Last updated: 2020-08-10

Checks: 7 0

Knit directory: Cant_eMLR/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200707) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version d202c61. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/
    Ignored:    data/GLODAPv1_1/
    Ignored:    data/GLODAPv2_2016b_MappedClimatologies/
    Ignored:    data/GLODAPv2_2020/
    Ignored:    data/Gruber_2019/
    Ignored:    data/WOCE/
    Ignored:    data/World_Ocean_Atlas_2018/
    Ignored:    data/dclement/
    Ignored:    data/eMLR/
    Ignored:    data/pCO2_atmosphere/
    Ignored:    dump/

Untracked files:
    Untracked:  analysis/python_scripts/
    Untracked:  analysis/test_scripts/

Unstaged changes:
    Modified:   analysis/_site.yml

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/read_World_Ocean_Atlas_2018.Rmd) and HTML (docs/read_World_Ocean_Atlas_2018.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 7d7900a jens-daniel-mueller 2020-08-07 Build site.
html 4394942 jens-daniel-mueller 2020-08-04 Build site.
Rmd eb838d4 jens-daniel-mueller 2020-08-04 Read, plot, write data from D Clement
html 662560f jens-daniel-mueller 2020-08-04 Build site.
Rmd b2b1f24 jens-daniel-mueller 2020-08-04 Read, plot, write data from D Clement
html e9a52c5 jens-daniel-mueller 2020-07-31 Build site.
Rmd 5ee70b2 jens-daniel-mueller 2020-07-31 formatting
html f33772b jens-daniel-mueller 2020-07-31 Build site.
Rmd dea0eaf jens-daniel-mueller 2020-07-31 alligned plots with GLODAP climatology
html 9dc5d7f jens-daniel-mueller 2020-07-29 Build site.
html 21524b4 jens-daniel-mueller 2020-07-29 Build site.
html f5c4667 jens-daniel-mueller 2020-07-29 Build site.
Rmd f6d4d92 jens-daniel-mueller 2020-07-29 format and plots revised
html 8d71a56 jens-daniel-mueller 2020-07-29 Build site.
Rmd 82db969 jens-daniel-mueller 2020-07-29 format and plots revised
html 2e08795 jens-daniel-mueller 2020-07-24 Build site.
html 61a1a48 jens-daniel-mueller 2020-07-24 Build site.
Rmd 864a6e3 jens-daniel-mueller 2020-07-24 merged predictor data sets
html eb716ce jens-daniel-mueller 2020-07-23 Build site.
Rmd ffd46da jens-daniel-mueller 2020-07-23 WOA18 read in
html 556e6cc jens-daniel-mueller 2020-07-23 Build site.
html c1289a2 jens-daniel-mueller 2020-07-23 Build site.
html 2890e73 jens-daniel-mueller 2020-07-23 Build site.
html fdfa7b9 jens-daniel-mueller 2020-07-22 Build site.
html bb9c002 jens-daniel-mueller 2020-07-21 Build site.
Rmd d2ed0f8 jens-daniel-mueller 2020-07-21 harmonied lat lon labeling
html 97dbf5b jens-daniel-mueller 2020-07-21 Build site.
Rmd 5def7e8 jens-daniel-mueller 2020-07-21 create csvs for each parameter
html b47adc2 jens-daniel-mueller 2020-07-20 Build site.
Rmd 366d7d5 jens-daniel-mueller 2020-07-20 update plots
html 1de1bc0 jens-daniel-mueller 2020-07-20 Build site.
Rmd 68e4615 jens-daniel-mueller 2020-07-20 assigned ocean basins and plotted world map
html 3149ffd jens-daniel-mueller 2020-07-20 Build site.
Rmd 918f8c8 jens-daniel-mueller 2020-07-20 assigned ocean basins and plotted world map
html 2fa2896 jens-daniel-mueller 2020-07-20 Build site.
Rmd 23220a8 jens-daniel-mueller 2020-07-20 assigned ocean basins and plotted world map
html 27d380d jens-daniel-mueller 2020-07-20 Build site.
Rmd 09f3f73 jens-daniel-mueller 2020-07-20 basin masks read in
html 22b588c jens-daniel-mueller 2020-07-18 Build site.
Rmd 87a4680 jens-daniel-mueller 2020-07-18 added WOA blank script

library(tidyverse)
library(lubridate)
library(tidync)
library(stars)

1 Data source

2 Basin mask

2.1 Read data

The surface mask (0m) with 1x1° resolution from the file basinmask_01.msk was used.

basinmask_01 <- read_csv(here::here("data/World_Ocean_Atlas_2018",
                                    "basinmask_01.msk"),
                         skip = 1)

basinmask_01 <- basinmask_01 %>% 
  select(Latitude:Basin_0m) %>% 
  mutate(Basin_0m = as.factor(Basin_0m)) %>% 
  rename(lat = Latitude, lon = Longitude)

2.2 Basin labels

According to WOA FAQ website, number codes in the mask file refer to Ocean basins as follows:

  • 1: Atlantic Ocean (with 10 - Southern Ocean, between 63°W and 20°E)
  • 2: Pacific Ocean (with 10 - Southern Ocean, between 147°E and 63°W)
  • 3: Indian Ocean (with 10 - Southern Ocean, between 20°E and 147°E)

From this, the Atlantik and the Indo-Pacific were labeled.

basinmask_01 <- basinmask_01 %>% 
  filter(Basin_0m %in% c("1", "2", "3", "10")) %>% 
  mutate(basin = if_else(Basin_0m == "10" & lon >= -63 & lon < 20,
                         "Atlantic", "Indo-Pacific"),
         basin = if_else(Basin_0m == "1",
                         "Atlantic", basin)) %>% 
  select(-Basin_0m)

2.3 Plot map

mapWorld <- borders("world", col = "gray60", fill = "gray60")

basinmask_01 %>% 
  ggplot(aes(lon, lat, fill = basin)) +
  mapWorld +
  geom_raster() +
  scale_fill_brewer(palette = "Dark2") +
  coord_quickmap(expand = 0) +
  theme(legend.position = "top")

rm(mapWorld)

2.4 Write file

basinmask_01 %>% 
  write_csv(here::here("data/World_Ocean_Atlas_2018/_summarized_files",
                       "basin_mask_WOA18.csv"))

rm(basinmask_01)

3 WOA18 data

Copied from the WOA FAQ website, the file naming conventions is:

PREF_DDDD_VTTFFGG.EXT, where:

  • PREF: prefix
  • DDDD: decade
  • V: variable
  • TT: time period
  • FF: field type
  • GG: grid (5deg- 5°, 01- 1°, 04 - 1/4°)
  • EXT: file extention

Short description of the statistical fields in WOA

  • Objectively analyzed climatologies are the objectively interpolated mean fields for oceanographic variables at standard - depth levels for the World Ocean.
  • The statistical mean is the average of all unflagged interpolated values at each standard depth level for each variable - in each 1° square which contains at least one measurement for the given oceanographic variable.
  • The number of observations of each variable in each 1° square of the World Ocean at each standard depth level.
  • The standard deviation about the statistical mean of each variable in each 1° square at each standard depth level.
  • The standard error of the mean of each variable in each 1° square at each standard depth level.
  • The seasonal or monthly climatology minus the annual climatology at each 1° square at each standard depth.
  • The statistical mean minus the climatological mean at each 1° square at each standard depth. This value is used as an estimate of interpolation and smoothing error.
  • The number of 1° squares within the smallest radius of influence around each 1° square which contain a statistical mean.

Here, we use

  • Fields: objectively analyzed mean
  • Decades: all decades
  • Grid: 1 deg resolution

3.1 Read ncdfs

# temperature

WOA_tem <- tidync(here::here("data/World_Ocean_Atlas_2018",
                                 "woa18_decav_t00_01.nc"))

WOA_tem_tibble <- WOA_tem %>% hyper_tibble()

WOA_tem_tibble <- WOA_tem_tibble  %>% 
  select(t_an, lon, lat, depth) %>% 
  drop_na()

# salinity

WOA_sal <- tidync(here::here("data/World_Ocean_Atlas_2018",
                                 "woa18_decav_s00_01.nc"))

WOA_sal_tibble <- WOA_sal %>% hyper_tibble()

WOA_sal_tibble <- WOA_sal_tibble  %>% 
  select(s_an, lon, lat, depth) %>% 
  drop_na()
depth_surface_selection <- c(0)
Atl_lon <- 335.5 - 360 # subtract 360 from value used for GLODAP climatology
Pac_lon <- 190.5 - 360 # subtract 360 from value used for GLODAP climatology

Below, following subsets of the climatologies are plotted for all relevant parameters:

  • Horizontal planes at 0m
  • Meridional sections at longitudes:
    • Atlantic: -24.5
    • Pacific: -169.5

Section locations are indicated as white lines in maps.

Please note that longitudes in the climatologies range from -179.5 - 179.5, which is different from GLODAP mapped climatologies.

3.2 Temperature plots

3.2.1 Surface map

WOA_tem_tibble %>% 
  filter(depth == 0) %>% 
  ggplot(aes(lon, lat, fill = t_an)) +
  geom_raster() +
  geom_vline(xintercept = c(Atl_lon, Pac_lon), col = "white") +
  coord_quickmap(expand = 0) +
  scale_fill_viridis_c() +
  theme(legend.position = "top")

3.2.2 Section

WOA_tem_tibble %>% 
  filter(lon == Atl_lon) %>% 
  ggplot(aes(lat, depth, z = t_an)) +
  geom_contour_filled() +
  scale_y_reverse() +
  coord_cartesian(expand = 0) +
  theme(legend.position = "top")

3.3 Salinity plots

3.3.1 Surface map

WOA_sal_tibble %>% 
  filter(depth == 0) %>% 
  ggplot(aes(lon, lat, fill = s_an)) +
  geom_raster() +
  geom_vline(xintercept = c(Atl_lon, Pac_lon), col = "white") +
  coord_quickmap(expand = 0) +
  scale_fill_viridis_c() +
  theme(legend.position = "top")

3.3.2 Section

WOA_sal_tibble %>% 
  filter(lon == Pac_lon) %>% 
  ggplot(aes(lat, depth, z = s_an)) +
  geom_contour_filled() +
  scale_y_reverse() +
  coord_cartesian(expand = 0) +
  theme(legend.position = "top")

3.4 Write file

WOA18_predictors <- full_join(WOA_sal_tibble, WOA_tem_tibble)

WOA18_predictors %>% 
  write_csv(here::here("data/World_Ocean_Atlas_2018/_summarized_files",
                       "WOA18_predictors.csv"))

rm(WOA18_predictors, WOA_sal, WOA_sal_tibble, WOA_tem, WOA_tem_tibble)

4 WOA13 from D. Clement

Dominic Clement provided a netcdf file with the basin mask and neutral densities used in Clement and Gruber (2018), both derived from the World Ocean Atlas 2013.

4.1 Read ncdfs

# temperature

nd_mask <- tidync(here::here("data/dclement",
                          "nd_mask.nc"))
nd_mask_tibble <- nd_mask %>% hyper_tibble()

nd_mask_tibble <- nd_mask_tibble %>% 
  mutate(gamma = if_else(gamma == -999, NaN, gamma))

4.2 Plots

depth_surface_selection <- c(0)
Atl_lon <- 335.5
Pac_lon <- 190.5

Below, following subsets of the climatologies are plotted:

  • Basin mask at 0m
  • Meridional sections of neutral density at longitudes:
    • Atlantic: 335.5
    • Pacific: 190.5

Section locations are indicated as white lines in the basin map.

4.3 Basin map

nd_mask_tibble %>% 
  filter(depth == 0) %>% 
  ggplot(aes(longitude, latitude, fill = as.factor(mask))) +
  geom_raster() +
  geom_vline(xintercept = c(Atl_lon, Pac_lon), col = "white") +
  coord_quickmap(expand = 0) +
  scale_fill_brewer(palette = "Set1",
                    name = "basin mask") +
  theme(legend.position = "top")

4.4 Neutral density sections

4.4.1 Atlantic

nd_mask_tibble %>% 
  filter(longitude == Atl_lon) %>% 
  ggplot(aes(latitude, depth, z = gamma)) +
  geom_contour_filled() +
  scale_y_reverse() +
  coord_cartesian(expand = 0) +
  theme(legend.position = "top")

4.4.2 Pacific

nd_mask_tibble %>% 
  filter(longitude == Pac_lon) %>% 
  ggplot(aes(latitude, depth, z = gamma)) +
  geom_contour_filled() +
  scale_y_reverse() +
  coord_cartesian(expand = 0) +
  theme(legend.position = "top")

4.5 Write file

nd_mask_tibble %>%
  write_csv(here::here("data/World_Ocean_Atlas_2018/_summarized_files",
                       "WOA13_mask_gamma.csv"))

rm(nd_mask, nd_mask_tibble, Atl_lon, Pac_lon, depth_surface_selection)

5 Open tasks

  • basin mask not yet applied to WOA18 data

6 Questions

  • Which version of the WOA to be used
    • Fields (currently: objectively analyzed mean)
    • Decades (currently: oall decades)
    • Grid (currently: o1 deg resolution)
  • How to merge with GLODAP climatology (currently interpolated to GLODAP depth)

sessionInfo()
R version 4.0.2 (2020-06-22)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 18363)

Matrix products: default

locale:
[1] LC_COLLATE=English_Germany.1252  LC_CTYPE=English_Germany.1252   
[3] LC_MONETARY=English_Germany.1252 LC_NUMERIC=C                    
[5] LC_TIME=English_Germany.1252    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] stars_0.4-3     sf_0.9-5        abind_1.4-5     tidync_0.2.4   
 [5] lubridate_1.7.9 forcats_0.5.0   stringr_1.4.0   dplyr_1.0.0    
 [9] purrr_0.3.4     readr_1.3.1     tidyr_1.1.0     tibble_3.0.3   
[13] ggplot2_3.3.2   tidyverse_1.3.0 workflowr_1.6.2

loaded via a namespace (and not attached):
 [1] httr_1.4.2         maps_3.3.0         viridisLite_0.3.0  jsonlite_1.7.0    
 [5] here_0.1           modelr_0.1.8       assertthat_0.2.1   blob_1.2.1        
 [9] cellranger_1.1.0   yaml_2.2.1         pillar_1.4.6       backports_1.1.8   
[13] glue_1.4.1         digest_0.6.25      RColorBrewer_1.1-2 promises_1.1.1    
[17] rvest_0.3.6        colorspace_1.4-1   htmltools_0.5.0    httpuv_1.5.4      
[21] pkgconfig_2.0.3    broom_0.7.0        haven_2.3.1        scales_1.1.1      
[25] whisker_0.4        later_1.1.0.1      git2r_0.27.1       farver_2.0.3      
[29] generics_0.0.2     ellipsis_0.3.1     withr_2.2.0        cli_2.0.2         
[33] magrittr_1.5       crayon_1.3.4       readxl_1.3.1       evaluate_0.14     
[37] fs_1.4.2           ncdf4_1.17         fansi_0.4.1        xml2_1.3.2        
[41] lwgeom_0.2-5       class_7.3-17       tools_4.0.2        hms_0.5.3         
[45] lifecycle_0.2.0    munsell_0.5.0      reprex_0.3.0       isoband_0.2.2     
[49] compiler_4.0.2     e1071_1.7-3        RNetCDF_2.3-1      rlang_0.4.7       
[53] classInt_0.4-3     units_0.6-7        grid_4.0.2         rstudioapi_0.11   
[57] labeling_0.3       rmarkdown_2.3      gtable_0.3.0       DBI_1.1.0         
[61] R6_2.4.1           ncmeta_0.2.5       knitr_1.29         rprojroot_1.3-2   
[65] KernSmooth_2.23-17 stringi_1.4.6      parallel_4.0.2     Rcpp_1.0.5        
[69] vctrs_0.3.2        dbplyr_1.4.4       tidyselect_1.1.0   xfun_0.16