Last updated: 2024-04-12

Checks: 7 0

Knit directory: bgc_argo_r_argodata/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211008) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 9ff080a. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/

Unstaged changes:
    Modified:   analysis/MHWs_categorisation.Rmd
    Modified:   analysis/_site.yml
    Modified:   analysis/load_broullon_DIC_TA_clim.Rmd
    Modified:   code/Workflowr_project_managment.R
    Modified:   code/start_background_job.R
    Modified:   code/start_background_job_load.R
    Modified:   code/start_background_job_partial.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/oceanSODA_argo_temp.Rmd) and HTML (docs/oceanSODA_argo_temp.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html c076fba mlarriere 2024-04-12 Build site.
html 91f08a6 mlarriere 2024-04-07 Build site.
html db21f55 mlarriere 2024-04-06 Build site.
html 0aebf38 mlarriere 2024-04-01 Build site.
html f9de50e ds2n19 2024-01-01 Build site.
html 07d4eb8 ds2n19 2023-12-20 Build site.
html fa6cf38 ds2n19 2023-12-14 Build site.
Rmd 64fd104 ds2n19 2023-12-14 revised coverage analysis and SO focused cluster analysis.
html f110b74 ds2n19 2023-12-13 Build site.
Rmd fa9795c ds2n19 2023-12-12 dependencies listed are start of markdown files.
html e60ebd2 ds2n19 2023-12-07 Build site.
html cec2a2a ds2n19 2023-11-24 Build site.
Rmd 59f5cc4 ds2n19 2023-11-23 Moved spatiotemporal analysis to use aligned profiles.
html 80c16c2 ds2n19 2023-11-15 Build site.
html 4b55c43 ds2n19 2023-10-12 Build site.
html c16000b ds2n19 2023-10-12 Build site.
Rmd 723c772 ds2n19 2023-10-12 refresh coverage and analysis after full core load 2013 - 2023
Rmd 1ae81b3 ds2n19 2023-10-11 reworked core load process to work initially by year and then finally create consolidated all years files.
html 1ae81b3 ds2n19 2023-10-11 reworked core load process to work initially by year and then finally create consolidated all years files.
Rmd 44f5720 ds2n19 2023-10-09 manual commit
html 44f5720 ds2n19 2023-10-09 manual commit
Rmd ce19a66 ds2n19 2023-10-04 Revised version of OceanSODA product -v2023
html 7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29 Build site.
Rmd 8e81570 pasqualina-vonlanthendinenna 2022-08-29 load and add in core-argo data (1 month)
html bdd516d pasqualina-vonlanthendinenna 2022-05-23 Build site.
html 4173c20 jens-daniel-mueller 2022-05-12 Build site.
html dfe89d7 jens-daniel-mueller 2022-05-12 Build site.
html 710edd4 jens-daniel-mueller 2022-05-11 Build site.
Rmd 2f20a76 jens-daniel-mueller 2022-05-11 rebuild all after subsetting AB profiles and code cleaning
html 68eff8b jens-daniel-mueller 2022-05-11 Build site.
html 6a6e874 pasqualina-vonlanthendinenna 2022-04-29 Build site.
html 2d44f8a pasqualina-vonlanthendinenna 2022-04-29 Build site.
html e61c08e pasqualina-vonlanthendinenna 2022-04-27 Build site.
html 10036ed pasqualina-vonlanthendinenna 2022-04-26 Build site.
Rmd 3e1ac14 pasqualina-vonlanthendinenna 2022-04-26 separated loading data pages, added mayot biomes, switched to pH and temp flag A
html c03dd24 pasqualina-vonlanthendinenna 2022-04-20 Build site.
html 8805f99 pasqualina-vonlanthendinenna 2022-04-11 Build site.
html acc96b0 pasqualina-vonlanthendinenna 2022-02-28 Build site.
Rmd 840030e pasqualina-vonlanthendinenna 2022-02-28 removed 2021 from SST comparison
html fd521d1 pasqualina-vonlanthendinenna 2022-02-25 Build site.
Rmd 64c2c71 pasqualina-vonlanthendinenna 2022-02-25 plotted line profiles and changed HNL colors
html 7d7874c pasqualina-vonlanthendinenna 2022-02-24 Build site.
Rmd 58d2846 pasqualina-vonlanthendinenna 2022-02-24 added st dev for temp profiles
html c68163a pasqualina-vonlanthendinenna 2022-02-22 Build site.
Rmd 818ac54 pasqualina-vonlanthendinenna 2022-02-22 updated regression and merging for extreme_temp
html 905d82f pasqualina-vonlanthendinenna 2022-02-15 Build site.
Rmd 01ae9da pasqualina-vonlanthendinenna 2022-02-15 added OceanSODA-Argo SST comparison

Task

Compare BGC- and Core-Argo surface temperature to OceanSODA surface temperature

Dependencies

OceanSODA_temp.rds - bgc preprocessed folder, created by load_OceanSODA.

temp_bgc_observed.rds - bgc preprocessed folder, created by temp_align_climatology. Not this file is written BEFORE the vertical alignment stage.

theme_set(theme_bw())

Load BGC-Argo data

Load in surface Argo temperature, and OceanSODA temperature, on a 1ºx1º grid

path_argo <- '/nfs/kryo/work/updata/bgc_argo_r_argodata'
path_argo_preprocessed <- paste0(path_argo, "/preprocessed_bgc_data")
path_emlr_utilities <- "/nfs/kryo/work/jenmueller/emlr_cant/utilities/files/"

path_argo_core <- '/nfs/kryo/work/updata/core_argo_r_argodata'
path_argo_core_preprocessed <- paste0(
  path_argo_core, "/preprocessed_core_data")

path_argo <- '/nfs/kryo/work/datasets/ungridded/3d/ocean/floats/bgc_argo'
path_argo_preprocessed <- paste0(path_argo, "/preprocessed_bgc_data")

path_argo_core <- '/nfs/kryo/work/datasets/ungridded/3d/ocean/floats/core_argo_r_argodata'
path_argo_core_preprocessed <- paste0(path_argo_core, "/preprocessed_core_data")
# Load in surface Argo and OceanSODA temperature data 

OceanSODA_temp <- read_rds(file = paste0(path_argo_preprocessed, "/OceanSODA_temp.rds"))

argo_surf_temp <- read_rds(file = paste0(path_argo_preprocessed, '/temp_bgc_observed.rds')) %>%
  filter(between(depth, 0, 20))

# argo_surf_temp <-
#   read_rds(file = paste0(path_argo_preprocessed, "/bgc_merge_flag_AB.rds")) %>%
#   filter(between(depth, 0, 20)) %>%
#   mutate(year = year(date),
#          month = month(date)) %>%
#   select(
#     -c(
#       ph_in_situ_total_adjusted,
#       ph_in_situ_total_adjusted_qc,
#       ph_in_situ_total_adjusted_error,
#       profile_ph_in_situ_total_qc
#     )
#   )

# for plotting later, load in region information  

nm_biomes <- read_rds(file = paste0(path_argo_preprocessed, "/nm_biomes.rds"))
# read in the map from updata
map <-
  read_rds(paste(path_emlr_utilities,
                 "map_landmask_WOA18.rds",
                 sep = ""))

Harmonise BGG-Argo and OceanSODA

Calculate monthly-mean Argo temperature for each lat/lon grid and each month

argo_temp_monthly <- argo_surf_temp %>%
  mutate(year_month = format_ISO8601(date, precision = "ym"), .after = 'date') %>%
  group_by(year, month, year_month, date, lat, lon) %>%
  summarise(argo_temp_month = mean(temp_adjusted, na.rm = TRUE)) %>%
  ungroup() %>%
  select(
    date,
    year_month,
    year,
    month,
    lon,
    lat,
    argo_temp_month
  )

Join Argo and OceanSODA

OceanSODA_temp <- OceanSODA_temp %>% 
  mutate(year_month = format_ISO8601(date, precision = "ym")) %>% 
  rename(date_OceanSODA = date)# change date format in OceanSODA to match argo date (yyyy-mm)

argo_OceanSODA_temp <- left_join(argo_temp_monthly, OceanSODA_temp) %>%
  rename(OceanSODA_temp = temperature)

BGC-SST - Southern Ocean

Focus on the Southern Ocean, south of 30ºS, as defined in the Mayot biome regions

# keep only Southern Ocean data 

argo_OceanSODA_temp_SO <- 
  inner_join(argo_OceanSODA_temp, nm_biomes)

Monthly climatological OceanSODA SST

Map monthly mean SST from the OceanSODA data product, where BGC-Argo SST exists

Climatological OceanSODA SST

# calculate average monthly pH, and the difference between the two (offset)

argo_OceanSODA_temp_SO_clim <- argo_OceanSODA_temp_SO %>%
  group_by(lon, lat, month) %>%
  summarise(
    clim_OceanSODA_temp = mean(OceanSODA_temp, na.rm = TRUE),
    clim_argo_temp = mean(argo_temp_month, na.rm = TRUE),
    offset_clim = clim_OceanSODA_temp - clim_argo_temp
  ) %>%
  ungroup()

# regrid to a 2x2 grid for mapping 
argo_OceanSODA_temp_SO_clim_2x2 <- argo_OceanSODA_temp_SO_clim %>%
  mutate(
    lat = cut(lat, seq(-90, 90, 2), seq(-89, 89, 2)),
    lat = as.numeric(as.character(lat)),
    lon = cut(lon, seq(20, 380, 2), seq(21, 379, 2)),
    lon = as.numeric(as.character(lon))
  ) %>%
  group_by(lon, lat, month) %>%
  summarise(
    clim_OceanSODA_temp = mean(clim_OceanSODA_temp, na.rm = TRUE),
    clim_argo_temp = mean(clim_argo_temp, na.rm = TRUE),
    offset_clim = mean(offset_clim, na.rm = TRUE)
  ) %>%
  ungroup()

map +
  geom_tile(data = argo_OceanSODA_temp_SO_clim_2x2,
            aes(x = lon, y = lat, fill = clim_OceanSODA_temp)) +
  lims(y = c(-85, -25)) +
  scale_fill_viridis_c() +
  labs(x = 'lon',
       y = 'lat',
       fill = 'SST (ºC)',
       title = 'Monthly climatological \nOceanSODA SST') +
  theme(legend.position = 'right') +
  facet_wrap(~month, ncol = 2)

Version Author Date
c076fba mlarriere 2024-04-12
f9de50e ds2n19 2024-01-01
cec2a2a ds2n19 2023-11-24
1ae81b3 ds2n19 2023-10-11
44f5720 ds2n19 2023-10-09
68eff8b jens-daniel-mueller 2022-05-11
10036ed pasqualina-vonlanthendinenna 2022-04-26
8805f99 pasqualina-vonlanthendinenna 2022-04-11
905d82f pasqualina-vonlanthendinenna 2022-02-15
# plot the climatological monthly OceanSODA SST on a polar projection 
basemap(limits = -32, data = argo_OceanSODA_temp_SO_clim_2x2) +   # change to polar projection
  geom_spatial_tile(data = argo_OceanSODA_temp_SO_clim_2x2,
                    aes(x = lon,
                        y = lat,
                        fill = clim_OceanSODA_temp),
                    linejoin = 'mitre',
                    col = 'transparent',
                    detail = 60)+
  scale_fill_viridis_c()+
  theme(legend.position = 'right')+
  labs(x = 'lon',
       y = 'lat',
       fill = 'SST (ºC)',
       title = 'monthly climatological \nOceanSODA SST')+
  facet_wrap(~month, ncol = 2)

Monthly climatological BGC-Argo SST

Climatological Argo SST

map +
  geom_tile(data = argo_OceanSODA_temp_SO_clim_2x2,
            aes(lon, lat, fill = clim_argo_temp)) +
  lims(y = c(-85, -25)) +
  scale_fill_viridis_c() +
  labs(x = 'lon',
       y = 'lat',
       fill = 'SST (ºC)',
       title = 'Monthly climatological \nArgo SST') +
  theme(legend.position = 'right') +
  facet_wrap(~month, ncol = 2)

Version Author Date
c076fba mlarriere 2024-04-12
f9de50e ds2n19 2024-01-01
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
1ae81b3 ds2n19 2023-10-11
44f5720 ds2n19 2023-10-09
68eff8b jens-daniel-mueller 2022-05-11
10036ed pasqualina-vonlanthendinenna 2022-04-26
8805f99 pasqualina-vonlanthendinenna 2022-04-11
905d82f pasqualina-vonlanthendinenna 2022-02-15
basemap(limits = -32, data = argo_OceanSODA_temp_SO_clim_2x2) +   # change to polar projection
  geom_spatial_tile(data = argo_OceanSODA_temp_SO_clim_2x2,
                    aes(x = lon,
                        y = lat,
                        fill = clim_argo_temp),
                    linejoin = 'mitre',
                    col = 'transparent',
                    detail = 60)+
  scale_fill_viridis_c()+
  theme(legend.position = 'right')+
  labs(x = 'lon',
       y = 'lat',
       fill = 'SST (ºC)',
       title = 'monthly climatological \nArgo SST')+
  facet_wrap(~month, ncol = 2)

Timeseries of monthly OceanSODA SST

Evolution of monthly SST, for the three Southern Ocean Mayot biomes

map +
  geom_raster(data = nm_biomes,
              aes(x = lon, y = lat)) +
  geom_raster(data = nm_biomes,
              aes(x = lon,
                  y = lat,
                  fill = biome_name)) +
  labs(title = 'Southern Ocean Mayot regions',
       fill = 'biome')

Version Author Date
c076fba mlarriere 2024-04-12
10036ed pasqualina-vonlanthendinenna 2022-04-26
8805f99 pasqualina-vonlanthendinenna 2022-04-11
fd521d1 pasqualina-vonlanthendinenna 2022-02-25
905d82f pasqualina-vonlanthendinenna 2022-02-15
# plot timeseries of monthly OceanSODA SST

argo_OceanSODA_temp_SO_clim_regional <- argo_OceanSODA_temp_SO %>%
  select(year, month, biome_name, OceanSODA_temp, argo_temp_month) %>% 
  pivot_longer(c(OceanSODA_temp,argo_temp_month),
               values_to = "temp",
               names_to = "data_source") %>% 
  group_by(year, month, biome_name, data_source) %>% 
  summarise(temp = mean(temp, na.rm = TRUE)) %>%
  ungroup()
argo_OceanSODA_temp_SO_clim_regional %>%   
  ggplot(aes(x = year,
             y = temp,
             col = biome_name)) +
  facet_grid(month ~ data_source) +
  geom_line() +
  geom_point() +
  labs(x = 'year',
       y = 'SST (ºC)',
       title = 'monthly mean SST (Southern Ocean)',
       col = 'biome')
argo_OceanSODA_temp_SO_clim_regional %>%   
  # filter(year != 2021) %>%
  ggplot(aes(x = month,
             y = temp,
             group = year,
             col = as.character(year)))+
  geom_line()+
  geom_point()+
  scale_x_continuous(breaks = seq(1, 12, 2))+
  facet_grid(biome_name~data_source)+
  lims(y = c(-5, 20))+
  labs(x = 'month',
       y = 'SST (ºC)',
       title = 'monthly mean SST (Southern Ocean)',
       col = 'year')

Version Author Date
c076fba mlarriere 2024-04-12
f9de50e ds2n19 2024-01-01
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
1ae81b3 ds2n19 2023-10-11
44f5720 ds2n19 2023-10-09
68eff8b jens-daniel-mueller 2022-05-11
10036ed pasqualina-vonlanthendinenna 2022-04-26
fd521d1 pasqualina-vonlanthendinenna 2022-02-25
905d82f pasqualina-vonlanthendinenna 2022-02-15

Comparison of BGC-Argo and OceanSODA SST

Calculate the difference between Argo and OceanSODA SST values

Offset between in-situ monthly SST:

argo_OceanSODA_temp_SO <- argo_OceanSODA_temp_SO %>%
  mutate(offset = OceanSODA_temp - argo_temp_month)

argo_OceanSODA_temp_SO %>%
  # drop_na() %>%
  # filter(year != '2021') %>% 
  ggplot() +
  geom_hline(yintercept = 0, size = 1)+
  geom_point(aes(x = year_month, y = offset, col = biome_name), size = 0.7, pch = 19) +
  scale_x_discrete(breaks = c('2013-01', '2014-01', '2015-01', '2016-01', '2017-01', '2018-01', '2019-01', '2020-01', '2021-01', '2022-01', '2023-01'))+
  labs(title = 'oceanSODA SST - Argo SST',
       x = 'date',
       y = 'offset (ºC)',
       col = 'region')

Version Author Date
c076fba mlarriere 2024-04-12
f9de50e ds2n19 2024-01-01
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
1ae81b3 ds2n19 2023-10-11
44f5720 ds2n19 2023-10-09
68eff8b jens-daniel-mueller 2022-05-11
10036ed pasqualina-vonlanthendinenna 2022-04-26
acc96b0 pasqualina-vonlanthendinenna 2022-02-28
905d82f pasqualina-vonlanthendinenna 2022-02-15
argo_OceanSODA_temp_SO %>% 
  # drop_na() %>% 
  ggplot(aes(x = OceanSODA_temp, y = argo_temp_month))+
  # geom_point(pch = 19, size = 0.7)+
  geom_bin2d(aes(x = OceanSODA_temp, y = argo_temp_month), size = 0.3, bins = 60)+
  scale_fill_viridis_c()+
  coord_fixed(ratio = 1,
              xlim = c(-3, 27),
              ylim= c(-3, 27)) +
  geom_abline(slope = 1, intercept = 0)+
  facet_wrap(~biome_name)+
  labs(x = 'OceanSODA SST (ºC)',
       y = 'Argo SST (ºC)',
       title = 'Southern Ocean regional SST')

Version Author Date
c076fba mlarriere 2024-04-12
f9de50e ds2n19 2024-01-01
cec2a2a ds2n19 2023-11-24
1ae81b3 ds2n19 2023-10-11
44f5720 ds2n19 2023-10-09
68eff8b jens-daniel-mueller 2022-05-11
10036ed pasqualina-vonlanthendinenna 2022-04-26
905d82f pasqualina-vonlanthendinenna 2022-02-15
# test with basin and biome 
basinmask <-
  read_csv(paste(path_emlr_utilities,
                 "basin_mask_WOA18.csv",
                 sep = ""),
           col_types = cols("MLR_basins" = col_character()))

basinmask <- basinmask %>% 
  filter(MLR_basins == unique(basinmask$MLR_basins)[1]) %>% 
  select(lon, lat, basin_AIP)

argo_OceanSODA_temp_SO <- inner_join(argo_OceanSODA_temp_SO, basinmask)

argo_OceanSODA_temp_SO %>% 
  ggplot(aes(x = OceanSODA_temp, y = argo_temp_month))+
  geom_bin2d(aes(x = OceanSODA_temp, y = argo_temp_month), size = 0.3, bins = 60)+
  scale_fill_viridis_c()+
  coord_fixed(ratio = 1, 
              xlim = c(-3, 27),
              ylim = c(-3, 27))+
  geom_abline(slope = 1, intercept = 0)+
  facet_grid(basin_AIP~biome_name)+
  labs(x = 'Argo SST (ºC)', 
       y = 'OceanSODA SST (ºC)',
       title = 'Southern Ocean subregional SST')

Version Author Date
c076fba mlarriere 2024-04-12
f9de50e ds2n19 2024-01-01
cec2a2a ds2n19 2023-11-24
1ae81b3 ds2n19 2023-10-11
44f5720 ds2n19 2023-10-09
68eff8b jens-daniel-mueller 2022-05-11
10036ed pasqualina-vonlanthendinenna 2022-04-26
c68163a pasqualina-vonlanthendinenna 2022-02-22

Mean offset between in-situ OceanSODA SST and in-situ BGC-Argo SST

mean_insitu_offset <- argo_OceanSODA_temp_SO %>%
  group_by(year_month, biome_name) %>% 
  summarise(mean_offset = mean(offset, na.rm = TRUE),
            std_offset = sd(offset, na.rm = TRUE))

mean_insitu_offset %>%
  # drop_na() %>%
  # filter(year != '2021') %>% 
  ggplot() +
  geom_hline(yintercept = 0, size = 1, col = 'red')+
  geom_point(aes(x = year_month, y = mean_offset, group = biome_name, col = biome_name), size = 0.7, pch = 19) +
  geom_line(aes(x = year_month, y = mean_offset, group = biome_name, col = biome_name))+
  geom_ribbon(aes(x = year_month, 
                  ymin = mean_offset-std_offset, 
                  ymax = mean_offset+std_offset, 
                  group = biome_name, 
                  fill =biome_name),
              alpha = 0.2)+
  scale_x_discrete(breaks = c('2013-01', '2014-01', '2015-01', '2016-01', '2017-01', '2018-01', '2019-01', '2020-01', '2021-01', '2022-01', '2023-01'))+
  # facet_wrap(~year)+
  labs(title = 'Mean offset (in situ oceanSODA SST - in situ Argo SST)',
       x = 'date',
       y = 'offset (ºC)',
       col = 'region',
       fill = '± 1 std')

Version Author Date
c076fba mlarriere 2024-04-12
f9de50e ds2n19 2024-01-01
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
1ae81b3 ds2n19 2023-10-11
44f5720 ds2n19 2023-10-09
68eff8b jens-daniel-mueller 2022-05-11
10036ed pasqualina-vonlanthendinenna 2022-04-26
acc96b0 pasqualina-vonlanthendinenna 2022-02-28
c68163a pasqualina-vonlanthendinenna 2022-02-22
905d82f pasqualina-vonlanthendinenna 2022-02-15

Offset between climatological Argo and climatological OceanSODA SST:

# Offset between climatological argo and climatological OceanSODA SST 

argo_OceanSODA_temp_SO_clim <- inner_join(argo_OceanSODA_temp_SO_clim, nm_biomes)
argo_OceanSODA_temp_SO_clim %>% 
  # drop_na() %>%
  ggplot() +
  geom_point(aes(x = month, y = offset_clim, col = biome_name), size = 0.7, pch = 19) +
  geom_hline(yintercept = 0, size = 1, col = 'red')+
  scale_x_continuous(breaks = seq(1, 12, 1))+
  labs(title = 'clim oceanSODA SST - clim Argo SST',
       x = 'month',
       y = 'offset (ºC)',
       col = 'region')

Mean offset between climatological OceanSODA SST and climatological BGC-Argo SST

mean_clim_offset <- argo_OceanSODA_temp_SO_clim %>% 
  group_by(month, biome_name) %>% 
  summarise(mean_offset_clim = mean(offset_clim, na.rm = TRUE),
            std_offset_clim = sd(offset_clim, na.rm = TRUE))

mean_clim_offset %>% 
  ggplot()+
  geom_point(aes(x = month, y = mean_offset_clim, col = biome_name))+
  geom_line(aes(x = month, y = mean_offset_clim, col = biome_name))+
  geom_hline(yintercept = 0, col = 'red') +
  geom_ribbon(aes(x = month, 
                  ymin = mean_offset_clim - std_offset_clim, 
                  ymax = mean_offset_clim + std_offset_clim,
                  group = biome_name, 
                  fill = biome_name), 
              alpha = 0.2) +
  scale_x_continuous(breaks = seq(1, 12, 1)) +
  labs(x = 'month',
       y = 'mean offset (ºC)',
       title = 'Mean offset (clim OceanSODA SST - clim Argo SST)', 
       col = 'region',
       fill = '± 1 std') 

Version Author Date
c076fba mlarriere 2024-04-12
f9de50e ds2n19 2024-01-01
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
1ae81b3 ds2n19 2023-10-11
44f5720 ds2n19 2023-10-09
68eff8b jens-daniel-mueller 2022-05-11
10036ed pasqualina-vonlanthendinenna 2022-04-26
905d82f pasqualina-vonlanthendinenna 2022-02-15

Mapped offset between climatological OceanSODA SST and climatological BGC-Argo SST

# bin the offsets for better plotting  
# plot the offsets on a map of the Southern Ocean

argo_OceanSODA_temp_SO_clim_2x2 <- argo_OceanSODA_temp_SO_clim_2x2 %>% 
  mutate(offset_clim_binned = 
           cut(offset_clim, 
               breaks = c(-Inf, -0.025, -0.005, 0.000, 0.005, 0.025, 0.035, 0.05, Inf)))    # bin the offsets into intervals (create a discrete variable instead of continuous)
         # offset_clim_binned = as.factor(as.character(offset_clim_binned))) %>% 
  # drop_na()

map +
  geom_tile(data = argo_OceanSODA_temp_SO_clim_2x2,
            aes(lon, lat, fill = offset_clim_binned)) +
  lims(y = c(-85, -30)) +
  scale_fill_brewer(palette = 'RdBu', drop = FALSE) +
  labs(x = 'lon',
       y = 'lat',
       fill = 'offset (ºC)',
       title = 'clim OceanSODA SST - clim Argo SST') +
  theme(legend.position = 'right')+
  facet_wrap(~month, ncol = 2)

Version Author Date
c076fba mlarriere 2024-04-12
f9de50e ds2n19 2024-01-01
cec2a2a ds2n19 2023-11-24
1ae81b3 ds2n19 2023-10-11
44f5720 ds2n19 2023-10-09
68eff8b jens-daniel-mueller 2022-05-11
10036ed pasqualina-vonlanthendinenna 2022-04-26
8805f99 pasqualina-vonlanthendinenna 2022-04-11
905d82f pasqualina-vonlanthendinenna 2022-02-15
basemap(limits = -32, data = argo_OceanSODA_temp_SO_clim_2x2) +   # change to polar projection
  geom_spatial_tile(data = argo_OceanSODA_temp_SO_clim_2x2,
                    aes(x = lon,
                        y = lat,
                        fill = offset_clim_binned),
                    linejoin = 'mitre',
                    col = 'transparent',
                    detail = 60)+
  scale_fill_brewer(palette = 'RdBu', drop = FALSE)+
  theme(legend.position = 'right')+
  labs(x = 'lon',
       y = 'lat',
       fill = 'offset (ºC)',
       title = 'clim Ocean SODA SST - clim Argo SST')+
  facet_wrap(~month, ncol = 2)

Basin separation

Using full OceanSODA data (even where there is no Argo data) Each Mayot biome is separated into basins (Atlantic, Pacific, Indian)

basinmask <-
  read_csv(paste(path_emlr_utilities,
                 "basin_mask_WOA18.csv",
                 sep = ""),
           col_types = cols("MLR_basins" = col_character()))

basinmask <- basinmask %>% 
  filter(MLR_basins == unique(basinmask$MLR_basins)[1]) %>% 
  select(lon, lat, basin_AIP)

OceanSODA_temp_SO <- inner_join(OceanSODA_temp, nm_biomes) %>% 
  filter(year >= 2013)

OceanSODA_temp_SO <- inner_join(OceanSODA_temp_SO, basinmask) %>% 
  mutate(year = year(date_OceanSODA),
         month = month(date_OceanSODA)) %>% 
  mutate(date = format_ISO8601(date_OceanSODA, precision = 'ym'))
# plot timeseries of monthly OceanSODA SST
OceanSODA_temp_SO_clim_subregional <- OceanSODA_temp_SO %>%
  group_by(year, month, biome_name, basin_AIP) %>%  # compute regional mean OceanSODA SST for the three biomes
  summarise(temp = mean(temperature, na.rm = TRUE)) %>%
  ungroup()

# plot a timeseries of monthly average OceanSODA pH, per region and per basin
OceanSODA_temp_SO_clim_subregional %>% 
  ggplot(aes(x = month,
             y = temp,
             group = year,
             col = as.character(year)))+
  geom_line()+
  geom_point()+
  scale_x_continuous(breaks = seq(1, 12, 2))+
  facet_grid(biome_name~basin_AIP)+
  labs(x = 'month',
       y = 'SST (ºC)',
       title = 'monthly mean OceanSODA SST (Southern Ocean basins)',
       col = 'year')

Version Author Date
c076fba mlarriere 2024-04-12
cec2a2a ds2n19 2023-11-24
1ae81b3 ds2n19 2023-10-11
44f5720 ds2n19 2023-10-09
10036ed pasqualina-vonlanthendinenna 2022-04-26
8805f99 pasqualina-vonlanthendinenna 2022-04-11
905d82f pasqualina-vonlanthendinenna 2022-02-15
OceanSODA_temp_SO_clim_subregional %>%  
  ggplot(aes(x = year,
             y = temp,
             col = biome_name)) +
  facet_grid(month ~ basin_AIP) +
  geom_line() +
  geom_point() +
  labs(x = 'year',
       y = 'SST (ºC)',
       title = 'monthly mean OceanSODA SST (Southern Ocean basins)',
       col = 'region')

Version Author Date
c076fba mlarriere 2024-04-12
cec2a2a ds2n19 2023-11-24
1ae81b3 ds2n19 2023-10-11
44f5720 ds2n19 2023-10-09
10036ed pasqualina-vonlanthendinenna 2022-04-26
8805f99 pasqualina-vonlanthendinenna 2022-04-11
905d82f pasqualina-vonlanthendinenna 2022-02-15

Longitudinal separation

Bin the SST data into 20º longitude bins

OceanSODA_temp_SO_lon_binned <- OceanSODA_temp_SO %>%
  mutate(lon = cut(lon, seq(20, 380, 20), seq(30, 370, 20)),
         lon = as.numeric(as.character(lon))
  ) %>%
  group_by(lon, year, month, biome_name) %>%
  summarise(
    OceanSODA_temp_binned = mean(temperature, na.rm = TRUE)
  ) %>%
  ungroup()
OceanSODA_temp_SO_lon_binned %>%
  # drop_na() %>% 
  ggplot(aes(x = month, y = OceanSODA_temp_binned, group = lon, col = as.factor(lon))) +
  geom_line()+
  geom_point()+
  scale_x_continuous(breaks = seq(1, 12, 2))+
  facet_grid(year~biome_name)+
  labs(x = 'month',
       y = 'OceanSODA SST (ºC)',
       col = 'longitude bin')

Version Author Date
c076fba mlarriere 2024-04-12
1ae81b3 ds2n19 2023-10-11
44f5720 ds2n19 2023-10-09
10036ed pasqualina-vonlanthendinenna 2022-04-26
8805f99 pasqualina-vonlanthendinenna 2022-04-11
905d82f pasqualina-vonlanthendinenna 2022-02-15
rm(OceanSODA_temp_SO_lon_binned, OceanSODA_temp_SO_clim_subregional, argo_OceanSODA_temp_SO_clim_2x2, mean_clim_offset, argo_OceanSODA_temp_SO_clim, mean_insitu_offset, argo_OceanSODA_temp_SO, argo_OceanSODA_temp_SO_clim_regional)

Load Core-Argo data

Repeat analysis with SST data from the Core-Argo dataset

# argo_surf_temp_core <-
#   read_rds(file = paste0(
#     path_argo_core_preprocessed, "/core_temp_flag_A.rds")) %>%
#   filter(between(depth, 0, 20)) %>%
#   mutate(year = year(date),
#          month = month(date))

argo_surf_temp_core <- read_rds(file = paste0(path_argo_core_preprocessed, '/temp_core_observed.rds')) %>%
  filter(between(depth, 0, 20))

Harmonise Core-Argo and OceanSODA

argo_temp_monthly_core <- argo_surf_temp_core %>%
  mutate(year_month = format_ISO8601(date, precision = "ym"), .after = 'date') %>%
  group_by(year, month, year_month, date, lat, lon) %>%
  summarise(argo_temp_month = mean(temp_adjusted, na.rm = TRUE)) %>%
  ungroup() %>%
  select(
    date,
    year_month,
    year,
    month,
    lon,
    lat,
    argo_temp_month
  )

Join Core-Argo and OceanSODA

argo_OceanSODA_temp_core <- left_join(
  argo_temp_monthly_core, OceanSODA_temp) %>%
  rename(OceanSODA_temp = temperature)

Core-SST - Southern Ocean

Compare Southern Ocean Core-SST to OceanSODA SST

# keep only Southern Ocean data 

argo_OceanSODA_temp_SO <- 
  inner_join(argo_OceanSODA_temp_core, nm_biomes)

Monthly climatological OceanSODA SST

Map OceanSODA SST where Core-Argo SST measurements exist

# calculate average monthly SST between, and the difference between the two (offset)

argo_OceanSODA_temp_SO_clim <- argo_OceanSODA_temp_SO %>%
  group_by(lon, lat, month) %>%
  summarise(
    clim_OceanSODA_temp = mean(OceanSODA_temp, na.rm = TRUE),
    clim_argo_temp = mean(argo_temp_month, na.rm = TRUE),
    offset_clim = clim_OceanSODA_temp - clim_argo_temp
  ) %>%
  ungroup()

# regrid to a 2x2 grid for mapping 
argo_OceanSODA_temp_SO_clim_2x2 <- argo_OceanSODA_temp_SO_clim %>%
  mutate(
    lat = cut(lat, seq(-90, 90, 2), seq(-89, 89, 2)),
    lat = as.numeric(as.character(lat)),
    lon = cut(lon, seq(20, 380, 2), seq(21, 379, 2)),
    lon = as.numeric(as.character(lon))
  ) %>%
  group_by(lon, lat, month) %>%
  summarise(
    clim_OceanSODA_temp = mean(clim_OceanSODA_temp, na.rm = TRUE),
    clim_argo_temp = mean(clim_argo_temp, na.rm = TRUE),
    offset_clim = mean(offset_clim, na.rm = TRUE)
  ) %>%
  ungroup()

map +
  geom_tile(data = argo_OceanSODA_temp_SO_clim_2x2,
            aes(x = lon, y = lat, fill = clim_OceanSODA_temp)) +
  lims(y = c(-85, -25)) +
  scale_fill_viridis_c() +
  labs(x = 'lon',
       y = 'lat',
       fill = 'SST (ºC)',
       title = 'Monthly climatological \nOceanSODA SST') +
  theme(legend.position = 'right') +
  facet_wrap(~month, ncol = 2)

Version Author Date
c076fba mlarriere 2024-04-12
0aebf38 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cec2a2a ds2n19 2023-11-24
c16000b ds2n19 2023-10-12
1ae81b3 ds2n19 2023-10-11
44f5720 ds2n19 2023-10-09
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

Monthly climatological Core-Argo SST

map +
  geom_tile(data = argo_OceanSODA_temp_SO_clim_2x2,
            aes(lon, lat, fill = clim_argo_temp)) +
  lims(y = c(-85, -25)) +
  scale_fill_viridis_c() +
  labs(x = 'lon',
       y = 'lat',
       fill = 'SST (ºC)',
       title = 'Monthly climatological \nArgo SST') +
  theme(legend.position = 'right') +
  facet_wrap(~month, ncol = 2)

Version Author Date
c076fba mlarriere 2024-04-12
0aebf38 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cec2a2a ds2n19 2023-11-24
c16000b ds2n19 2023-10-12
1ae81b3 ds2n19 2023-10-11
44f5720 ds2n19 2023-10-09
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

Timeseries of monthly SST

# plot timeseries of monthly OceanSODA SST

argo_OceanSODA_temp_SO_clim_regional <- argo_OceanSODA_temp_SO %>%
  select(year, month, biome_name, OceanSODA_temp, argo_temp_month) %>% 
  pivot_longer(c(OceanSODA_temp,argo_temp_month),
               values_to = "temp",
               names_to = "data_source") %>% 
  group_by(year, month, biome_name, data_source) %>% 
  summarise(temp = mean(temp, na.rm = TRUE)) %>%
  ungroup()
argo_OceanSODA_temp_SO_clim_regional %>%   
  # filter(year != 2021) %>%
  ggplot(aes(x = month,
             y = temp,
             group = year,
             col = as.character(year)))+
  geom_line()+
  geom_point()+
  scale_x_continuous(breaks = seq(1, 12, 2))+
  facet_grid(biome_name~data_source)+
  lims(y = c(-5, 20))+
  labs(x = 'month',
       y = 'SST (ºC)',
       title = 'monthly mean SST (Southern Ocean)',
       col = 'year')

Version Author Date
c076fba mlarriere 2024-04-12
0aebf38 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cec2a2a ds2n19 2023-11-24
c16000b ds2n19 2023-10-12
1ae81b3 ds2n19 2023-10-11
44f5720 ds2n19 2023-10-09
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

Comparison of Core-Argo and OceanSODA SST

argo_OceanSODA_temp_SO <- argo_OceanSODA_temp_SO %>%
  mutate(offset = OceanSODA_temp - argo_temp_month)

argo_OceanSODA_temp_SO %>%
  # drop_na() %>%
  # filter(year != '2021') %>% 
  ggplot() +
  geom_hline(yintercept = 0, size = 1)+
  geom_point(aes(x = year_month, y = offset, col = biome_name), size = 0.7, pch = 19) +
  scale_x_discrete(breaks = c('2013-01', '2014-01', '2015-01', '2016-01', '2017-01', '2018-01', '2019-01', '2020-01', '2021-01', '2022-01', '2023-01'))+
  labs(title = 'oceanSODA SST - Argo SST',
       x = 'date',
       y = 'offset (ºC)',
       col = 'region')

Version Author Date
c076fba mlarriere 2024-04-12
0aebf38 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cec2a2a ds2n19 2023-11-24
c16000b ds2n19 2023-10-12
1ae81b3 ds2n19 2023-10-11
44f5720 ds2n19 2023-10-09
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29
argo_OceanSODA_temp_SO %>% 
  # drop_na() %>% 
  ggplot(aes(x = OceanSODA_temp, y = argo_temp_month))+
  # geom_point(pch = 19, size = 0.7)+
  geom_bin2d(aes(x = OceanSODA_temp, y = argo_temp_month), size = 0.3, bins = 60)+
  scale_fill_viridis_c()+
  coord_fixed(ratio = 1,
              xlim = c(-3, 27),
              ylim= c(-3, 27)) +
  geom_abline(slope = 1, intercept = 0)+
  facet_wrap(~biome_name)+
  labs(x = 'OceanSODA SST (ºC)',
       y = 'Argo SST (ºC)',
       title = 'Southern Ocean regional SST')

Version Author Date
c076fba mlarriere 2024-04-12
0aebf38 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cec2a2a ds2n19 2023-11-24
c16000b ds2n19 2023-10-12
1ae81b3 ds2n19 2023-10-11
44f5720 ds2n19 2023-10-09
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29
# test with basin and biome 
basinmask <-
  read_csv(paste(path_emlr_utilities,
                 "basin_mask_WOA18.csv",
                 sep = ""),
           col_types = cols("MLR_basins" = col_character()))

basinmask <- basinmask %>% 
  filter(MLR_basins == unique(basinmask$MLR_basins)[1]) %>% 
  select(lon, lat, basin_AIP)

argo_OceanSODA_temp_SO <- inner_join(argo_OceanSODA_temp_SO, basinmask)

argo_OceanSODA_temp_SO %>% 
  ggplot(aes(x = OceanSODA_temp, y = argo_temp_month))+
  geom_bin2d(aes(x = OceanSODA_temp, y = argo_temp_month), size = 0.3, bins = 60)+
  scale_fill_viridis_c()+
  coord_fixed(ratio = 1, 
              xlim = c(-3, 27),
              ylim = c(-3, 27))+
  geom_abline(slope = 1, intercept = 0)+
  facet_grid(basin_AIP~biome_name)+
  labs(x = 'Argo SST (ºC)', 
       y = 'OceanSODA SST (ºC)',
       title = 'Southern Ocean subregional SST')

Version Author Date
c076fba mlarriere 2024-04-12
0aebf38 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cec2a2a ds2n19 2023-11-24
c16000b ds2n19 2023-10-12
1ae81b3 ds2n19 2023-10-11
44f5720 ds2n19 2023-10-09
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

Mean offset between in-situ OceanSODA SST and in-situ Core-Argo SST

mean_insitu_offset <- argo_OceanSODA_temp_SO %>%
  group_by(year_month, biome_name) %>% 
  summarise(mean_offset = mean(offset, na.rm = TRUE),
            std_offset = sd(offset, na.rm = TRUE))

mean_insitu_offset %>%
  # drop_na() %>%
  # filter(year != '2021') %>% 
  ggplot() +
  geom_hline(yintercept = 0, size = 1, col = 'red')+
  geom_point(aes(x = year_month, y = mean_offset, group = biome_name, col = biome_name), size = 0.7, pch = 19) +
  geom_line(aes(x = year_month, y = mean_offset, group = biome_name, col = biome_name))+
  geom_ribbon(aes(x = year_month, 
                  ymin = mean_offset-std_offset, 
                  ymax = mean_offset+std_offset, 
                  group = biome_name, 
                  fill =biome_name),
              alpha = 0.2)+
  scale_x_discrete(breaks = c('2013-01', '2014-01', '2015-01', '2016-01', '2017-01', '2018-01', '2019-01', '2020-01', '2021-01', '2022-01', '2023-01'))+
  # facet_wrap(~year)+
  labs(title = 'Mean offset (in situ oceanSODA SST - in situ Argo SST)',
       x = 'date',
       y = 'offset (ºC)',
       col = 'region',
       fill = '± 1 std')

Version Author Date
c076fba mlarriere 2024-04-12
0aebf38 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cec2a2a ds2n19 2023-11-24
c16000b ds2n19 2023-10-12
1ae81b3 ds2n19 2023-10-11
44f5720 ds2n19 2023-10-09
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

Offset between climatological Core-Argo and climatological OceanSODA SST

# Offset between climatological argo and climatological OceanSODA SST 

argo_OceanSODA_temp_SO_clim <- inner_join(argo_OceanSODA_temp_SO_clim, nm_biomes)
argo_OceanSODA_temp_SO_clim %>% 
  # drop_na() %>%
  ggplot() +
  geom_point(aes(x = month, y = offset_clim, col = biome_name), size = 0.7, pch = 19) +
  geom_hline(yintercept = 0, size = 1, col = 'red')+
  scale_x_continuous(breaks = seq(1, 12, 1))+
  labs(title = 'clim oceanSODA SST - clim Argo SST',
       x = 'month',
       y = 'offset (ºC)',
       col = 'region')

Mean offset between climatological OceanSODA SST and climatological Core-Argo SST

mean_clim_offset <- argo_OceanSODA_temp_SO_clim %>% 
  group_by(month, biome_name) %>% 
  summarise(mean_offset_clim = mean(offset_clim, na.rm = TRUE),
            std_offset_clim = sd(offset_clim, na.rm = TRUE))

mean_clim_offset %>% 
  ggplot()+
  geom_point(aes(x = month, y = mean_offset_clim, col = biome_name))+
  geom_line(aes(x = month, y = mean_offset_clim, col = biome_name))+
  geom_hline(yintercept = 0, col = 'red') +
  geom_ribbon(aes(x = month, 
                  ymin = mean_offset_clim - std_offset_clim, 
                  ymax = mean_offset_clim + std_offset_clim,
                  group = biome_name, 
                  fill = biome_name), 
              alpha = 0.2) +
  scale_x_continuous(breaks = seq(1, 12, 1)) +
  labs(x = 'month',
       y = 'mean offset (ºC)',
       title = 'Mean offset (clim OceanSODA SST - clim Argo SST)', 
       col = 'region',
       fill = '± 1 std') 

Version Author Date
c076fba mlarriere 2024-04-12
0aebf38 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cec2a2a ds2n19 2023-11-24
c16000b ds2n19 2023-10-12
1ae81b3 ds2n19 2023-10-11
44f5720 ds2n19 2023-10-09
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

Mapped offset between climatological OceanSODA SST and climatological Core-Argo SST

# bin the offsets for better plotting  
# plot the offsets on a map of the Southern Ocean

argo_OceanSODA_temp_SO_clim_2x2 <- argo_OceanSODA_temp_SO_clim_2x2 %>% 
  mutate(offset_clim_binned = 
           cut(offset_clim, 
               breaks = c(-Inf, -0.025, -0.005, 0.000, 0.005, 0.025, 0.035, 0.05, Inf)))    # bin the offsets into intervals (create a discrete variable instead of continuous)
         # offset_clim_binned = as.factor(as.character(offset_clim_binned))) %>% 
  # drop_na()

map +
  geom_tile(data = argo_OceanSODA_temp_SO_clim_2x2,
            aes(lon, lat, fill = offset_clim_binned)) +
  lims(y = c(-85, -30)) +
  scale_fill_brewer(palette = 'RdBu', drop = FALSE) +
  labs(x = 'lon',
       y = 'lat',
       fill = 'offset (ºC)',
       title = 'clim OceanSODA SST - clim Argo SST') +
  theme(legend.position = 'right')+
  facet_wrap(~month, ncol = 2)

Version Author Date
c076fba mlarriere 2024-04-12
0aebf38 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cec2a2a ds2n19 2023-11-24
c16000b ds2n19 2023-10-12
1ae81b3 ds2n19 2023-10-11
44f5720 ds2n19 2023-10-09
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

sessionInfo()
R version 4.2.2 (2022-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.5

Matrix products: default
BLAS:   /usr/local/R-4.2.2/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.2.2/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] metR_0.13.0       ggOceanMaps_1.3.4 ggspatial_1.1.7   lubridate_1.9.0  
 [5] timechange_0.1.1  forcats_0.5.2     stringr_1.5.0     dplyr_1.1.3      
 [9] purrr_1.0.2       readr_2.1.3       tidyr_1.3.0       tibble_3.2.1     
[13] ggplot2_3.4.4     tidyverse_1.3.2  

loaded via a namespace (and not attached):
 [1] fs_1.5.2            sf_1.0-9            bit64_4.0.5        
 [4] RColorBrewer_1.1-3  httr_1.4.4          rprojroot_2.0.3    
 [7] tools_4.2.2         backports_1.4.1     bslib_0.4.1        
[10] utf8_1.2.2          R6_2.5.1            KernSmooth_2.23-20 
[13] rgeos_0.5-9         DBI_1.2.2           colorspace_2.0-3   
[16] raster_3.6-11       withr_2.5.0         sp_1.5-1           
[19] tidyselect_1.2.0    bit_4.0.5           compiler_4.2.2     
[22] git2r_0.30.1        cli_3.6.1           rvest_1.0.3        
[25] xml2_1.3.3          labeling_0.4.2      sass_0.4.4         
[28] scales_1.2.1        checkmate_2.1.0     classInt_0.4-8     
[31] proxy_0.4-27        digest_0.6.30       rmarkdown_2.18     
[34] pkgconfig_2.0.3     htmltools_0.5.8.1   highr_0.9          
[37] dbplyr_2.2.1        fastmap_1.1.0       rlang_1.1.1        
[40] readxl_1.4.1        rstudioapi_0.15.0   farver_2.1.1       
[43] jquerylib_0.1.4     generics_0.1.3      jsonlite_1.8.3     
[46] vroom_1.6.0         googlesheets4_1.0.1 magrittr_2.0.3     
[49] Rcpp_1.0.10         munsell_0.5.0       fansi_1.0.3        
[52] lifecycle_1.0.3     terra_1.7-65        stringi_1.7.8      
[55] whisker_0.4         yaml_2.3.6          grid_4.2.2         
[58] parallel_4.2.2      promises_1.2.0.1    crayon_1.5.2       
[61] lattice_0.20-45     haven_2.5.1         hms_1.1.2          
[64] knitr_1.41          pillar_1.9.0        codetools_0.2-18   
[67] reprex_2.0.2        glue_1.6.2          evaluate_0.18      
[70] data.table_1.14.6   modelr_0.1.10       vctrs_0.6.4        
[73] tzdb_0.3.0          httpuv_1.6.6        cellranger_1.1.0   
[76] gtable_0.3.1        assertthat_0.2.1    cachem_1.0.6       
[79] xfun_0.35           broom_1.0.5         e1071_1.7-12       
[82] later_1.3.0         viridisLite_0.4.1   class_7.3-20       
[85] googledrive_2.0.0   gargle_1.2.1        memoise_2.0.1      
[88] workflowr_1.7.0     units_0.8-0         ellipsis_0.3.2