c()+
labs(title = "random subsample 1e4")
Selected sections are plotted to demonstrate the magnitude of various parameters and corrections relevant to C*.
cruises_meridional <- c("1041")
# cruises_meridional <- c("1041","1042", "260",
# "2011", "393", "1031", "394", "395",
# "1088", "983")
# cruises_zonal <- c()
GLODAP_cruise <- GLODAP %>%
filter(cruise %in% cruises_meridional)
mapWorld <- borders("world", colour="gray60", fill="gray60")
#map <-
GLODAP_cruise %>%
arrange(date) %>%
ggplot(aes(lon, lat))+
mapWorld+
geom_path()+
geom_point(aes(col=date))+
coord_quickmap(expand = FALSE)+
scale_color_viridis_c(trans = "date")+
labs(title = paste("Cruise year:", mean(GLODAP_cruise$year)))
lat_section <-
GLODAP_cruise %>%
ggplot(aes(lat, depth))+
scale_y_reverse()+
scale_color_viridis_c()
#lat_tco2 <-
lat_section+
geom_point(aes(col=tco2))
#lat_talk <-
lat_section+
geom_point(aes(col=talk))
#lat_phosphate <-
lat_section+
geom_point(aes(col=phosphate))
#lat_rCP_phosphate <-
lat_section+
geom_point(aes(col=rCP_phosphate))
#lat_talk_05 <-
lat_section+
geom_point(aes(col=talk_05))
#lat_rNP_phosphate_05 <-
lat_section+
geom_point(aes(col=rNP_phosphate_05))
#lat_Cstar <-
lat_section+
geom_point(aes(col=Cstar))
lat_section+
geom_point(aes(col=Cant))
#lat_Cstar_tref <-
lat_section+
geom_point(aes(col=-Cstar_tref_delta))
# map / lat_tco2 / lat_talk / lat_phosphate / lat_rCP_phosphate /lat_talk_05 /lat_rNP_phosphate_05 / lat_Cstar / lat_Cstar_tref
#
rm(mapWorld, lat_section, GLODAP_cruise)
slabs_Atl <- c(
-Inf,
26.00,
26.50,
26.75,
27.00,
27.25,
27.50,
27.75,
27.85,
27.95,
28.05,
28.10,
28.15,
28.20,
Inf)
slabs_Ind_Pac <- c(
-Inf,
26.00,
26.50,
26.75,
27.00,
27.25,
27.50,
27.75,
27.85,
27.95,
28.05,
28.10,
Inf)
The following boundaries for isoneutral slabs were defined:
GLODAP_Atl <- GLODAP %>%
filter(basin == "Atlantic") %>%
mutate(gamma_slab = cut(gamma, slabs_Atl))
GLODAP_Ind_Pac <- GLODAP %>%
filter(basin == "Indo-Pacific") %>%
mutate(gamma_slab = cut(gamma, slabs_Ind_Pac))
GLODAP <- bind_rows(GLODAP_Atl, GLODAP_Ind_Pac)
rm(GLODAP_Atl, GLODAP_Ind_Pac)
GLODAP_cruise <- GLODAP %>%
filter(cruise %in% cruises_meridional)
lat_section <-
GLODAP_cruise %>%
ggplot(aes(lat, depth))+
scale_y_reverse()
lat_section+
geom_point(aes(col=gamma))+
scale_color_viridis_c()
lat_section+
geom_point(aes(col=gamma_slab))+
scale_color_viridis_d()
# GLODAP_cruise %>%
# ggplot(aes(lat, depth, z=tco2))+
# geom_contour_fill(na.fill = TRUE)+
# scale_y_reverse()
GLODAP <- GLODAP %>%
mutate(phosphate_star = phosphate - 16*nitrate + 29)
GLODAP %>%
sample_n(1e3) %>%
ggpairs(columns = c("Cstar",
"salinity",
"temperature",
"aou",
"oxygen",
"silicate",
"phosphate",
"phosphate_star"),
ggplot2::aes(col = gamma_slab, fill = gamma_slab, alpha = 0.01))+
scale_fill_viridis_d()+
scale_color_viridis_d()+
labs(title = paste("Basin: all | era: all | subsample size: 10^3"))
for (i_basin in unique(GLODAP$basin)) {
for (i_era in unique(GLODAP$era)) {
# i_basin <- unique(GLODAP$basin)[1]
# i_era <- unique(GLODAP$era)[1]
print(i_basin)
print(i_era)
p <- GLODAP %>%
filter(basin == i_basin, era == i_era) %>%
sample_n(1e3) %>%
ggpairs(columns = c("salinity","temperature", "aou", "oxygen", "silicate", "phosphate", "phosphate_star"),
ggplot2::aes(col = gamma_slab, fill = gamma_slab, alpha = 0.01))+
scale_fill_viridis_d()+
scale_color_viridis_d()+
labs(title = paste("Basin:", i_basin, "| era:", i_era, "| subsample size: 10^3"))+
theme(text = element_text(size=20))
png(here::here("output/figure/eMLR/predictor_correlation",
paste("predictor_correlation", i_basin, i_era, ".png", sep = "_")),
width = 20, height = 20, units = "in", res = 300)
print(p)
dev.off()
}
}
MLRs <- GLODAP %>%
nest(data = -c(basin, era, gamma_slab)) %>%
mutate(
fit = map(data, ~ lm(Cstar ~ salinity + temperature + aou + oxygen + silicate + phosphate + phosphate_star,
data = .x)),
tidied = map(fit, tidy),
glanced = map(fit, glance),
augmented = map(fit, augment)
)
MLRs_tidied <- MLRs %>%
unnest(tidied)
MLRs_tidied
# A tibble: 624 x 12
era basin gamma_slab data fit term estimate std.error statistic
<chr> <chr> <fct> <lis> <lis> <chr> <dbl> <dbl> <dbl>
1 JGOF~ Atla~ (26.5,26.~ <tib~ <lm> (Int~ 1.05e+3 269. 3.91
2 JGOF~ Atla~ (26.5,26.~ <tib~ <lm> sali~ 1.17e+1 2.87 4.08
3 JGOF~ Atla~ (26.5,26.~ <tib~ <lm> temp~ -1.52e+1 3.66 -4.16
4 JGOF~ Atla~ (26.5,26.~ <tib~ <lm> aou -6.83e-1 0.729 -0.938
5 JGOF~ Atla~ (26.5,26.~ <tib~ <lm> oxyg~ -1.40e+0 0.718 -1.96
6 JGOF~ Atla~ (26.5,26.~ <tib~ <lm> sili~ -2.27e+0 0.285 -7.95
7 JGOF~ Atla~ (26.5,26.~ <tib~ <lm> phos~ -1.05e+2 5.49 -19.2
8 JGOF~ Atla~ (26.5,26.~ <tib~ <lm> phos~ 3.07e-3 0.0245 0.125
9 JGOF~ Atla~ (27.25,27~ <tib~ <lm> (Int~ 1.66e+3 103. 16.1
10 JGOF~ Atla~ (27.25,27~ <tib~ <lm> sali~ 9.62e+0 1.74 5.52
# ... with 614 more rows, and 3 more variables: p.value <dbl>, glanced <list>,
# augmented <list>
MLRs_tidied <- MLRs_tidied %>%
select(era, basin, gamma_slab, term, estimate, p.value)
MLRs_tidied_wide <- MLRs_tidied %>%
select(-p.value) %>%
pivot_wider(names_from = era, values_from = estimate, names_prefix = "coeff_")
MLRs_tidied %>%
ggplot(aes(p.value, term, col=gamma_slab))+
geom_point()+
facet_grid(basin~era)
MLRs_tidied %>%
filter(p.value < 0.05) %>%
ggplot(aes(p.value, term, col=gamma_slab))+
geom_point()+
facet_grid(basin~era)
MLRs_tidied %>%
ggplot(aes(p.value, term))+
geom_boxplot()+
facet_grid(basin~era)
MLRs %>%
unnest(glanced)
# A tibble: 78 x 19
era basin gamma_slab data fit tidied r.squared adj.r.squared sigma
<chr> <chr> <fct> <lis> <lis> <list> <dbl> <dbl> <dbl>
1 JGOF~ Atla~ (26.5,26.~ <tib~ <lm> <tibb~ 0.924 0.924 5.17
2 JGOF~ Atla~ (27.25,27~ <tib~ <lm> <tibb~ 0.986 0.986 4.67
3 JGOF~ Atla~ (27.5,27.~ <tib~ <lm> <tibb~ 0.988 0.988 4.17
4 JGOF~ Atla~ (26.75,27] <tib~ <lm> <tibb~ 0.950 0.950 4.69
5 JGOF~ Atla~ (26,26.5] <tib~ <lm> <tibb~ 0.896 0.894 5.38
6 JGOF~ Atla~ (-Inf,26] <tib~ <lm> <tibb~ 0.768 0.743 7.46
7 JGOF~ Atla~ (28.1,28.~ <tib~ <lm> <tibb~ 0.963 0.963 3.34
8 JGOF~ Atla~ (27,27.25] <tib~ <lm> <tibb~ 0.975 0.975 4.91
9 GO-S~ Atla~ (27.75,27~ <tib~ <lm> <tibb~ 0.984 0.983 4.34
10 GO-S~ Atla~ (27,27.25] <tib~ <lm> <tibb~ 0.977 0.977 4.91
# ... with 68 more rows, and 10 more variables: statistic <dbl>, p.value <dbl>,
# df <dbl>, logLik <dbl>, AIC <dbl>, BIC <dbl>, deviance <dbl>,
# df.residual <int>, nobs <int>, augmented <list>
MLRs %>%
unnest(augmented)
# A tibble: 177,773 x 21
era basin gamma_slab data fit tidied glanced Cstar salinity temperature
<chr> <chr> <fct> <lis> <lis> <list> <list> <dbl> <dbl> <dbl>
1 JGOF~ Atla~ (26.5,26.~ <tib~ <lm> <tibb~ <tibbl~ 859. 36.6 18.1
2 JGOF~ Atla~ (26.5,26.~ <tib~ <lm> <tibb~ <tibbl~ 844. 35.5 14.6
3 JGOF~ Atla~ (26.5,26.~ <tib~ <lm> <tibb~ <tibbl~ 834. 35.4 13.9
4 JGOF~ Atla~ (26.5,26.~ <tib~ <lm> <tibb~ <tibbl~ 843. 35.3 13.0
5 JGOF~ Atla~ (26.5,26.~ <tib~ <lm> <tibb~ <tibbl~ 838. 35.3 13.1
6 JGOF~ Atla~ (26.5,26.~ <tib~ <lm> <tibb~ <tibbl~ 877. 36.1 16.5
7 JGOF~ Atla~ (26.5,26.~ <tib~ <lm> <tibb~ <tibbl~ 868. 36.1 16.4
8 JGOF~ Atla~ (26.5,26.~ <tib~ <lm> <tibb~ <tibbl~ 868. 36.1 15.7
9 JGOF~ Atla~ (26.5,26.~ <tib~ <lm> <tibb~ <tibbl~ 864. 36.0 15.5
10 JGOF~ Atla~ (26.5,26.~ <tib~ <lm> <tibb~ <tibbl~ 872. 36.1 16.2
# ... with 177,763 more rows, and 11 more variables: aou <dbl>, oxygen <dbl>,
# silicate <dbl>, phosphate <dbl>, phosphate_star <dbl>, .fitted <dbl>,
# .resid <dbl>, .std.resid <dbl>, .hat <dbl>, .sigma <dbl>, .cooksd <dbl>
temperature
salinity
phosphate
silicate
phosphate_star = phosphate + (oxygen / 170) - 1.95
oxygen
aou
basins <- c("Atlantic", "Indo_Pacific")
slabs <- c("")
for (i_basin in basins) {
for (i_slab in slabs) {
}
}
sessionInfo()
R version 3.6.3 (2020-02-29)
Platform: i386-w64-mingw32/i386 (32-bit)
Running under: Windows 10 x64 (build 18363)
Matrix products: default
locale:
[1] LC_COLLATE=English_Germany.1252 LC_CTYPE=English_Germany.1252
[3] LC_MONETARY=English_Germany.1252 LC_NUMERIC=C
[5] LC_TIME=English_Germany.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] GGally_2.0.0 broom_0.7.0 patchwork_1.0.1 lubridate_1.7.9
[5] forcats_0.5.0 stringr_1.4.0 dplyr_1.0.0 purrr_0.3.4
[9] readr_1.3.1 tidyr_1.1.0 tibble_3.0.3 ggplot2_3.3.2
[13] tidyverse_1.3.0 workflowr_1.6.2
loaded via a namespace (and not attached):
[1] RColorBrewer_1.1-2 jsonlite_1.7.0 rstudioapi_0.11 generics_0.0.2
[5] magrittr_1.5 farver_2.0.3 gtable_0.3.0 rmarkdown_2.3
[9] vctrs_0.3.1 fs_1.4.2 hms_0.5.3 utf8_1.1.4
[13] xml2_1.3.2 pillar_1.4.6 htmltools_0.5.0 haven_2.3.1
[17] later_1.1.0.1 cellranger_1.1.0 tidyselect_1.1.0 plyr_1.8.6
[21] knitr_1.29 git2r_0.27.1 whisker_0.4 lifecycle_0.2.0
[25] pkgconfig_2.0.3 R6_2.4.1 digest_0.6.25 reshape_0.8.8
[29] xfun_0.15 colorspace_1.4-1 rprojroot_1.3-2 stringi_1.4.6
[33] yaml_2.2.1 evaluate_0.14 labeling_0.3 fansi_0.4.1
[37] httr_1.4.1 compiler_3.6.3 here_0.1 cli_2.0.2
[41] withr_2.2.0 backports_1.1.5 munsell_0.5.0 DBI_1.1.0
[45] modelr_0.1.8 Rcpp_1.0.5 readxl_1.3.1 maps_3.3.0
[49] dbplyr_1.4.4 ellipsis_0.3.1 assertthat_0.2.1 blob_1.2.1
[53] tools_3.6.3 reprex_0.3.0 viridisLite_0.3.0 httpuv_1.5.4
[57] scales_1.1.1 crayon_1.3.4 glue_1.4.1 rlang_0.4.7
[61] rvest_0.3.5 promises_1.1.1 grid_3.6.3