Last updated: 2022-05-11
Checks: 7 0
Knit directory: bgc_argo_r_argodata/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20211008)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 2f20a76. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: output/
Untracked files:
Untracked: analysis/load_argo.Rmd
Unstaged changes:
Modified: analysis/_site.yml
Deleted: analysis/argo_clim_pH_ucsd.Rmd
Deleted: analysis/argo_clim_temp_csio.Rmd
Deleted: analysis/broullon_DIC_TA_clim.Rmd
Deleted: analysis/loading_data.Rmd
Deleted: analysis/oceanSODA_argo.Rmd
Deleted: analysis/oxygen_data.Rmd
Deleted: analysis/ph_data.Rmd
Deleted: analysis/ph_temp_anomaly_fields.Rmd
Deleted: analysis/temp_data.Rmd
Modified: code/Workflowr_project_managment.R
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/load_argo_clim_temp_csio.Rmd
) and HTML (docs/load_argo_clim_temp_csio.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 2f20a76 | jens-daniel-mueller | 2022-05-11 | rebuild all after subsetting AB profiles and code cleaning |
library(tidyverse)
# library(ggOceanMaps)
library(oce)
path_updata <- "/nfs/kryo/work/updata"
path_argo_clim_temp <- paste0(path_updata, "/argo_climatology/temperature")
path_emlr_utilities <- "/nfs/kryo/work/jenmueller/emlr_cant/utilities/files/"
path_argo <- '/nfs/kryo/work/updata/bgc_argo_r_argodata'
path_argo_preprocessed <- paste0(path_argo, "/preprocessed_bgc_data")
theme_set(theme_bw())
map <-
read_rds(paste(path_emlr_utilities,
"map_landmask_WOA18.rds",
sep = ""))
# Mayot biome separations
nm_biomes <- read_rds(file = paste0(path_argo_preprocessed, "/nm_biomes.rds"))
# WOA 18 basin mask
basinmask <-
read_csv(
paste(path_emlr_utilities,
"basin_mask_WOA18.csv",
sep = ""),
col_types = cols("MLR_basins" = col_character())
)
basinmask <- basinmask %>%
filter(MLR_basins == unique(basinmask$MLR_basins)[1]) %>%
select(-c(MLR_basins, basin))
CSIO-MNR Argo temperature climatology of Li et al. (2017)
Li, H., F. Xu, W. Zhou, D. Wang, J. S. Wright, Z. Liu, and Y. Lin (2017), Development of a global gridded Argo data set with Barnes successive corrections, J. Geophys. Res.Oceans, 122, doi: 10.1002/2016JC012285.6
User Manual: Shaolei Lu,Zenghong Liu,Hong Li,Zhaoqin Li,Xiaofen Wu,Chaohui Sun,Jianping Xu.(2020). Manual of Global Ocean Argo gridded data set (BOA_Argo) (Version 2019), 14 pp https://argo.ucsd.edu/wp-content/uploads/sites/361/2020/07/User_Manual_BOA_Argo-2020.pdf
jan <- tidync::hyper_tibble(paste0(path_argo_clim_temp, "/BOA_Argo_monthly_01.nc")) %>%
mutate(month = 1) %>%
select(-c(salt, time))
feb <- tidync::hyper_tibble(paste0(path_argo_clim_temp, "/BOA_Argo_monthly_02.nc")) %>%
mutate(month = 2) %>%
select(-c(salt, time))
mar <- tidync::hyper_tibble(paste0(path_argo_clim_temp, "/BOA_Argo_monthly_03.nc")) %>%
mutate(month = 3) %>%
select(-c(salt, time))
apr <- tidync::hyper_tibble(paste0(path_argo_clim_temp, "/BOA_Argo_monthly_04.nc")) %>%
mutate(month = 4) %>%
select(-c(salt, time))
may <- tidync::hyper_tibble(paste0(path_argo_clim_temp, "/BOA_Argo_monthly_05.nc")) %>%
mutate(month = 5) %>%
select(-c(salt, time))
jun <- tidync::hyper_tibble(paste0(path_argo_clim_temp, "/BOA_Argo_monthly_06.nc")) %>%
mutate(month = 6) %>%
select(-c(salt, time))
jul <- tidync::hyper_tibble(paste0(path_argo_clim_temp, "/BOA_Argo_monthly_07.nc")) %>%
mutate(month = 7) %>%
select(-c(salt, time))
aug <- tidync::hyper_tibble(paste0(path_argo_clim_temp, "/BOA_Argo_monthly_08.nc")) %>%
mutate(month = 8) %>%
select(-c(salt, time))
sept <- tidync::hyper_tibble(paste0(path_argo_clim_temp, "/BOA_Argo_monthly_09.nc")) %>%
mutate(month = 9) %>%
select(-c(salt, time))
oct <- tidync::hyper_tibble(paste0(path_argo_clim_temp, "/BOA_Argo_monthly_10.nc")) %>%
mutate(month = 10) %>%
select(-c(salt, time))
nov <- tidync::hyper_tibble(paste0(path_argo_clim_temp, "/BOA_Argo_monthly_11.nc")) %>%
mutate(month = 11) %>%
select(-c(salt, time))
dec <- tidync::hyper_tibble(paste0(path_argo_clim_temp, "/BOA_Argo_monthly_12.nc")) %>%
mutate(month = 12) %>%
select(-c(salt, time))
boa_temp_clim <- bind_rows(jan, feb, mar, apr, may, jun, jul, aug, sept, oct, nov, dec)
rm(jan, feb, mar, apr, may, jun, jul, aug, sept, oct, nov, dec)
boa_temp_clim <- boa_temp_clim %>%
mutate(lon = if_else(lon < 20, lon + 360, lon),
depth = swDepth(pressure = pres, latitude = lat)) %>%
rename(clim_temp = temp)
boa_temp_clim %>%
write_rds(file = paste0(path_argo_preprocessed, "/boa_temp_clim.rds"))
# keep only data south of 30ºS
boa_temp_clim_SO <- boa_temp_clim %>%
filter(lat <= -30)
# 9 196 740 obs of 6 variables
map+
geom_point(data = boa_temp_clim_SO %>% filter(depth < 20),
aes(x = lon,
y = lat),
size = 0.1,
pch = 2,
alpha = 0.2) +
labs(title = 'CSIO observation coverage')
boa_sst_clim_SO <- boa_temp_clim_SO %>%
filter(depth <= 20) %>%
group_by(lon, lat, month) %>%
summarise(clim_sst = mean(clim_temp, na.rm = TRUE)) %>%
ungroup()
boa_sst_clim_SO %>%
group_split(month) %>%
map(
~map+
geom_tile(data = .x,
aes(x = lon,
y = lat,
fill = clim_sst))+
scale_fill_viridis_c()+
lims(y = c(-85, -28))+
labs(title = paste0('Li et al. CSIO clim SST, month:', unique(.x$month)))
)
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
[[7]]
[[8]]
[[9]]
[[10]]
[[11]]
[[12]]
boa_temp_clim_SO <- inner_join(boa_temp_clim_SO, nm_biomes)
boa_temp_clim_SO <- inner_join(boa_temp_clim_SO,
basinmask)
boa_temp_clim_SO %>%
group_split(month) %>%
map(
~ggplot(data = .x,
aes(x = clim_temp,
y = depth))+
geom_point(size = 0.1, pch = 1, fill = NA)+
scale_y_reverse()+
facet_grid(basin_AIP~biome_name)+
labs(title = paste0('CSIO climatological profiles, month:', unique(.x$month)))
)
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
[[7]]
[[8]]
[[9]]
[[10]]
[[11]]
[[12]]
Roemmich and Gilson UCSD argo temperature climatology
Roemmich, D. and J. Gilson, 2009: The 2004-2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Progress in Oceanography, 82, 81-100
clim_argo_temp_year_mean <- tidync::hyper_tibble(paste0(path_argo_clim_temp, "/RG_ArgoClim_33pfit_2019_mean.nc"))
# yearly mean temperature values in each 1/6 lat/lon grid (1 value for the year)
clim_argo_temp_monthly_anomaly <- tidync::hyper_tibble(paste0(path_argo_clim_temp, "/RG_ArgoClim_33pfit_2019_annual.nc"))
# monthly temperature anomaly from the annual mean, from January (time = 0.5) to December (time = 11.5), in each 1/2 lon/lat grid
# put both dataframes onto 1/1 lon/lat grid and calculate mean temperature / mean anomaly in each grid
clim_argo_temp_monthly_anomaly <- clim_argo_temp_monthly_anomaly %>%
select(-ARGO_SALINITY_ANNUAL_ANOMALY) %>%
rename(lon = LONGITUDE,
lat = LATITUDE,
pressure = PRESSURE,
temp_annual_anomaly = ARGO_TEMPERATURE_ANNUAL_ANOMALY,
time = TIME) %>%
mutate(lon = if_else(lon < 20, lon + 360, lon)) %>%
mutate(lat = cut(lat, seq(-90, 90, 1), seq(-89.5, 89.5, 1)),
lat = as.numeric(as.character(lat)),
lon = cut(lon, seq(20, 380, 1), seq(20.5, 379.5, 1)),
lon = as.numeric(as.character(lon))) %>%
mutate(depth = swDepth(pressure = pressure, latitude = lat),
.after = pressure) %>%
filter(lat < -30)
# calculate mean temperature anomaly in each 1x1 grid
clim_argo_temp_monthly_anomaly <- clim_argo_temp_monthly_anomaly %>%
group_by(lon, lat, depth, time) %>%
summarise(temp_monthly_anomaly = mean(temp_annual_anomaly, na.rm = TRUE)) %>%
ungroup()
# re-grid annual mean temperature to 1x1 grid and compute depth
clim_argo_temp_year_mean <- clim_argo_temp_year_mean %>%
select(-ARGO_SALINITY_MEAN) %>%
rename(lon = LONGITUDE,
lat = LATITUDE,
temp_annual_mean = ARGO_TEMPERATURE_MEAN,
pressure = PRESSURE) %>%
mutate(lon = if_else(lon < 20, lon + 360, lon)) %>%
mutate(lat = cut(lat, seq(-90, 90, 1), seq(-89.5, 89.5, 1)),
lat = as.numeric(as.character(lat)),
lon = cut(lon, seq(20, 380, 1), seq(20.5, 379.5, 1)),
lon = as.numeric(as.character(lon))) %>%
mutate(depth = swDepth(pressure = pressure, latitude = lat),
.after = pressure) %>%
filter(lat < -30)
# calculate mean yearly temperature in each lat/lon grid
clim_argo_temp_year_mean <- clim_argo_temp_year_mean %>%
group_by(lon, lat, depth) %>%
summarise(temp_annual_clim = mean(temp_annual_mean, na.rm = TRUE)) %>%
ungroup()
# check the compatability of the two depths in the two datasets
depth_year <- table(unique(round(clim_argo_temp_monthly_anomaly$depth, digits = 0)))
depth_month <- table(unique(round(clim_argo_temp_year_mean$depth, digits = 0)))
all.equal(depth_year, depth_month)
[1] TRUE
# same depth axis in both
rm(depth_year, depth_month)
clim_argo_temp_ucsd <- left_join(clim_argo_temp_monthly_anomaly,
clim_argo_temp_year_mean)
clim_argo_temp_ucsd <- clim_argo_temp_ucsd %>%
mutate(temp_monthly_clim = temp_annual_clim + temp_monthly_anomaly,
depth = round(depth, digits = 0),
month = time + 0.5)
rm(clim_argo_temp_monthly_anomaly, clim_argo_temp_year_mean)
clim_argo_temp_ucsd %>%
write_rds(file = paste0(path_argo_preprocessed, "/clim_argo_temp_ucsd.rds"))
map+
geom_point(data = clim_argo_temp_ucsd %>%
filter(depth < 5),
aes(x = lon,
y = lat),
size = 0.2)+
facet_wrap(~time, ncol = 2)+
lims(y = c(-80, -30))+
labs(title = 'UCSD climatology obs coverage')
clim_sst_ucsd <- clim_argo_temp_ucsd %>%
filter(depth <= 20) %>%
group_by(lon, lat, month) %>%
summarise(clim_sst = mean(temp_monthly_clim, na.rm = TRUE)) %>%
ungroup()
clim_sst_ucsd %>%
group_split(month) %>%
map(
~map+
geom_tile(data = .x,
aes(x = lon,
y = lat,
fill = clim_sst))+
scale_fill_viridis_c()+
lims(y = c(-85, -28))+
labs(title = paste0('Roemmich & Gilson UCSD clim SST, month:', unique(.x$month)))
)
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
[[7]]
[[8]]
[[9]]
[[10]]
[[11]]
[[12]]
clim_argo_temp_ucsd %>%
group_split(depth) %>%
map(
~map+
geom_tile(data = .x %>% filter(month == 1),
aes(x = lon,
y = lat,
fill = temp_monthly_clim))+
scale_fill_viridis_c()+
lims(y = c(-80, -29))+
labs(title = paste0('UCSD January climatological temperature ', unique(.x$depth), 'm'))
)
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
[[7]]
[[8]]
[[9]]
[[10]]
[[11]]
[[12]]
[[13]]
[[14]]
[[15]]
[[16]]
[[17]]
[[18]]
[[19]]
[[20]]
[[21]]
[[22]]
[[23]]
[[24]]
[[25]]
[[26]]
[[27]]
[[28]]
[[29]]
[[30]]
[[31]]
[[32]]
[[33]]
[[34]]
[[35]]
[[36]]
[[37]]
[[38]]
[[39]]
[[40]]
[[41]]
[[42]]
[[43]]
[[44]]
[[45]]
[[46]]
[[47]]
[[48]]
[[49]]
[[50]]
[[51]]
[[52]]
[[53]]
[[54]]
[[55]]
[[56]]
[[57]]
[[58]]
[[59]]
[[60]]
[[61]]
[[62]]
[[63]]
[[64]]
[[65]]
[[66]]
[[67]]
[[68]]
[[69]]
[[70]]
[[71]]
[[72]]
[[73]]
[[74]]
[[75]]
[[76]]
[[77]]
[[78]]
[[79]]
[[80]]
[[81]]
[[82]]
[[83]]
[[84]]
[[85]]
[[86]]
[[87]]
[[88]]
[[89]]
[[90]]
[[91]]
[[92]]
[[93]]
[[94]]
[[95]]
[[96]]
[[97]]
[[98]]
[[99]]
[[100]]
[[101]]
[[102]]
[[103]]
[[104]]
[[105]]
[[106]]
[[107]]
[[108]]
[[109]]
[[110]]
[[111]]
[[112]]
[[113]]
[[114]]
[[115]]
[[116]]
[[117]]
[[118]]
[[119]]
[[120]]
[[121]]
[[122]]
[[123]]
[[124]]
[[125]]
[[126]]
[[127]]
[[128]]
[[129]]
[[130]]
[[131]]
[[132]]
[[133]]
[[134]]
[[135]]
[[136]]
[[137]]
[[138]]
[[139]]
[[140]]
[[141]]
[[142]]
[[143]]
[[144]]
[[145]]
[[146]]
[[147]]
[[148]]
[[149]]
[[150]]
[[151]]
[[152]]
[[153]]
[[154]]
[[155]]
[[156]]
[[157]]
[[158]]
[[159]]
[[160]]
# add in Mayot biome separations
clim_argo_temp_ucsd <- inner_join(clim_argo_temp_ucsd, nm_biomes)
# add in basin separations
clim_argo_temp_ucsd <- inner_join(clim_argo_temp_ucsd, basinmask)
# plot climatological profiles per month and biome
clim_argo_temp_ucsd %>%
group_split(month) %>%
map(
~ggplot(data = .x,
aes(x = temp_monthly_clim,
y = depth))+
geom_point(size = 0.1, pch = 1, fill = NA)+
scale_y_reverse()+
facet_grid(basin_AIP~biome_name)+
labs(title = paste0('UCSD clim profiles, month:', unique(.x$month)))
)
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
[[7]]
[[8]]
[[9]]
[[10]]
[[11]]
[[12]]
boa_temp_clim_SO <- boa_temp_clim_SO %>%
rename(depth_boa = depth)
clim_argo_temp_ucsd <- clim_argo_temp_ucsd %>%
rename(depth_ucsd = depth)
boa_temp_clim_SO <- boa_temp_clim_SO %>%
mutate(depth = cut(depth_boa,
breaks = c(0, 10, 20, 30, 50, 70, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000),
include.lowest = TRUE,
labels = c(5, 15, 25, 40, 60, 85, 150, 250, 350, 450, 550, 650, 750, 850, 950, 1250, 1750)),
depth = as.numeric(as.character(depth)))
clim_argo_temp_ucsd <- clim_argo_temp_ucsd %>%
mutate(depth = cut(depth_ucsd,
breaks = c(0, 10, 20, 30, 50, 70, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000),
include.lowest = TRUE,
labels = c(5, 15, 25, 40, 60, 85, 150, 250, 350, 450, 550, 650, 750, 850, 950, 1250, 1750)),
depth = as.numeric(as.character(depth)))
# table(unique(boa_temp_clim_SO$depth))
# table(unique(clim_argo_temp_ucsd$depth))
temperature_climatology <- full_join(boa_temp_clim_SO, clim_argo_temp_ucsd)
temperature_climatology %>%
group_split(month, depth) %>%
map(
~ggplot(data = .x,
aes(x = clim_temp,
y = temp_monthly_clim))+
geom_bin2d(data = .x,
aes(x = clim_temp,
y = temp_monthly_clim))+
geom_abline(slope = 1, intercept = 0)+
scale_fill_viridis_c()+
facet_grid(biome_name ~ basin_AIP)+
labs(title = paste0('month: ', unique(.x$month), '| depth: ', unique(.x$depth), 'm'),
x = 'UCSD climatological temp',
y = 'CSIO-MNR climatological temp')
)
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
[[7]]
[[8]]
[[9]]
[[10]]
[[11]]
[[12]]
[[13]]
[[14]]
[[15]]
[[16]]
[[17]]
[[18]]
[[19]]
[[20]]
[[21]]
[[22]]
[[23]]
[[24]]
[[25]]
[[26]]
[[27]]
[[28]]
[[29]]
[[30]]
[[31]]
[[32]]
[[33]]
[[34]]
[[35]]
[[36]]
[[37]]
[[38]]
[[39]]
[[40]]
[[41]]
[[42]]
[[43]]
[[44]]
[[45]]
[[46]]
[[47]]
[[48]]
[[49]]
[[50]]
[[51]]
[[52]]
[[53]]
[[54]]
[[55]]
[[56]]
[[57]]
[[58]]
[[59]]
[[60]]
[[61]]
[[62]]
[[63]]
[[64]]
[[65]]
[[66]]
[[67]]
[[68]]
[[69]]
[[70]]
[[71]]
[[72]]
[[73]]
[[74]]
[[75]]
[[76]]
[[77]]
[[78]]
[[79]]
[[80]]
[[81]]
[[82]]
[[83]]
[[84]]
[[85]]
[[86]]
[[87]]
[[88]]
[[89]]
[[90]]
[[91]]
[[92]]
[[93]]
[[94]]
[[95]]
[[96]]
[[97]]
[[98]]
[[99]]
[[100]]
[[101]]
[[102]]
[[103]]
[[104]]
[[105]]
[[106]]
[[107]]
[[108]]
[[109]]
[[110]]
[[111]]
[[112]]
[[113]]
[[114]]
[[115]]
[[116]]
[[117]]
[[118]]
[[119]]
[[120]]
[[121]]
[[122]]
[[123]]
[[124]]
[[125]]
[[126]]
[[127]]
[[128]]
[[129]]
[[130]]
[[131]]
[[132]]
[[133]]
[[134]]
[[135]]
[[136]]
[[137]]
[[138]]
[[139]]
[[140]]
[[141]]
[[142]]
[[143]]
[[144]]
[[145]]
[[146]]
[[147]]
[[148]]
[[149]]
[[150]]
[[151]]
[[152]]
[[153]]
[[154]]
[[155]]
[[156]]
[[157]]
[[158]]
[[159]]
[[160]]
[[161]]
[[162]]
[[163]]
[[164]]
[[165]]
[[166]]
[[167]]
[[168]]
[[169]]
[[170]]
[[171]]
[[172]]
[[173]]
[[174]]
[[175]]
[[176]]
[[177]]
[[178]]
[[179]]
[[180]]
[[181]]
[[182]]
[[183]]
[[184]]
[[185]]
[[186]]
[[187]]
[[188]]
[[189]]
[[190]]
[[191]]
[[192]]
[[193]]
[[194]]
[[195]]
[[196]]
[[197]]
[[198]]
[[199]]
[[200]]
[[201]]
[[202]]
[[203]]
[[204]]
sessionInfo()
R version 4.1.2 (2021-11-01)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.3
Matrix products: default
BLAS: /usr/local/R-4.1.2/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.1.2/lib64/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] oce_1.5-0 gsw_1.0-6 forcats_0.5.1 stringr_1.4.0
[5] dplyr_1.0.7 purrr_0.3.4 readr_2.1.1 tidyr_1.1.4
[9] tibble_3.1.6 ggplot2_3.3.5 tidyverse_1.3.1 workflowr_1.7.0
loaded via a namespace (and not attached):
[1] httr_1.4.2 sass_0.4.0 viridisLite_0.4.0 bit64_4.0.5
[5] vroom_1.5.7 jsonlite_1.7.3 modelr_0.1.8 bslib_0.3.1
[9] assertthat_0.2.1 getPass_0.2-2 highr_0.9 cellranger_1.1.0
[13] yaml_2.2.1 pillar_1.6.4 backports_1.4.1 glue_1.6.0
[17] digest_0.6.29 promises_1.2.0.1 rvest_1.0.2 colorspace_2.0-2
[21] htmltools_0.5.2 httpuv_1.6.5 pkgconfig_2.0.3 broom_0.7.11
[25] haven_2.4.3 scales_1.1.1 processx_3.5.2 whisker_0.4
[29] later_1.3.0 tzdb_0.2.0 git2r_0.29.0 farver_2.1.0
[33] generics_0.1.1 ellipsis_0.3.2 withr_2.4.3 cli_3.1.1
[37] magrittr_2.0.1 crayon_1.4.2 readxl_1.3.1 evaluate_0.14
[41] ps_1.6.0 fs_1.5.2 ncdf4_1.19 fansi_1.0.2
[45] xml2_1.3.3 tidync_0.2.4 tools_4.1.2 hms_1.1.1
[49] lifecycle_1.0.1 munsell_0.5.0 reprex_2.0.1 callr_3.7.0
[53] compiler_4.1.2 jquerylib_0.1.4 RNetCDF_2.5-2 rlang_1.0.2
[57] grid_4.1.2 rstudioapi_0.13 labeling_0.4.2 rmarkdown_2.11
[61] gtable_0.3.0 DBI_1.1.2 R6_2.5.1 ncmeta_0.3.0
[65] lubridate_1.8.0 knitr_1.37 fastmap_1.1.0 bit_4.0.4
[69] utf8_1.2.2 rprojroot_2.0.2 stringi_1.7.6 parallel_4.1.2
[73] Rcpp_1.0.8 vctrs_0.3.8 dbplyr_2.1.1 tidyselect_1.1.1
[77] xfun_0.29