• 1 Load data
  • 2 Overview CESM output
    • 2.1 Submission tar files

Last updated: 2021-06-17

Checks: 7 0

Knit directory: RECCAP2_CESM_ETHZ_submission/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210113) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 2fce560. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Unstaged changes:
    Modified:   code/Workflowr_project_managment.R
    Modified:   data/overview/overview_files.csv
    Modified:   data/regions/RECCAP2_region_masks_all_clean.cvs

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/overview.Rmd) and HTML (docs/overview.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 2fce560 jens-daniel-mueller 2021-06-17 rebuild all with June2021 data before resubmission
html 3c42112 jens-daniel-mueller 2021-03-30 Build site.
Rmd 2128167 jens-daniel-mueller 2021-03-30 cleaned outdated content
html 58225ec jens-daniel-mueller 2021-03-15 Build site.
Rmd c555bfa jens-daniel-mueller 2021-03-15 include tarred files
html de8d525 jens-daniel-mueller 2021-03-12 Build site.
html 92e996c jens-daniel-mueller 2021-03-12 Build site.
html 5b0bf4f jens-daniel-mueller 2021-03-12 Build site.
Rmd 2a57aaa jens-daniel-mueller 2021-03-12 adapt March2021 data version
html a074aa8 jens-daniel-mueller 2021-03-03 Build site.
html fe6bd41 jens-daniel-mueller 2021-03-03 Build site.
html a6e2e67 jens-daniel-mueller 2021-03-03 Build site.
Rmd 67b6f9c jens-daniel-mueller 2021-03-03 create file list with sizes in R
html 52063f4 jens-daniel-mueller 2021-03-03 Build site.
Rmd b69cc55 jens-daniel-mueller 2021-03-03 create file list with sizes in R
html 1bb2b08 jens-daniel-mueller 2021-03-02 Build site.
html 063851d jens-daniel-mueller 2021-03-02 Build site.
html 510b5a3 jens-daniel-mueller 2021-03-02 Build site.
Rmd 5611ec5 jens-daniel-mueller 2021-03-02 maps and time series of 2D data
html 026469a jens-daniel-mueller 2021-03-02 Build site.
html d5e90cc jens-daniel-mueller 2021-02-26 Build site.
html 57e8a05 jens-daniel-mueller 2021-02-26 Build site.
html 73f18f3 jens-daniel-mueller 2021-02-26 Build site.
html a79220a jens-daniel-mueller 2021-01-13 Build site.
Rmd 8e6db0f jens-daniel-mueller 2021-01-13 compute file sizes
html c22d518 jens-daniel-mueller 2021-01-13 Build site.
Rmd 87263ed jens-daniel-mueller 2021-01-13 compute file sizes
html 84feb00 jens-daniel-mueller 2021-01-13 Build site.
Rmd 5f65727 jens-daniel-mueller 2021-01-13 compute file sizes
html 4c87be2 jens-daniel-mueller 2021-01-13 Build site.
Rmd 82a2eb3 jens-daniel-mueller 2021-01-13 formatting html output
html 81ae5ed jens-daniel-mueller 2021-01-13 Build site.
Rmd 08c888f jens-daniel-mueller 2021-01-13 formatting html output
html dad12a3 jens-daniel-mueller 2021-01-13 Build site.
html 496f842 jens-daniel-mueller 2021-01-13 Build site.
Rmd eb798b2 jens-daniel-mueller 2021-01-13 formatting html output
html 4d1bb9a jens-daniel-mueller 2021-01-13 Build site.
html a8fe1a7 jens-daniel-mueller 2021-01-13 Build site.
Rmd 7491062 jens-daniel-mueller 2021-01-13 compiled summary stats
html 2734e37 jens-daniel-mueller 2021-01-13 Build site.
Rmd 05be0a9 jens-daniel-mueller 2021-01-13 included overview

library(tidyverse)
library(gt)

1 Load data

This analysis is based on Table 3 of the RECCAP2-ocean protocol for model output, and statistics of the ETHZ CESM model output.

# read Table 3 from model protocol
table_3 <- read_csv(
  here::here(
    "data/overview",
    "RECCAP2-ocean_data_products_overview - Model_protocol_table3.csv"
  )
)

# replace placeholder variable name with actual CESM variable name
table_3_temp <- table_3 %>% 
  filter(variable_id == "epc100type / epc1000type") %>% 
  select(-variable_id)

table_3_temp <- expand_grid(
  table_3_temp,
  variable_id = c("epc100hard","epc1000hard","epc100soft","epc1000soft")
)

table_3 <- table_3 %>% 
  filter(variable_id != "epc100type / epc1000type")

table_3 <- bind_rows(table_3, table_3_temp)
rm(table_3_temp)

The list of files and sizes of the ETHZ CESM model output refers to the content in this folder:

# set path to output
path_CESM <-
  "/net/kryo/work/loher/CESM_output/RECCAP2/submit_June2021"
path_CESM
[1] "/net/kryo/work/loher/CESM_output/RECCAP2/submit_June2021"
# create list of CESM output files and sizes

CESM_files_names <- list.files(path = path_CESM,
                               pattern = ".nc")
CESM_files_sizes <-
  file.size(paste(path_CESM, CESM_files_names, sep = "/"))

CESM_files <- bind_cols(file_name = CESM_files_names,
                        file_size_MB = round(CESM_files_sizes * 1e-6, 1))

rm(CESM_files_names, CESM_files_sizes)

# extract variable_id and experiment_id from file name
CESM_files <- CESM_files %>%
  mutate(
    variable_id = str_split(file_name,
                            pattern = "_CESM",
                            simplify = TRUE)[, 1],
    experiment_id = str_sub(string = file_name, -19, -19)
  ) %>%
  mutate(experiment_id = if_else(
    experiment_id %in% c("A", "B", "C", "D"),
    experiment_id,
    "ancillary"
  )) %>%
  select(-c(file_name))
# join file list and tab 3
overview <- full_join(table_3, CESM_files) %>%
  arrange(variable_id)

rm(CESM_files, table_3)

# write overview file
overview %>%
  write_csv("data/overview/overview_files.csv")

2 Overview CESM output

Overview table of output files created. Please note, that for each listed variable, four experiment_id (A-D) versions exist.

overview %>% 
  group_by(variable_id, dimension, priority) %>% 
  summarise_at("file_size_MB", sum, na.rm = TRUE) %>% 
  arrange(dimension, priority) %>% 
  gt(
    rowname_col = "variable_id",
    groupname_col = c("dimension", "priority"),
    row_group.sep = " | Priority: "
  ) %>%
  summary_rows(groups = TRUE,
               fns = list(total = "sum"))
file_size_MB
2D | Priority: 1
chlos 245.6
dissicos 187.7
epc100 234.4
epcalc100 237.8
fgco2 258.8
fgco2_glob 0.0
fgco2_reg 0.0
fice 68.8
intphyc 236.4
intpp 239.6
intzooc 235.2
mld 237.8
sos 187.4
spco2 204.3
talkos 184.2
tos 218.4
zeu 26.4
total 3,002.80
2D | Priority: 2
dfeos 243.4
epc1000 211.6
epc1000hard 213.8
epc1000soft 211.4
epc100hard 237.2
epc100soft 234.0
intdiac 242.0
intphynd 240.6
Kw 244.0
no3os 238.1
o2os 201.0
pco2atm 168.0
po4os 235.1
sios 232.4
total 3,152.60
2D | Priority: 3
alpha 201.4
total 201.40
3D | Priority: 1
dissic 733.1
epc 985.2
so 679.4
talk 700.2
thetao 923.0
total 4,020.90
3D | Priority: 2
no3 895.4
o2 876.8
po4 895.6
si 915.2
total 3,583.00
NA | Priority: NA
area 0.0
Area_tot_native 0.0
Atm_CO2 0.0
mask_sfc 0.0
mask_vol 0.4
Vol_tot_native 0.0
volume 0.2
total 0.60

2.1 Submission tar files

# create list of CESM output files and sizes

CESM_files_names_tar <- list.files(path = path_CESM,
                                   pattern = ".tar")
CESM_files_sizes_tar <-
  file.size(paste(path_CESM, CESM_files_names_tar, sep = "/"))

CESM_files_tar <- bind_cols(
  file_name = CESM_files_names_tar,
  file_size_GB = round(CESM_files_sizes_tar * 1e-9, 1))

rm(path_CESM, CESM_files_names_tar, CESM_files_sizes_tar)

# extract variable_id and experiment_id from file name
CESM_files_tar
# A tibble: 0 x 2
# … with 2 variables: file_name <chr>, file_size_GB <dbl>

sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.2

Matrix products: default
BLAS:   /usr/local/R-4.0.3/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.0.3/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] gt_0.2.2        forcats_0.5.0   stringr_1.4.0   dplyr_1.0.5    
 [5] purrr_0.3.4     readr_1.4.0     tidyr_1.1.2     tibble_3.0.4   
 [9] ggplot2_3.3.3   tidyverse_1.3.0 workflowr_1.6.2

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.5       lubridate_1.7.9  here_0.1         utf8_1.1.4      
 [5] assertthat_0.2.1 rprojroot_2.0.2  digest_0.6.27    R6_2.5.0        
 [9] cellranger_1.1.0 backports_1.1.10 reprex_0.3.0     evaluate_0.14   
[13] httr_1.4.2       pillar_1.4.7     rlang_0.4.10     readxl_1.3.1    
[17] rstudioapi_0.11  whisker_0.4      blob_1.2.1       checkmate_2.0.0 
[21] rmarkdown_2.5    munsell_0.5.0    broom_0.7.5      compiler_4.0.3  
[25] httpuv_1.5.4     modelr_0.1.8     xfun_0.18        pkgconfig_2.0.3 
[29] htmltools_0.5.0  tidyselect_1.1.0 fansi_0.4.1      crayon_1.3.4    
[33] dbplyr_1.4.4     withr_2.3.0      later_1.1.0.1    grid_4.0.3      
[37] jsonlite_1.7.1   gtable_0.3.0     lifecycle_1.0.0  DBI_1.1.0       
[41] git2r_0.27.1     magrittr_1.5     scales_1.1.1     cli_2.1.0       
[45] stringi_1.5.3    fs_1.5.0         promises_1.1.1   xml2_1.3.2      
[49] ellipsis_0.3.1   generics_0.0.2   vctrs_0.3.5      tools_4.0.3     
[53] glue_1.4.2       hms_0.5.3        yaml_2.2.1       colorspace_1.4-1
[57] rvest_0.3.6      knitr_1.30       haven_2.3.1      sass_0.2.0