Last updated: 2024-04-12

Checks: 7 0

Knit directory: bgc_argo_r_argodata/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211008) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 1800745. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/

Unstaged changes:
    Modified:   analysis/MHWs_categorisation.Rmd
    Modified:   analysis/_site.yml
    Modified:   analysis/load_broullon_DIC_TA_clim.Rmd
    Modified:   analysis/temp_core_align_climatology.Rmd
    Modified:   code/Workflowr_project_managment.R
    Modified:   code/start_background_job.R
    Modified:   code/start_background_job_load.R
    Modified:   code/start_background_job_partial.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/load_argo_core.Rmd) and HTML (docs/load_argo_core.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 1800745 mlarriere 2024-04-12 build load_data section
html c076fba mlarriere 2024-04-12 Build site.
html 91f08a6 mlarriere 2024-04-07 Build site.
html db21f55 mlarriere 2024-04-06 Build site.
Rmd 5627ad6 mlarriere 2024-04-04 until coverage_maps_North_Atlantic building test
html c6dfd99 mlarriere 2024-03-31 Build site.
Rmd 6af4dc0 mlarriere 2024-03-31 load_argo_core building test
Rmd de0401f mlarriere 2024-03-27 running test.
html b82a3be mlarriere 2024-03-26 Build site.
Rmd 4ee65d7 mlarriere 2024-03-26 core dataset refresh - adding realtime mode files in 2023.
Rmd 825f6aa mlarriere 2024-03-25 core dataset refresh - adding realtime mode files in 2023.
Rmd 500bc32 mlarriere 2024-03-15 core dataset refresh.
Rmd 33ab76a mlarriere 2024-03-14 core dataset refresh.
Rmd 26fb454 mlarriere 2024-03-11 core dataset refresh.
Rmd 7c8bd44 mlarriere 2024-03-08 core dataset refresh.
Rmd 5ffa0da mlarriere 2024-03-07 core dataset refresh.
Rmd 2593007 mlarriere 2024-03-06 core dataset refresh.
Rmd d638c85 mlarriere 2024-03-05 core dataset refresh.
Rmd e3fa964 mlarriere 2024-03-01 core dataset refresh.
html f9de50e ds2n19 2024-01-01 Build site.
Rmd 76ebe5b ds2n19 2024-01-01 load refresh end Dec 2023
Rmd 38a1c4f ds2n19 2023-12-21 core dataset refresh.
Rmd 17dfa44 ds2n19 2023-12-20 builing generic cluster analysis.
html 4eb3da7 ds2n19 2023-12-20 Build site.
Rmd fe896a1 ds2n19 2023-12-20 builing generic cluster analysis.
html 07d4eb8 ds2n19 2023-12-20 Build site.
html fa6cf38 ds2n19 2023-12-14 Build site.
html f110b74 ds2n19 2023-12-13 Build site.
Rmd acb6523 ds2n19 2023-12-12 Added documentation added to tasks section at start of each script.
html e60ebd2 ds2n19 2023-12-07 Build site.
html 7b0dde9 ds2n19 2023-11-27 Build site.
Rmd 48f510c ds2n19 2023-11-27 Cluster under surface extreme.
html b8a2611 ds2n19 2023-11-27 Build site.
Rmd 6c81f96 ds2n19 2023-11-27 Cluster under surface extreme.
html 80c16c2 ds2n19 2023-11-15 Build site.
Rmd 3eba518 ds2n19 2023-11-15 Introduction of vertical alignment and cluster analysis to github website.
Rmd e07ffb5 ds2n19 2023-11-11 Updates after code reviewand additional documentation.
Rmd b18136a jens-daniel-mueller 2023-11-09 code review
Rmd 4fcef97 ds2n19 2023-11-01 vertical alignment of bgc and core profiles and then cluster analysis.
Rmd 8edb9f4 ds2n19 2023-10-17 BGC load process aligned to core load. Associated changes to pH and oxygen analysis.
html c7c6b3c ds2n19 2023-10-14 Build site.
Rmd 806687a ds2n19 2023-10-14 Added load qc metrics
html 7227bdb ds2n19 2023-10-14 Build site.
Rmd d6e0aca ds2n19 2023-10-14 Added load qc metrics
html 12d26f4 ds2n19 2023-10-14 Build site.
Rmd 311a3ad ds2n19 2023-10-14 Added load qc metrics
html c1dc2c4 ds2n19 2023-10-14 Build site.
Rmd 7b9cd9b ds2n19 2023-10-14 Added load qc metrics
html d6fe78d ds2n19 2023-10-14 Build site.
Rmd cc09ea4 ds2n19 2023-10-14 Added load qc metrics
html eec64f7 ds2n19 2023-10-13 Build site.
Rmd 2ca768d ds2n19 2023-10-13 Added load qc metrics
html 35d0933 ds2n19 2023-10-13 Build site.
Rmd 3f8f36e ds2n19 2023-10-13 Added load qc metrics
Rmd 6d38b59 ds2n19 2023-10-12 minor changes after JDM code review
html 2e78f0a ds2n19 2023-10-12 Build site.
Rmd d1405fb ds2n19 2023-10-11 Run core Argo after code review 2013 - 2023
Rmd 72f849f jens-daniel-mueller 2023-10-11 code review
Rmd 5bf13a5 ds2n19 2023-10-11 load core conflicts resolved
Rmd 1ae81b3 ds2n19 2023-10-11 reworked core load process to work initially by year and then finally create consolidated all years files.
html f4c8d6f ds2n19 2023-10-11 Build site.
Rmd f5edbe3 ds2n19 2023-10-10 Create simplified data sets and run for 2013 - 2023
html 7394ba8 ds2n19 2023-10-10 Build site.
Rmd a5002da ds2n19 2023-10-10 Create simplified data sets and run for 2013 - 2023
Rmd aac59da ds2n19 2023-10-09 Create targetted data sets and run for 2013 - 2023
html 26f85f0 ds2n19 2023-10-06 Build site.
Rmd 2bd702c ds2n19 2023-10-06 Changed core Argo location folders and run for 2022
html c3381d0 ds2n19 2023-10-06 Build site.
Rmd bc8d46d ds2n19 2023-10-06 Changed core Argo location folders and run for 2022
html 8d5c853 pasqualina-vonlanthendinenna 2022-08-30 Build site.
Rmd 9bde106 pasqualina-vonlanthendinenna 2022-08-30 added 6 months of core data (still have to fix the dates
html 7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29 Build site.
Rmd 8e81570 pasqualina-vonlanthendinenna 2022-08-29 load and add in core-argo data (1 month)

Task

Makes use of argodata libraries to load argo profile related data, stages load index, data and metadata files. Cache files (saved in /nfs/kryo/work/datasets/ungridded/3d/ocean/floats/core_argo_r_argodata and dac subdirectory) are used, set option opt_refresh_cache to TRUE to force a refresh – This process takes considerable time.

The load process described in this paragraph is carried out for each year and the files are saved to the core preprocessed. core_index data frame is created based on delayed mode files and a supplied date range. The index file is then used to load profile data into core_data and associated meta data into core_metadata. core_data is segregated into core_data_temp and core_data_psal. core_data_temp, core_data_psal and core_metadata are filtered by n_prof == opt_n_prof_sel. Description of n_prof usage is provided at https://argo.ucsd.edu/data/data-faq/version-3-profile-files/ the following is from that page. The main Argo CTD profile is stored in N_PROF=1. All other parameters (including biogeochemical parameters) that are measured with the same vertical sampling scheme and at the same location and time as the main Argo CTD profile are also stored in N_PROF=1.

On completion combined all year core_data_temp, core_data_psal and core_metadata that incorporate all years. core_data_temp, core_data_psal and core_metadata initially contain a string field file that uniquely identifies the profile and links the two data frames. An additional data from core_fileid is created with a unique list file fields along with a numeric file_id field. The file fields in core_data and core_metadata are then replaced with file_id.

core_temp_flag_A and core_temp_flag_AB are created that support prior analysis. In addition, a data frame core_measure_summary is created that is used for load level reporting figures.

Files are written to the core preprocessed folder for ongoing analysis.

Dependencies

Cache files - /nfs/kryo/work/datasets/ungridded/3d/ocean/floats/core_argo_r_argodata_2024-03-13

Outputs (in core preprocessed folder)

core_index.rds – Copy of the index file that was used in the selection of data and meta data files.

core_data_temp.rds – The main core temperature profile data.

core_data_psal.rds – The main core salinity profile data.

core_metadata.rds – The associated meta data information.

core_fileid.rds – A lookup from file_id to file.

Each of the below files are used in prior analysis and maintained to support that analysis.

core_temp_flag_A.rds

core_temp_flag_AB.rds

Set load options

Determine if files are refreshed from dac or cache directory is used. Are metadata, temperature and salinity year files renewed? Are the consolidated all year files created from the individual year files?

# opt_refresh_cache
#   FALSE = do not refresh cache.
#   TRUE  = refresh cache. (any none zero value will force a refresh)
opt_refresh_cache = FALSE

# opt_refresh_years_temp, opt_refresh_years_psal, opt_refresh_years_metadata
#   FALSE = do not refresh the yearly files. (any value <> 1 will omit annual refresh)
#   TRUE  = refresh yearly files for given parameter.
#   year to be refreshed are set by opt_min_year and opt_max_year
opt_refresh_years_temp = TRUE
opt_refresh_years_psal = TRUE
opt_refresh_years_metadata = TRUE
opt_min_year = 2013
opt_max_year = 2024

# opt_consolidate_temp, opt_consolidate_psal, opt_consolidate_metadata
# Yearly files must have already been created!
#   FALSE = do not build consolidated file from previously written yearly files. (any value <> 1 will omit consolidation)
#   TRUE  = build consolidated file from previously written yearly files for given parameter.
#   year to be included in the consolidation are set by opt_min_year and opt_max_year
opt_consolidate_temp = TRUE
opt_consolidate_psal = TRUE
opt_consolidate_metadata = TRUE

# opt_A_AB_files
# consolidated temp files must have already been created!
#   FALSE = do not build temp_A and temp_AB file from previously written consolidated files. (any value <> 1 will omit A and AB files)
#   TRUE  = build temp_A and temp_AB file from previously written consolidated files.
opt_A_AB_files = TRUE

# opt_review_mode
# if set (TRUE) the processing will take place in a sub-directory opt_review_dir and only process 10 days of profiles per year to reduce size
# of output and processing time
opt_review_mode = FALSE
opt_review_dir = "/review_mode"

#if (opt_review_mode) {
#  path_argo_core_preprocessed <- paste0(path_argo_core, "/preprocessed_core_data", opt_review_dir)
#}


# opt_qc_only
# Avoids reprocessing files and ensures qc summary plots are created from a previous run!
#   FALSE = carry out reprocessing based on options set above and create QC summaries.
#   TRUE  = do NOT reprocessing files and just create QC summaries from previous loads.
opt_qc_only = FALSE

# opt_n_prof_sel
# The selection criteria that is used against n_prof, here set to 1
# Description of n_prof usage is provided at https://argo.ucsd.edu/data/data-faq/version-3-profile-files/ the next two lines are from that page.
#     The main Argo CTD profile is stored in N_PROF=1. All other parameters (including biogeochemical parameters) that are measured 
#     with the same vertical sampling scheme and at the same location and time as the main Argo CTD profile are also stored in N_PROF=1.
opt_n_prof_sel = 1

Set cache directory

Directory where the core-Argo profile files are stored. Either use the cached files or force a refresh from dac (long process)

# argodata package: https://rdrr.io/github/ArgoCanada/argodata/man/

if (!opt_qc_only) {
  # print("Defining settings") 
  # set cache directory
  argo_set_cache_dir(cache_dir = path_argo_core)
  
  # check cache directory
  argo_cache_dir()
  
  # Server options are available.
  # https://data-argo.ifremer.fr -  This is the default. Downloads are quick but when carrying out a refresh in Dec   
  #                                 2023 the process would halt part way through and not continue. -- SAME in March 2024
  # ftp://ftp.ifremer.fr/ifremer/argo - Progress does not seem as fast as the HTTPS server but as yet the halting
  #                                     issue has not occurred.
  # https://usgodae.org/pub/outgoing/argo - alternative HTTPS 
  argo_set_mirror("https://usgodae.org/pub/outgoing/argo")
  
  # check argo mirror
  argo_mirror()

  # Download index files (metadata)
  # command_index <- "rsync -avzh –delete vdmzrs.ifremer.fr::argo/ar_index_global_meta.txt.gz /nfs/kryo/work/datasets/ungridded/3d/ocean/floats/core_argo_r_argodata_2024-13-03"
  # system(command_index)
  # 
  # age argument: age of the cached files to update in hours (Inf means always use the cached file, and -Inf means always download from the server) 
  # ex: max_global_cache_age = 5 updates files that have been in the cache for more than 5 hours, max_global_cache_age = 0.5 updates
  # files that have been in the cache for more than 30 minutes, etc.
  if (opt_refresh_cache){
    print("Updating files from website -- in progress") 
    
    # Terminal command for synchronization with dynamic ARGO archive -- about 12h of computation
    command <- 'rsync -avzh --delete vdmzrs.ifremer.fr::argo/ /nfs/kryo/work/datasets/ungridded/3d/ocean/floats/core_argo_r_argodata_2024-13-03/dac'
    system(command)
    
    # argodata function to update data -- facing some writing permission issues as the entire database has to be redownload each time (dynamic archive)
    # argo_update_global(max_global_cache_age = -Inf)
    # argo_update_data(max_data_cache_age = -Inf)

  } else {
    print("Retreiving files from local server")
    argo_update_global(max_global_cache_age = Inf)
    argo_update_data(max_data_cache_age = Inf)
  }
}

Load by year

Builds yearly files for temperature, salinity and metadata that can be consolidated in the next code chunk (consolidate_into_allyears)

#------------------------------------------------------------------------------
# Important - file are loaded for the given year processed and the files written to disk.
#------------------------------------------------------------------------------
if (!opt_qc_only) {
  for (target_year in opt_min_year:opt_max_year) {
    # for manual testing of the loop
    # target_year <- 2023
    cat("year being processed:", target_year, "\n")
    
    # if updating any year files it will be based on the initial index file core_index
    if (opt_refresh_years_temp |
        opt_refresh_years_psal | opt_refresh_years_metadata)
    {
      # if working in review mode only consider first 10 days of the year
      if (opt_review_mode) {
        core_index <- argo_global_prof() %>%
          argo_filter_data_mode(data_mode = 'delayed') %>%
          argo_filter_date(
            date_min = paste0(target_year, "-01-01"),
            date_max = paste0(target_year, "-01-05")
          )
      } 
      else {
        #We select the delayed mode files, and add the realtime-mode files in case there is not enough files (<2500), in order to have good data coverage
        #Delayed-mode -- default 
        core_index <- argo_global_prof() %>%
            argo_filter_data_mode(data_mode = 'delayed') %>%
            argo_filter_date(
                date_min = paste0(target_year, "-01-01"),
                date_max = paste0(target_year, "-12-31")           
            )
        
        # Calculate number of file per month
        monthly_counts <- core_index %>%
            mutate(month = format(date, "%B")) %>%
            group_by(month) %>%
            summarize(total_rows = n())

        #If less than 4000 files per month, add realtime mode files
        less_than_4000 <- monthly_counts$total_rows < 4000
        
        if (any(less_than_4000)) {
        print("Add realtime files")
        for (month in monthly_counts$month[less_than_4000]) {
          print(month)
          month_date <- as.Date(paste0(target_year, "-", match(month, month.name), "-01"))

          tryCatch({
            #Download realtime files for current month
            realtime_files <- argo_global_prof() %>%
              argo_filter_data_mode(data_mode = 'realtime') %>%
              argo_filter_date(
                  date_min = paste0(target_year, "-01-01"),
                  date_max = paste0(target_year, "-12-31")
              )

            #Combine realtime and delayed files
            core_index <- bind_rows(core_index, realtime_files)
            }, error = function(e) {
              cat("Error downloading realtime files for month:", month, "\n")
          })
            }
        }
      }
    }
    
    # if temp or psal are being updated get the profile data
    if (opt_refresh_years_temp | opt_refresh_years_psal){
      
      #Reading profiles (takes a while)
      core_data_yr <- argo_prof_levels(
        path = core_index,
        vars =
          c(
            'PRES_ADJUSTED',
            'PRES_ADJUSTED_QC',
            'PSAL_ADJUSTED',
            'PSAL_ADJUSTED_QC',
            'TEMP_ADJUSTED',
            'TEMP_ADJUSTED_QC'
          ),
        quiet = TRUE
      )
      
      # see option section above for rational of why we want n_prof = 1 profiles
      core_data_yr <- core_data_yr %>%
        filter(n_prof == opt_n_prof_sel)
      
      # if necessary make summary data frame.
      if (!exists("core_measure_summary"))
      {
        core_measure_summary <- tibble(
          "year" = numeric(),
          "measure" = character(),
          "measure_order" = numeric(),
          "measure_qc" = numeric(),
          "count_measures" = numeric()
        )
      }
      
      # Ensure no N/A qc flags
      core_data_yr <-
        core_data_yr %>%
        mutate(across(contains("_adjusted_qc"), ~ replace_na(., " ")))
      
      # code from lines 231-346 could largely be replace with:
      core_data_yr %>%
        select(contains("_qc")) %>%
        pivot_longer(contains("_qc")) %>%
        mutate(name = str_remove(name, "_adjusted_qc")) %>%
        count(name, value) %>%
        rename(measure = name,
               measure_qc = value,
               count_measures = n) %>%
        mutate(
          year = target_year,
          measure_order = case_when(measure == "pres" ~ 1,
                                    measure == "temp" ~ 2,
                                    measure == "psal" ~ 3)
        )

      # Default qc counts for measurements - Pressure
      qc_defaults <-
        tibble(
          year = rep(target_year, 8),
          measure = rep("Pressure",8),
          measure_order = rep(1, 8),
          measure_qc = c('1', '2', '3', '4', '5', '8', '9', ' '),
          count_measures = rep(0, 8)
        )
      
      core_measure_summary = rbind(core_measure_summary, qc_defaults)
      
      # Build summary of qc flags for pressure and update core_measure_summary
      agg_tbl <-
        core_data_yr %>% group_by(
          year = target_year,
          measure = "Pressure",
          measure_order = 1,
          measure_qc = pres_adjusted_qc
        ) %>%
        summarise(count_measures = n())
      
      core_measure_summary <-
        rows_update(core_measure_summary,
                    agg_tbl,
                    by = c('year', 'measure_order', 'measure_qc'))
      
      # Default qc counts for measurements - temperature
      qc_defaults <-
        data.frame(
          year = c(
            target_year,
            target_year,
            target_year,
            target_year,
            target_year,
            target_year,
            target_year,
            target_year
          ),
          measure = c(
            "Temperature",
            "Temperature",
            "Temperature",
            "Temperature",
            "Temperature",
            "Temperature",
            "Temperature",
            "Temperature"
          ),
          measure_order = c(2, 2, 2, 2, 2, 2, 2, 2),
          measure_qc = c('1', '2', '3', '4', '5', '8', '9', ' '),
          count_measures = c(0, 0, 0, 0, 0, 0, 0, 0)
        )
      core_measure_summary = rbind(core_measure_summary, qc_defaults)
      
      # Build summary of qc flags for temperature and update core_measure_summary
      agg_tbl <-
        core_data_yr %>% group_by(
          year = target_year,
          measure = "Temperature",
          measure_order = 2,
          measure_qc = temp_adjusted_qc
        ) %>%
        summarise(count_measures = n())
      core_measure_summary <-
        rows_update(core_measure_summary,
                    agg_tbl,
                    by = c('year', 'measure_order', 'measure_qc'))
      
      # Default qc counts for measurements - salinity
      qc_defaults <-
        data.frame(
          year = c(
            target_year,
            target_year,
            target_year,
            target_year,
            target_year,
            target_year,
            target_year,
            target_year
          ),
          measure = c(
            "Salinity",
            "Salinity",
            "Salinity",
            "Salinity",
            "Salinity",
            "Salinity",
            "Salinity",
            "Salinity"
          ),
          measure_order = c(3, 3, 3, 3, 3, 3, 3, 3),
          measure_qc = c('1', '2', '3', '4', '5', '8', '9', ' '),
          count_measures = c(0, 0, 0, 0, 0, 0, 0, 0)
        )
      core_measure_summary = rbind(core_measure_summary, qc_defaults)

     # Build summary of qc flags for salinity and update core_measure_summary
      agg_tbl <-
        core_data_yr %>% group_by(
          year = target_year,
          measure = "Salinity",
          measure_order = 3,
          measure_qc = psal_adjusted_qc
        ) %>%
        summarise(count_measures = n())
      core_measure_summary <-
        rows_update(core_measure_summary,
                    agg_tbl,
                    by = c('year', 'measure_order', 'measure_qc'))
      print(core_measure_summary)
      rm(agg_tbl)
      
    }
    
    # if updating metadata get the file based on core_index
    if (opt_refresh_years_metadata)
    {
      # read associated metadata
      core_metadata_yr <- argo_prof_prof(path = core_index)
      
      # see option section above for rational of why we want n_prof = 1 profiles
      core_metadata_yr <- core_metadata_yr %>%
        filter(n_prof == opt_n_prof_sel)
      
    }
    
    # if temp or psal are being updated get the profile data
    if (opt_refresh_years_temp | opt_refresh_years_psal)
    {
      # remove columns that are not needed in merged temperature and salinity files
      core_index <- core_index %>%
        select(file,
               date,
               latitude,
               longitude)
      
      # resolve lat and lon
      core_index <- core_index %>%
        rename(lon = longitude,
               lat = latitude) %>%
        mutate(lon = if_else(lon < 20, lon + 360, lon)) %>%
        mutate(
          lat = cut(lat, seq(-90, 90, 1), seq(-89.5, 89.5, 1)),
          lat = as.numeric(as.character(lat)),
          lon = cut(lon, seq(20, 380, 1), seq(20.5, 379.5, 1)),
          lon = as.numeric(as.character(lon))
        )
      
      # join to index to incorporate date, lat and lon
      core_data_yr <- left_join(core_data_yr, core_index)
      
      # derive depth using TEOS=10
      core_data_yr <- core_data_yr %>%
        mutate(depth = gsw_z_from_p(pres_adjusted, latitude =  lat) * -1.0,
               .before = pres_adjusted)
      
      core_data_yr <-
        core_data_yr %>%
        select(-c(n_levels, n_prof, pres_adjusted))
    }
    
    # ------------------------------------------------------------------------------
    # Process temperature file
    # ------------------------------------------------------------------------------
    if (opt_refresh_years_temp)
    {
      # Base temperature data where qc flag = good
      # Could this cause incomplete profiles to be maintained?
      core_data_temp_yr <- core_data_yr %>%
        filter(pres_adjusted_qc %in% c(1, 8) &
                 temp_adjusted_qc %in% c(1, 8)) %>%
        select(-contains(c("_qc", "psal")))

      # print("Writing temperature file")
      # print(core_data_temp_yr)
      
      # write this years file
      core_data_temp_yr %>%
        write_rds(file = paste0(
          path_argo_core_preprocessed,
          "/",
          target_year,
          "_core_data_temp.rds"
        ))

    }
    
    # ------------------------------------------------------------------------------
    # Process salinity file
    # ------------------------------------------------------------------------------
    if (opt_refresh_years_psal)
    {
      # Base salinity data where qc flag = good
      core_data_psal_yr <- core_data_yr %>%
        filter(pres_adjusted_qc %in% c(1, 8) &
                 psal_adjusted_qc %in% c(1, 8)) %>%
        select(-contains(c("_qc", "temp")))
     
      # print("Writing salinity file")
      # print(core_data_psal_yr)
      
      # write this years file
      core_data_psal_yr %>%
        write_rds(file = paste0(
          path_argo_core_preprocessed,
          "/",
          target_year,
          "_core_data_psal.rds"
        ))
      
    }
    
    
    # ------------------------------------------------------------------------------
    # Process metadata file
    # ------------------------------------------------------------------------------
    if (opt_refresh_years_metadata)
    {
      # resolve lat and lon so that it is hamonised with data files
      core_metadata_yr <- core_metadata_yr %>%
        rename(lon = longitude,
               lat = latitude) %>%
        mutate(lon = if_else(lon < 20, lon + 360, lon)) %>%
        mutate(
          lat = cut(lat, seq(-90, 90, 1), seq(-89.5, 89.5, 1)),
          lat = as.numeric(as.character(lat)),
          lon = cut(lon, seq(20, 380, 1), seq(20.5, 379.5, 1)),
          lon = as.numeric(as.character(lon))
        )

      # Select just the columns we are interested in
      core_metadata_yr <- core_metadata_yr %>%
        select (
          file,
          date,
          lat,
          lon,
          platform_number,
          cycle_number,
          position_qc,
          profile_pres_qc,
          profile_temp_qc,
          profile_psal_qc
        )
      
      print("Writing metadata file")
      # print(core_metadata_yr)
      
            
      # write this years file
      core_metadata_yr %>%
        write_rds(file = paste0(
          path_argo_core_preprocessed,
          "/",
          target_year,
          "_core_metadata.rds"
        ))

    }
    
  }
  
  #Write measure summary file
  print("Writing summary file")
  # print(core_measure_summary)
      
  core_measure_summary %>%
    write_rds(file = paste0(path_argo_core_preprocessed, "/core_measure_summary.rds"))
  
  rm(core_measure_summary)

  }

Consolidate years

This process create three files in the path_argo_core_preprocessed directory that will be used for further analysis

core_data_temp.rds

Contains approximately 500 measuring points per profile and only contains those points that are marked as good. Fields listed below fileid - the source file date - date of profile lat - aligned to closest 0.5° lat lon - aligned to closest 0.5° lon depth - calculated from pres_adjusted and latitude pres_adjusted - recorded and adjusted (after qc proccess) pressure temp_adjusted - recorded and adjusted (after qc proccess) temperature

core_data_psal.rds

Contains approximately 500 measuring points per profile and only contains those points that are marked as good. Fields listed below fileid - the source file date - date of profile lat - aligned to closest 0.5° lat lon - aligned to closest 0.5° lon depth - calculated from pres_adjusted and latitude pres_adjusted - recorded and adjusted (after qc proccess) pressure psal_adjusted - recorded and adjusted (after qc proccess) salinity

core_metadata.rds

Contains 1 row per profile. Fields listed below fileid - the source file date - date of profile lat - aligned to closest 0.5° lat lon - aligned to closest 0.5° lon platform_number - identifier of float cycle_number - the profile number for the given float position_qc - qc flag associated with the positioning of the float profile profile_pres_qc - qc flag associated with the pressure readings of the profile (A-F) profile_temp_qc - qc flag associated with the temperature readings of the profile (A-F) profile_psal_qc - qc flag associated with the salinity readings of the profile (A-F)

if (!opt_qc_only) {
  
  # ------------------------------------------------------------------------------
  # Process temperature file
  # ------------------------------------------------------------------------------
  if (opt_consolidate_temp){
    consolidated_created = 0
    
    for (target_year in opt_min_year:opt_max_year) {
      # target_year<-2023
      cat("year being processed ", target_year, "\n")
      
      # read the yearly file based on target_year
      core_data_temp_yr <-
      read_rds(file = paste0(path_argo_core_preprocessed, "/", target_year, "_core_data_temp.rds"))
  
      # Combine into a consolidated all years file
      if (consolidated_created == 0) {
        core_data_temp <- core_data_temp_yr
        consolidated_created = 1
      } else {
        core_data_temp <- rbind(core_data_temp, core_data_temp_yr)
      }
    }

  }
  
  # ------------------------------------------------------------------------------
  # Process salinity file
  # ------------------------------------------------------------------------------
  if (opt_consolidate_psal){
    consolidated_created = 0
    
    for (target_year in opt_min_year:opt_max_year) {
      # target_year<-2023
      cat("year being processed ", target_year, "\n")
      
      # read the yearly file based on target_year
      core_data_psal_yr <-
      read_rds(file = paste0(path_argo_core_preprocessed, "/", target_year, "_core_data_psal.rds"))
  
      # Combine into a consolidated all years file
      if (consolidated_created == 0) {
        core_data_psal <- core_data_psal_yr
        consolidated_created = 1
      } else {
        core_data_psal <- rbind(core_data_psal, core_data_psal_yr)
      }
    }

  }
  
  # ------------------------------------------------------------------------------
  # Process metadata file
  # ------------------------------------------------------------------------------
  if (opt_consolidate_metadata){
    consolidated_created = 0
    
    for (target_year in opt_min_year:opt_max_year) {
      # target_year<-2023
      cat("year being processed ", target_year, "\n")

      # read the yearly file based on target_year
      core_metadata_yr <-
      read_rds(file = paste0(path_argo_core_preprocessed, "/", target_year, "_core_metadata.rds"))
  
      # Combine into a consolidated all years file
      if (consolidated_created == 0) {
        core_metadata <- core_metadata_yr
        consolidated_created = 1
      } else {
        core_metadata <- rbind(core_metadata, core_metadata_yr)
      }
    }

  }
  
  # ------------------------------------------------------------------------------
  # Establish file_id and save files
  # ------------------------------------------------------------------------------
  # create fileid file ready to update data files
  core_fileid <- unique(core_metadata$file)
  core_fileid <- tibble(core_fileid)
  core_fileid <- core_fileid %>% select (file = core_fileid)
  core_fileid <- tibble::rowid_to_column(core_fileid, "file_id")

  # Change metadate and data to have file_id
  core_metadata <- full_join(core_metadata, core_fileid)
  core_metadata <- core_metadata %>%
                    select(-c(file))
  core_data_temp <- full_join(core_data_temp, core_fileid)
  core_data_temp <- core_data_temp %>%
                    select(-c(file))
  core_data_psal <- full_join(core_data_psal, core_fileid)
  core_data_psal <- core_data_psal %>%
                    select(-c(file))
    
  # write consolidated files
  core_fileid %>%
    write_rds(file = paste0(path_argo_core_preprocessed, "/core_fileid.rds"))
  core_metadata %>%
    write_rds(file = paste0(path_argo_core_preprocessed, "/core_metadata.rds"))
  core_data_temp %>%
    write_rds(file = paste0(path_argo_core_preprocessed, "/core_data_temp.rds"))
  core_data_psal %>%
    write_rds(file = paste0(path_argo_core_preprocessed, "/core_data_psal.rds"))

  rm(core_metadata_yr, core_data_temp_yr, core_data_psal_yr)
  rm(core_metadata, core_data_temp, core_data_psal, core_fileid)
  gc()

}

A and AB flag files

This process create two additional files in the path_argo_core_preprocessed directory that will be used for further analysis

core_temp_flag_A.rds

only ontains profile where profile_pres_qc and profile_temp_qc both equal A (100%). Fields listed below lat - aligned to closest 0.5° lat lon - aligned to closest 0.5° lon date - date of profile depth - depth of observation temp_adjusted - recorded and adjusted (after qc proccess) temperature platform_number - identifier of float cycle_number - the profile number for the given float

core_temp_flag_A.rds

only ontains profile where profile_pres_qc and profile_temp_qc both either A (100%) or B (> 75%). Fields listed below lat - aligned to closest 0.5° lat lon - aligned to closest 0.5° lon date - date of profile depth - depth of observation temp_adjusted - recorded and adjusted (after qc proccess) temperature platform_number - identifier of float cycle_number - the profile number for the given float

if (!opt_qc_only) {

  if (opt_A_AB_files){
  
    # Read temp and meta_data
    core_data_temp <-
    read_rds(file = paste0(path_argo_core_preprocessed, "/core_data_temp.rds"))
    core_metadata <-
    read_rds(file = paste0(path_argo_core_preprocessed, "/core_metadata.rds"))
  
    # Join temp and meta_data to form merge
    core_merge <- left_join(x = core_data_temp, 
                            y = core_metadata %>% 
                              select(file_id,
                                     platform_number,
                                     cycle_number,
                                     contains("_qc")))

    rm(core_data_temp, core_metadata)
    gc()
  
    # Select just A profiles into core_temp_flag_A
    core_temp_flag_A <- core_merge %>%
      filter(profile_temp_qc == 'A' & profile_pres_qc == 'A') %>%
      select(-c(file_id, contains("_qc")))
  
  
    # write core_temp_flag_A
    core_temp_flag_A %>%
      write_rds(file = paste0(path_argo_core_preprocessed, "/core_temp_flag_A.rds"))
    rm(core_temp_flag_A)
    gc()
  
    # Select just AB profiles into core_temp_flag_A
    core_temp_flag_AB <- core_merge %>%
      filter((profile_temp_qc == 'A' | profile_temp_qc == 'B') & (profile_pres_qc == 'A' | profile_pres_qc == 'B')) %>%
      select(-c(file_id, contains("_qc")))
  
    # write core_temp_flag_AB
    core_temp_flag_AB %>%
      write_rds(file = paste0(path_argo_core_preprocessed, "/core_temp_flag_AB.rds"))
    rm(list = ls(pattern = 'core_'))
    gc()
    
  }
}  

QC summary

profile QC flags (A-F)

Produce a summary of profile QC flags (A-F)

# Read metadata file and create profile summary table with a count for each year, measurement type and qc option
path_argo_core_preprocessed <- paste0(path_argo_core, "/preprocessed_core_data")
core_metadata <-
read_rds(file = paste0(path_argo_core_preprocessed, "/core_metadata.rds"))
core_metadata["profile_pres_qc"][is.na(core_metadata["profile_pres_qc"])] <- "" 
core_metadata["profile_temp_qc"][is.na(core_metadata["profile_temp_qc"])] <- "" 
core_metadata["profile_psal_qc"][is.na(core_metadata["profile_psal_qc"])] <- "" 

core_profile_summary <- core_metadata %>% 
  filter (profile_pres_qc != "") %>%
  group_by(
    year = format(date, "%Y"), 
    measure = "Pressure", 
    measure_order = 1, 
    profile_qc = profile_pres_qc
    ) %>% 
  summarise(
    count_profiles = n()
    )
core_profile_summary <- rbind(core_profile_summary, 
                              core_metadata %>% 
                                filter (profile_temp_qc != "") %>%
                                group_by(
                                  year = format(date, "%Y"), 
                                  measure = "Temperature", 
                                  measure_order = 2, 
                                  profile_qc = profile_temp_qc
                                  ) %>% 
                                summarise(
                                  count_profiles = n()
                                  ))
core_profile_summary <- rbind(core_profile_summary, 
                              core_metadata %>% 
                              filter (profile_psal_qc != "") %>%
                                group_by(
                                  year = format(date, "%Y"), 
                                  measure = "Salinity", 
                                  measure_order = 3, 
                                  profile_qc = profile_psal_qc
                                  ) %>% 
                                summarise(
                                  count_profiles = n()
                                  ))
# modify data frame to prepare for plotting
core_profile_summary <- ungroup(core_profile_summary)
core_profile_summary <- core_profile_summary %>% group_by(measure_order)
core_profile_summary <- transform(core_profile_summary, year = as.numeric(year))

year_min <- min(core_profile_summary$year)
year_max <- max(core_profile_summary$year)
facet_label <- as_labeller(c("1"="Pressure", "2"="Temperature", "3"="Salinity"))
  
# draw plots for the separate parameters
core_profile_summary %>%
  ggplot(aes(x = year, y = count_profiles, col = profile_qc, group=profile_qc)) +
          geom_point() +
          geom_line() +
          facet_wrap(~measure_order, labeller = facet_label) +
          scale_x_continuous(breaks = seq(year_min, year_max, 2)) +
          labs(x = 'year', 
               y = 'number of profiles', 
               col = 'profile QC flag',
               title = 'Count of profile qc flags by year')

Version Author Date
c076fba mlarriere 2024-04-12
c6dfd99 mlarriere 2024-03-31
b82a3be mlarriere 2024-03-26
f9de50e ds2n19 2024-01-01
76ebe5b ds2n19 2024-01-01
80c16c2 ds2n19 2023-11-15
c7c6b3c ds2n19 2023-10-14
7227bdb ds2n19 2023-10-14
12d26f4 ds2n19 2023-10-14
c1dc2c4 ds2n19 2023-10-14

measurement QC flags (1-9)

Produce a summary of current measurement QC flags (1-9)

# Read temp and meta_data
core_measure_summary <-
read_rds(file = paste0(path_argo_core_preprocessed, "/core_measure_summary.rds"))
core_measure_summary <- ungroup(core_measure_summary)

year_min <- min(core_measure_summary$year)
year_max <- max(core_measure_summary$year)

# draw plots for the separate parameters
core_measure_summary %>%
  filter(measure_qc != " ") %>%
  ggplot(aes(x = year, y = count_measures, col = measure_qc, group=measure_qc)) +
          geom_point() +
          geom_line() +
          facet_wrap(~measure_order, labeller = facet_label) +
          scale_x_continuous(breaks = seq(year_min, year_max, 2)) +
          labs(x = 'year', 
               y = 'number of measures', 
               col = 'measure QC flag',
               title = 'Count of measure qc flags by year')

Version Author Date
c076fba mlarriere 2024-04-12
c6dfd99 mlarriere 2024-03-31
b82a3be mlarriere 2024-03-26
f9de50e ds2n19 2024-01-01
76ebe5b ds2n19 2024-01-01
80c16c2 ds2n19 2023-11-15
c7c6b3c ds2n19 2023-10-14

Delayed mode VS Real time mode

delayed_files <- argo_global_prof() %>% 
  argo_filter_data_mode(data_mode = 'delayed') 

realtime_files <- argo_global_prof() %>% 
  argo_filter_data_mode(data_mode = 'realtime') 

#Files difference
realtime_files_count_per_year <- realtime_files %>% 
  count(year(date)) %>% 
  rename(realtime_mode = n)%>% 
  rename(year=`year(date)`)

delayed_files_count_per_year <- delayed_files %>% 
  count(year(date))%>% 
  rename(delayed_mode = n) %>% 
  rename(year=`year(date)`)

files_diff_per_year <- merge(realtime_files_count_per_year, delayed_files_count_per_year, by = "year", all = TRUE) %>% 
  filter(!is.na(year))

ggplot(files_diff_per_year, aes(x = year)) +
  geom_bar(aes(y = realtime_mode , fill = "realtime_mode "), stat = "identity") +
  geom_bar(aes(y = delayed_mode, fill = "delayed_mode"), stat = "identity", position = "stack") +
  labs(x = "Year", y = "Number of Files", fill = NULL) +
  ggtitle("Number of files in delayed and realtime mode per year") +
  theme_minimal()+
  scale_x_continuous(breaks = files_diff_per_year$year, labels = files_diff_per_year$year) +
  scale_fill_manual(values = c("realtime_mode " = "cyan", "delayed_mode" = "orange"), 
                    labels = c("realtime_mode " = "Real Time mode ", "delayed_mode" = "Delayed mode")) +
  theme(axis.text.x = element_text(angle = 40, hjust = 1), 
        legend.position = "right") 

Version Author Date
c076fba mlarriere 2024-04-12
91f08a6 mlarriere 2024-04-07
db21f55 mlarriere 2024-04-06
c6dfd99 mlarriere 2024-03-31
b82a3be mlarriere 2024-03-26
# #Difference between "adjusted" anr "realtime" variables
# plot_diff <- function(file_path) {
#   # Load data for the given file
#   test <- with_argo_example_cache({
#     argo_prof_levels(file_path)
#   })
#   
#   # Extract profile ID and file name
#   profile_id <- sub(".*/([0-9]+)/profiles/.*", "\\1", file_path)
#   file_name <- sub(".*/profiles/(.*)", "\\1", file_path)
#   
#   # Create individual plots
#   temp <- ggplot(test, aes(x = temp, y = temp_adjusted)) +
#     geom_point(size = 0.5) +
#     labs(x = "Temperature", y = "Adjusted Temperature") +
#     ggtitle("Temperature") +
#     theme_minimal()
#   
#   pres <- ggplot(test, aes(x = pres, y = pres_adjusted)) +
#     geom_point(size = 0.5) +
#     labs(x = "Pressure", y = "Adjusted Pressure") +
#     ggtitle("Pressure") +
#     theme_minimal()
#   
#   sal <- ggplot(test, aes(x = psal, y = psal_adjusted)) +
#     geom_point(size = 0.5) +
#     labs(x = "Salinity", y = "Adjusted Salinity") +
#     ggtitle("Salinity") +
#     theme_minimal()
#   
#   main_title <- ggplot() + 
#     geom_text(aes(label = paste("Profile:", profile_id, ", File:", file_name)), 
#               x = 0.5, y = 0.5, hjust = 0.5, vjust = 0.5, size = 5) +
#     theme_void()
#   
#   # Arrange plots
#   grid.arrange(main_title, temp, pres, sal, ncol = 1, heights = c(0.1, 0.5, 0.5, 0.5))
# }
# 
# # List of file paths
# file_paths <- c(
#   paste0(path_argo_core,"/dac/aoml/3902561/profiles/D3902561_001.nc"),
#   paste0(path_argo_core,"/dac/aoml/3902561/profiles/D3902561_012.nc"),
#   paste0(path_argo_core,"/dac/csio/2900313/profiles/D2900313_001.nc")
# )
# 
# # Create plots for each file
# for (file_path in file_paths) {
#   plot_diff(file_path)
# }
#Filter delayed mode files for the year 2023 and 2024
filter_year<-function(files){
  #Filter files for the year 2023 and 2024
  files_2023<-files %>%
    filter(year(date) == 2023)
 files_2024<-files %>%
    filter(year(date) == 2024)

  #Group by month and count the number of delayed mode files
  files_month_2023 <- files_2023 %>%
    group_by(month = format(date, "%B")) %>%
    summarize(files_count = n())

  files_month_2024 <- files_2024 %>%
    group_by(month = format(date, "%B")) %>%
    summarize(files_count = n())

  #Order months
  month_order <- c("January", "February", "March", "April", "May", "June",
                 "July", "August", "September", "October", "November", "December")
  files_month_2023$month <- factor(files_month_2023$month, levels = month_order)
  files_month_2024$month <- factor(files_month_2024$month, levels = month_order)

  return(list(files_month_2023 = files_month_2023, files_month_2024 = files_month_2024))
}

delayed_files_month_2023<-filter_year(delayed_files)$files_month_2023
delayed_files_month_2024<-filter_year(delayed_files)$files_month_2024

realtime_files_month_2023<-filter_year(realtime_files)$files_month_2023
realtime_files_month_2024<-filter_year(realtime_files)$files_month_2024

#Plots
max_files_count <- max(max(delayed_files_month_2023$files_count), max(realtime_files_month_2023$files_count))

delayed_plot<- ggplot() +
  geom_bar(data = delayed_files_month_2023, aes(x = month, y = files_count, fill = "2023"), stat = "identity") +
  geom_bar(data = delayed_files_month_2024, aes(x = month, y = files_count, fill = "2024"), stat = "identity") +
    scale_fill_manual(values = c("2023" = "skyblue", "2024" = "lightgreen")) +
  labs(title = "Number of delayed-mode files per month",  x = "Month",  y = "Number of files") +
  ylim(0, max_files_count) +
  theme_minimal() +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))

realtime_plot<- ggplot() +
  geom_bar(data = realtime_files_month_2023, aes(x = month, y = files_count, fill = "2023"), stat = "identity") +
  geom_bar(data = realtime_files_month_2024, aes(x = month, y = files_count, fill = "2024"), stat = "identity") +
    scale_fill_manual(values = c("2023" = "skyblue", "2024" = "lightgreen")) +
  labs(title = "Number of realtime-mode files per month",  x = "Month",  y = "Number of files") +
  ylim(0, max_files_count) +
  theme_minimal() +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))


combined_plot <- delayed_plot + realtime_plot
print(combined_plot)

Version Author Date
c076fba mlarriere 2024-04-12
91f08a6 mlarriere 2024-04-07
db21f55 mlarriere 2024-04-06
c6dfd99 mlarriere 2024-03-31

Profiles visualisation

#Read data
read_argo_data <- function(file_path) {
    data <- tryCatch({
    with_argo_example_cache({argo_prof_levels(file_path)})
      }, error = function(e) {
    # If an error occurs (e.g., file not found), return NULL
    return(NULL)
  })
    return(data)
}

base_path <- paste0(path_argo_core, "/dac/aoml/3902561/profiles/")
file_names <- sprintf("D3902561_%03d.nc", 1:12)
file_paths <- paste0(base_path, file_names)

all_data <- lapply(file_paths, read_argo_data)
combined_data <- do.call(rbind, all_data)

combined_data$file_index <- as.numeric(factor(combined_data$file))

#---Plots
colors <- rev(brewer.pal(11, "Spectral")) # RdYlBu palette with 11 colors

#T°C vs Pressure
temp_press_plt<-ggplot(combined_data, aes(x = temp_adjusted , y = pres_adjusted, color=file_index, group = file_index)) +
                  geom_point() +
                  geom_path() +
                  labs(x = "Temperature (°C)", y = "Pressure (dbar)", title = "Temperature vs Pressure")+
                  scale_y_continuous(trans = "reverse") +
                  scale_color_gradientn(colors = colors, name = "File Index", breaks = seq(min(combined_data$file_index), max(combined_data$file_index), by = 1)) +
                  theme(legend.position = "none")

#Salinity vs Pressure
sal_press_plt<- ggplot(combined_data, aes(x = psal_adjusted, y = pres_adjusted, color=file_index, group=file_index)) +
                geom_point() +
                geom_path()+
                labs(x = "Salinity (psu)", y = "Pressure (dbar)", title = "Salinity vs Pressure")+
                scale_y_continuous(trans = "reverse") +
                scale_color_gradientn(colors = colors, name = "File Index", breaks = seq(min(combined_data$file_index), max(combined_data$file_index), by = 1)) +
                theme(legend.position = "none")

#T/S Diagram
sal_temp_plt<- ggplot(combined_data, aes(x = psal_adjusted, y = temp_adjusted, color=file_index, group=file_index)) +
                geom_point() +
                geom_path()+
                labs(x = "Salinity (psu)", y = "Temperature (°C)", title = "T/S Diagram")+
                scale_color_gradientn(colors = colors, name = "File Index", breaks = seq(min(combined_data$file_index), max(combined_data$file_index), by = 1)) +
                theme(legend.position = "right")

(temp_press_plt + sal_press_plt) / sal_temp_plt

Version Author Date
c076fba mlarriere 2024-04-12
c6dfd99 mlarriere 2024-03-31

sessionInfo()
R version 4.2.2 (2022-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.5

Matrix products: default
BLAS:   /usr/local/R-4.2.2/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.2.2/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] oce_1.7-10         gsw_1.1-1          sf_1.0-9           patchwork_1.1.2   
 [5] RColorBrewer_1.1-3 lubridate_1.9.0    timechange_0.1.1   argodata_0.1.0    
 [9] forcats_0.5.2      stringr_1.5.0      dplyr_1.1.3        purrr_1.0.2       
[13] readr_2.1.3        tidyr_1.3.0        tibble_3.2.1       ggplot2_3.4.4     
[17] tidyverse_1.3.2   

loaded via a namespace (and not attached):
 [1] fs_1.5.2            bit64_4.0.5         progress_1.2.2     
 [4] httr_1.4.4          rprojroot_2.0.3     tools_4.2.2        
 [7] backports_1.4.1     bslib_0.4.1         utf8_1.2.2         
[10] R6_2.5.1            KernSmooth_2.23-20  DBI_1.2.2          
[13] colorspace_2.0-3    withr_2.5.0         prettyunits_1.1.1  
[16] tidyselect_1.2.0    curl_4.3.3          bit_4.0.5          
[19] compiler_4.2.2      git2r_0.30.1        cli_3.6.1          
[22] rvest_1.0.3         RNetCDF_2.6-1       xml2_1.3.3         
[25] labeling_0.4.2      sass_0.4.4          scales_1.2.1       
[28] classInt_0.4-8      proxy_0.4-27        digest_0.6.30      
[31] rmarkdown_2.18      pkgconfig_2.0.3     htmltools_0.5.8.1  
[34] dbplyr_2.2.1        fastmap_1.1.0       highr_0.9          
[37] rlang_1.1.1         readxl_1.4.1        rstudioapi_0.15.0  
[40] jquerylib_0.1.4     generics_0.1.3      farver_2.1.1       
[43] jsonlite_1.8.3      vroom_1.6.0         googlesheets4_1.0.1
[46] magrittr_2.0.3      Rcpp_1.0.10         munsell_0.5.0      
[49] fansi_1.0.3         lifecycle_1.0.3     stringi_1.7.8      
[52] whisker_0.4         yaml_2.3.6          grid_4.2.2         
[55] parallel_4.2.2      promises_1.2.0.1    crayon_1.5.2       
[58] haven_2.5.1         hms_1.1.2           knitr_1.41         
[61] pillar_1.9.0        reprex_2.0.2        glue_1.6.2         
[64] evaluate_0.18       modelr_0.1.10       vctrs_0.6.4        
[67] tzdb_0.3.0          httpuv_1.6.6        cellranger_1.1.0   
[70] gtable_0.3.1        assertthat_0.2.1    cachem_1.0.6       
[73] xfun_0.35           broom_1.0.5         e1071_1.7-12       
[76] later_1.3.0         class_7.3-20        googledrive_2.0.0  
[79] gargle_1.2.1        workflowr_1.7.0     units_0.8-0        
[82] ellipsis_0.3.2