Last updated: 2020-09-18

Checks: 7 0

Knit directory: Cant_eMLR/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200707) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 27809b8. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/
    Ignored:    data/GLODAPv1_1/
    Ignored:    data/GLODAPv2_2016b_MappedClimatologies/
    Ignored:    data/GLODAPv2_2020/
    Ignored:    data/Gruber_2019/
    Ignored:    data/WOCE/
    Ignored:    data/World_Ocean_Atlas_2013_Clement/
    Ignored:    data/World_Ocean_Atlas_2018/
    Ignored:    data/eMLR/
    Ignored:    data/mapping/
    Ignored:    data/pCO2_atmosphere/
    Ignored:    dump/

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/mapping_cant_calculation.Rmd) and HTML (docs/mapping_cant_calculation.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html f5a20ac jens-daniel-mueller 2020-09-17 Build site.
html cf64460 jens-daniel-mueller 2020-09-17 Build site.
html 9d9a553 jens-daniel-mueller 2020-09-17 Build site.
Rmd a7e8ba5 jens-daniel-mueller 2020-09-17 rebuild after complete collapse averaging
html e7b4981 jens-daniel-mueller 2020-09-17 Build site.
Rmd dbae060 jens-daniel-mueller 2020-09-17 collapse averaging for all big data sets
html 1ea7231 jens-daniel-mueller 2020-09-17 Build site.
Rmd 5d82655 jens-daniel-mueller 2020-09-17 replaced averaging with package collapse functions
html d43d9e2 jens-daniel-mueller 2020-09-16 Build site.
Rmd 9529ad2 jens-daniel-mueller 2020-09-16 PO4 and silicate included for pCO2 and revelle factor calculation
html 1f3319a jens-daniel-mueller 2020-09-16 Build site.
html e98b5c5 jens-daniel-mueller 2020-09-16 Build site.
Rmd 08c486f jens-daniel-mueller 2020-09-16 joined surface and deep Cant estimates
html ebadd96 jens-daniel-mueller 2020-09-16 Build site.
Rmd 1835aca jens-daniel-mueller 2020-09-16 Cant surface water calculated
html 2cd847c jens-daniel-mueller 2020-09-14 Build site.
Rmd 1a13af4 jens-daniel-mueller 2020-09-14 replace all model sections plots chunk
html da91d98 jens-daniel-mueller 2020-09-10 Build site.
html a34a239 jens-daniel-mueller 2020-09-10 Build site.
html e60e13c jens-daniel-mueller 2020-09-09 Build site.
Rmd 7040b80 jens-daniel-mueller 2020-09-09 remove basin_AIP not covered by mapping
html c3ffdfd jens-daniel-mueller 2020-09-08 Build site.
Rmd 04ee730 jens-daniel-mueller 2020-09-08 rebuild after revision
html 148db18 jens-daniel-mueller 2020-09-07 Build site.
Rmd 0bea059 jens-daniel-mueller 2020-09-07 plotted predictor contribution zonal mean
html a50f053 jens-daniel-mueller 2020-09-07 Build site.
html da445a6 jens-daniel-mueller 2020-09-04 Build site.
Rmd 6a302ca jens-daniel-mueller 2020-09-04 rebuild after new data cleaning and mapping Cant to surface
html fa11a74 jens-daniel-mueller 2020-09-02 Build site.
html 429aab3 jens-daniel-mueller 2020-09-01 Build site.
html f4216dd jens-daniel-mueller 2020-09-01 Build site.
Rmd 8f3ce45 jens-daniel-mueller 2020-09-01 rebuild without PO4 star selection, oxygen only
html 13a76d5 jens-daniel-mueller 2020-08-28 Build site.
html 27404de jens-daniel-mueller 2020-08-27 Build site.
html 78feb87 jens-daniel-mueller 2020-08-27 Build site.
Rmd 42e98c8 jens-daniel-mueller 2020-08-27 section plots for all regular longitude added
html b6d0e6a jens-daniel-mueller 2020-08-27 Build site.
html f40e48b jens-daniel-mueller 2020-08-26 Build site.
Rmd b577ec6 jens-daniel-mueller 2020-08-26 Analysis split in this and previous studies
html 882b358 jens-daniel-mueller 2020-08-26 Build site.
Rmd db9fb4b jens-daniel-mueller 2020-08-26 Cant mean zonal sections separate for Indian and Pacific
Rmd ccacd26 jens-daniel-mueller 2020-08-25 updated with PO4* oxygen based
html ec20f40 jens-daniel-mueller 2020-08-24 Build site.
Rmd a804955 jens-daniel-mueller 2020-08-24 split mapping into 2 rmds, po4star selection in parameters, use po4star nitrate

library(tidyverse)
library(metR)
library(seacarb)
library(collapse)
basinmask <-
  read_csv(
    here::here(
      "data/World_Ocean_Atlas_2018/_summarized_files",
      "basin_mask_WOA18.csv"
    )
  )

basinmask_AIP <-
  read_csv(
    here::here(
      "data/World_Ocean_Atlas_2018/_summarized_files",
      "basin_mask_WOA18_AIP.csv"
    )
  )

landmask <-
  read_csv(
    here::here(
      "data/World_Ocean_Atlas_2018/_summarized_files",
      "land_mask_WOA18.csv"
    )
  )

section_global_coordinates <-
  read_csv(here::here("data",
                       "section_global_coordinates.csv"))

1 Predictor fields

Currently, we use combined predictor fields:

  • WOA18: S, T, and derived variables
  • GLODAP16: Oxygen, PO4, NO3, Silicate, and derived variables
predictors <- 
    read_csv(here::here("data/mapping/predictor_fields",
                         "W18_st_G16_opsn.csv"))

predictors_surface <- 
    read_csv(here::here("data/mapping/predictor_fields",
                         "W18_st_G16_opsn_surface.csv"))

2 Atm. pCO2

co2_atm_tref <-
  read_csv(here::here(
    "data/pCO2_atmosphere/_summarized_data_files",
    "co2_atm_tref.csv"
  ))

3 Load MLR models

lm_all_wide <-
  read_csv(here::here("data/eMLR",
                       "lm_all_wide.csv"))

4 Merge MLRs + climatologies

lm_all_wide <- lm_all_wide %>% 
  mutate(model = str_remove(model, "Cstar ~ "))
         
Cant <- full_join(predictors, lm_all_wide)

rm(predictors, lm_all_wide)

5 Map Cant

5.1 Deep water

5.2 Apply MLRs to predictor

Cant <- Cant %>% 
  mutate(Cant = `delta_coeff_(Intercept)` +
           delta_coeff_aou * aou +
           delta_coeff_oxygen * oxygen +
           delta_coeff_phosphate * phosphate +
           delta_coeff_phosphate_star * phosphate_star +
           delta_coeff_silicate * silicate +
           delta_coeff_sal * sal + 
           delta_coeff_tem * tem)

Cant <- Cant %>%
  mutate(Cant_pos = if_else(Cant < 0, 0, Cant))
Cant <- Cant %>% 
  mutate(Cant_intercept = `delta_coeff_(Intercept)`,
         Cant_aou = delta_coeff_aou * aou,
         Cant_oxygen = delta_coeff_oxygen * oxygen,
         Cant_phosphate = delta_coeff_phosphate * phosphate,
         Cant_phosphate_star = delta_coeff_phosphate_star * phosphate_star,
         Cant_silicate = delta_coeff_silicate * silicate,
         Cant_sal = delta_coeff_sal * sal,
         Cant_tem = delta_coeff_tem * tem,
         Cant_sum = Cant_intercept +
           Cant_aou +
           Cant_oxygen +
           Cant_phosphate +
           Cant_phosphate_star +
           Cant_silicate + 
           Cant_sal +
           Cant_tem)

5.2.1 Sections by model

Zonal sections plots are produced for every 20° longitude, each era and for all models individually and can be downloaded here.

library(scales)

for (i_eras in unique(Cant$eras)) {
  # i_eras <- unique(Cant$eras)[2]
  Cant_eras <- Cant %>%
    filter(eras == i_eras)
  
  for (i_lon in seq(20.5, 360, 20)) {
    # i_lon <- seq(20.5, 360, 20)[7]
    Cant_eras_lon <- Cant_eras %>%
      filter(lon == i_lon)
    
    Cant_eras_lon %>%
      ggplot(aes(lat, depth, col = Cant)) +
      geom_point() +
      scale_color_gradient2(
        name = "Cant",
        high = muted("red"),
        mid = "grey",
        low = muted("blue")
      ) +
      scale_y_reverse(limits = c(parameters$inventory_depth, NA)) +
      scale_x_continuous(limits = c(-75, 65)) +
      coord_cartesian(expand = 0) +
      guides(fill = guide_colorsteps(barheight = unit(10, "cm"))) +
      labs(title = paste("eras:", i_eras, "| lon:", i_lon)) +
      facet_wrap( ~ model, ncol = 5)
    
    ggsave(
      here::here(
        "output/figure/mapping",
        paste(i_eras,
              "lon",
              i_lon,
              "model_Cant.png",
              sep = "_")
      ),
      width = 17,
      height = 9
    )
    
  }
}

5.3 Surface water

As outlined in Gruber et al. (2019), a transient equilibrium approach was applied to estimate Cant in surface waters, assuming that the CO2 system in these waters has followed the increase in atmospheric CO2 closely.

Using eq 10.2.16 from OBD, the change in anthropogenic CO2 in the upper ocean was computed as:

ΔtCanteq(t2ref − t1ref )= 1∕γ ⋅ DIC/pCO2 ⋅ (pCO2atm (t2ref)− pCO2atm (t1ref))

, where DIC and pCO2 are the in situ values, where γ is the buffer (Revelle) factor and where we evaluated the right-hand side using seacarb employing the Mehrbach constants as refitted by Dickson and Millero using the climatological values for temperature, salinity, DIC and Alk.

5.3.1 pCO2 climatology

predictors_surface <- predictors_surface %>% 
  mutate(pCO2 = carb(flag = 15,
                     var1 = TAlk*1e-6,
                     var2 = TCO2*1e-6,
                     S = sal,
                     T = tem,
                     P = depth/10,
                     Pt = PO4*1e-6,
                     Sit = silicate*1e-6,
                     k1k2 = "l")$pCO2)

map_climatology(predictors_surface, "pCO2")

section_global_surface(predictors_surface, "pCO2")

5.3.2 Revelle factor

predictors_surface <- predictors_surface %>% 
  mutate(rev_fac = buffer(flag = 15,
                     var1 = TAlk*1e-6,
                     var2 = TCO2*1e-6,
                     S = sal,
                     T = tem,
                     P = depth/10,
                     Pt = PO4*1e-6,
                     Sit = silicate*1e-6,
                     k1k2 = "l")$BetaD)

map_climatology(predictors_surface, "rev_fac")

section_global_surface(predictors_surface, "rev_fac")

5.3.3 Cant

co2_atm_tref <- co2_atm_tref %>% 
  arrange(pCO2_tref) %>% 
  mutate(d_pCO2_tref = pCO2_tref - lag(pCO2_tref)) %>% 
  drop_na() %>% 
  mutate(eras = c("JGOFS_GO", "GO_new")) %>% 
  select(eras, d_pCO2_tref)

Cant_surface <- full_join(predictors_surface, co2_atm_tref,
                          by = character())

Cant_surface <- Cant_surface %>% 
  mutate(Cant = (1 / rev_fac) * (TCO2 / pCO2) * d_pCO2_tref)

Cant_surface <- Cant_surface %>%
  mutate(Cant_pos = if_else(Cant < 0, 0, Cant))

map_climatology_eras(Cant_surface, "Cant")

section_global_surface_eras(Cant_surface, "Cant")

5.4 Mean Cant fields

Mean and sd are calculated for Cant in each grid cell (XYZ), basin and era combination. Calculations are performed for all Cant values vs positive values only. This averaging step summarizes the information derived from ten best fitting MLRs.

5.4.1 Deep water averaging

Cant_predictor_average <- Cant %>%
  fselect(lon, lat, depth, eras, basin,
          Cant_intercept,
          Cant_aou,
          Cant_oxygen,
          Cant_phosphate,
          Cant_phosphate_star, 
          Cant_silicate, 
          Cant_tem, 
          Cant_sal, 
          Cant_sum, 
          gamma) %>% 
  fgroup_by(lon, lat, depth, eras, basin) %>% {
   add_vars(fgroup_vars(.,"unique"),
            fmean(., keep.group_vars = FALSE))
  }

Cant_predictor_average_Atl <- Cant_predictor_average %>% 
  filter(basin == "Atlantic") %>% 
  mutate(gamma_slab = cut(gamma, parameters$slabs_Atl))

Cant_predictor_average_Ind_Pac <- Cant_predictor_average %>% 
  filter(basin == "Indo-Pacific") %>% 
  mutate(gamma_slab = cut(gamma, parameters$slabs_Ind_Pac))

Cant_predictor_average <- bind_rows(Cant_predictor_average_Atl, Cant_predictor_average_Ind_Pac)

rm(Cant_predictor_average_Atl, Cant_predictor_average_Ind_Pac)
Cant_average <- Cant %>%
  fselect(lon, lat, depth, eras, basin, Cant, Cant_pos, gamma) %>% 
  fgroup_by(lon, lat, depth, eras, basin) %>% {
   add_vars(fgroup_vars(.,"unique"),
            fmean(., keep.group_vars = FALSE),
            fsd(., keep.group_vars = FALSE) %>% add_stub(pre = FALSE, "_sd"))
  }

rm(Cant)
Cant_surface_average <- Cant_surface %>%
  fselect(lon, lat, depth, eras, basin, Cant, Cant_pos, gamma) %>% 
  fgroup_by(lon, lat, depth, eras, basin) %>% {
   add_vars(fgroup_vars(.,"unique"),
            fmean(., keep.group_vars = FALSE),
            fsd(., keep.group_vars = FALSE) %>% add_stub(pre = FALSE, "_sd"))
  }

rm(Cant_surface)

5.4.2 Join surface and deep water

Cant_average <- full_join(Cant_average, Cant_surface_average)

rm(Cant_surface_average)

5.4.3 Gamma slab zonal mean

Cant_average_Atl <- Cant_average %>% 
  filter(basin == "Atlantic") %>% 
  mutate(gamma_slab = cut(gamma, parameters$slabs_Atl))

Cant_average_Ind_Pac <- Cant_average %>% 
  filter(basin == "Indo-Pacific") %>% 
  mutate(gamma_slab = cut(gamma, parameters$slabs_Ind_Pac))

Cant_average <- bind_rows(Cant_average_Atl, Cant_average_Ind_Pac)

rm(Cant_average_Atl, Cant_average_Ind_Pac)

5.5 Mean Cant sections

For each basin and era combination, the zonal mean Cant is calculated, again for all vs positive only values. Likewise, sd is calculated for the averaging of the mean basin fields.

Cant_average <- left_join(Cant_average,
                          basinmask_AIP %>% select(-basin))

Cant_average_zonal <- Cant_average %>%
  fselect(lat, depth, eras, basin, basin_AIP,
          Cant, Cant_pos, gamma, Cant_sd, Cant_pos_sd, gamma_sd) %>% 
  fgroup_by(lat, depth, eras, basin, basin_AIP) %>% {
   add_vars(fgroup_vars(.,"unique"),
            fmean(., keep.group_vars = FALSE) %>% add_stub(pre = FALSE, "_mean"),
            fsd(., keep.group_vars = FALSE) %>% add_stub(pre = FALSE, "_sd"))
  }


# Cant_average_zonal <- Cant_average %>%
#   group_by(lat, depth, eras, basin, basin_AIP) %>%
#   summarise(across(
#     c(
#       "Cant_mean",
#       "Cant_pos_mean",
#       "Cant_sd",
#       "Cant_pos_sd",
#       "gamma_mean",
#       "gamma_sd"
#     ),
#     list(
#       mean = ~ mean(.x, na.rm = TRUE),
#       sd = ~ sd(.x, na.rm = TRUE)
#     )
#   )) %>%
#   ungroup()


Cant_average_zonal_Atl <- Cant_average_zonal %>% 
  filter(basin == "Atlantic") %>% 
  mutate(gamma_slab = cut(gamma_mean, parameters$slabs_Atl))

Cant_average_zonal_Ind_Pac <- Cant_average_zonal %>% 
  filter(basin == "Indo-Pacific") %>% 
  mutate(gamma_slab = cut(gamma_mean, parameters$slabs_Ind_Pac))

Cant_average_zonal <- bind_rows(Cant_average_zonal_Atl, Cant_average_zonal_Ind_Pac)

rm(Cant_average_zonal_Atl, Cant_average_zonal_Ind_Pac)

5.6 Mean Cant sections by coefficient

For each basin and era combination, the zonal mean Cant is calculated by model coefficient.

Cant_predictor_average <- full_join(Cant_predictor_average,
                                basinmask_AIP %>% select(-basin))

Cant_predictor_average_zonal <- Cant_predictor_average %>%
  fselect(lat, depth, eras, basin, basin_AIP,
          Cant_intercept:gamma) %>% 
  fgroup_by(lat, depth, eras, basin, basin_AIP) %>% {
   add_vars(fgroup_vars(.,"unique"),
            fmean(., keep.group_vars = FALSE))
  }


# Cant_predictor_average_zonal <- Cant_predictor_average %>%
#   group_by(lat, depth, eras, basin, basin_AIP) %>%
#   summarise(across(
#     Cant_intercept_mean:gamma_mean,
#     list(mean = ~ mean(.x, na.rm = TRUE))
#   )) %>%
#   ungroup()


Cant_predictor_average_zonal_Atl <- Cant_predictor_average_zonal %>% 
  filter(basin == "Atlantic") %>% 
  mutate(gamma_slab = cut(gamma, parameters$slabs_Atl))

Cant_predictor_average_zonal_Ind_Pac <- Cant_predictor_average_zonal %>% 
  filter(basin == "Indo-Pacific") %>% 
  mutate(gamma_slab = cut(gamma, parameters$slabs_Ind_Pac))

Cant_predictor_average_zonal <- bind_rows(Cant_predictor_average_zonal_Atl, Cant_predictor_average_zonal_Ind_Pac)

rm(Cant_predictor_average_zonal_Atl, Cant_predictor_average_zonal_Ind_Pac)

5.7 Inventory calculation

To calculate Cant column inventories, we:

  1. Multiple layer thickness with Cant concentration to get a layer inventory
  2. For each horizontal grid cell and era, sum Cant layer inventories from 150 - 3000 m

Step 2 is performed again for all Cant and positive Cant values only

depth_level_volume <- tibble(depth = unique(Cant_average$depth)) %>% 
  arrange(depth)

depth_level_volume <- depth_level_volume %>%
  mutate(
    layer_thickness_above = replace_na((depth - lag(depth)) / 2, 0),
    layer_thickness_below = replace_na((lead(depth) - depth) / 2, 0),
    layer_thickness = layer_thickness_above + layer_thickness_below
  ) %>%
  select(-c(layer_thickness_above,
            layer_thickness_below))

Cant_average <-
  full_join(Cant_average, depth_level_volume)

Cant_average <- Cant_average %>%
  mutate(layer_inv = Cant * layer_thickness) %>%
  mutate(layer_inv_pos = if_else(layer_inv < 0, 0, layer_inv)) %>%
  select(-layer_thickness)

Cant_inv <- Cant_average %>%
  group_by(lon, lat, basin, eras) %>%
  summarise(
    cant_inv_pos = sum(layer_inv_pos, na.rm = TRUE) / 1000,
    cant_inv     = sum(layer_inv, na.rm = TRUE) / 1000
  ) %>%
  ungroup()

6 Write csv

# Cant %>%
#     write_csv(here::here("data/mapping/_summarized_files",
#                          "Cant.csv"))

Cant_average %>%
    write_csv(here::here("data/mapping/_summarized_files",
                         "Cant_average.csv"))

Cant_predictor_average %>%
    write_csv(here::here("data/mapping/_summarized_files",
                         "Cant_predictor_average.csv"))

Cant_average_zonal %>%
    write_csv(here::here("data/mapping/_summarized_files",
                         "Cant_average_zonal.csv"))

Cant_predictor_average_zonal %>%
    write_csv(here::here("data/mapping/_summarized_files",
                         "Cant_predictor_average_zonal.csv"))

Cant_inv %>%
    write_csv(here::here("data/mapping/_summarized_files",
                         "Cant_inv.csv"))

sessionInfo()
R version 4.0.2 (2020-06-22)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 18363)

Matrix products: default

locale:
[1] LC_COLLATE=English_Germany.1252  LC_CTYPE=English_Germany.1252   
[3] LC_MONETARY=English_Germany.1252 LC_NUMERIC=C                    
[5] LC_TIME=English_Germany.1252    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] collapse_1.3.2  seacarb_3.2.13  oce_1.2-0       gsw_1.0-5      
 [5] testthat_2.3.2  metR_0.7.0      forcats_0.5.0   stringr_1.4.0  
 [9] dplyr_1.0.0     purrr_0.3.4     readr_1.3.1     tidyr_1.1.0    
[13] tibble_3.0.3    ggplot2_3.3.2   tidyverse_1.3.0 workflowr_1.6.2

loaded via a namespace (and not attached):
 [1] httr_1.4.2        viridisLite_0.3.0 jsonlite_1.7.0    here_0.1         
 [5] modelr_0.1.8      Formula_1.2-3     assertthat_0.2.1  blob_1.2.1       
 [9] cellranger_1.1.0  yaml_2.2.1        pillar_1.4.6      backports_1.1.8  
[13] lattice_0.20-41   glue_1.4.1        digest_0.6.25     promises_1.1.1   
[17] checkmate_2.0.0   rvest_0.3.6       colorspace_1.4-1  sandwich_2.5-1   
[21] htmltools_0.5.0   httpuv_1.5.4      Matrix_1.2-18     pkgconfig_2.0.3  
[25] broom_0.7.0       haven_2.3.1       xtable_1.8-4      scales_1.1.1     
[29] whisker_0.4       later_1.1.0.1     git2r_0.27.1      farver_2.0.3     
[33] generics_0.0.2    ellipsis_0.3.1    withr_2.2.0       cli_2.0.2        
[37] magrittr_1.5      crayon_1.3.4      readxl_1.3.1      evaluate_0.14    
[41] fs_1.4.2          fansi_0.4.1       xml2_1.3.2        tools_4.0.2      
[45] data.table_1.13.0 hms_0.5.3         lifecycle_0.2.0   munsell_0.5.0    
[49] reprex_0.3.0      isoband_0.2.2     compiler_4.0.2    lfe_2.8-5.1      
[53] rlang_0.4.7       grid_4.0.2        rstudioapi_0.11   labeling_0.3     
[57] rmarkdown_2.3     gtable_0.3.0      DBI_1.1.0         R6_2.4.1         
[61] zoo_1.8-8         lubridate_1.7.9   knitr_1.29        rprojroot_1.3-2  
[65] stringi_1.4.6     parallel_4.0.2    Rcpp_1.0.5        vctrs_0.3.2      
[69] dbplyr_1.4.4      tidyselect_1.1.0  xfun_0.16