Last updated: 2024-04-17
Checks: 7 0
Knit directory:
bgc_argo_r_argodata/analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20211008)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 550ab72. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .Rproj.user/
Unstaged changes:
Modified: analysis/_site.yml
Modified: analysis/coverage_maps_North_Atlantic.Rmd
Modified: analysis/load_broullon_DIC_TA_clim.Rmd
Modified: analysis/temp_core_SO_cluster_analysis.Rmd
Modified: code/Workflowr_project_managment.R
Modified: code/start_background_job.R
Modified: code/start_background_job_load.R
Modified: code/start_background_job_partial.R
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown (analysis/MHWs_categorisation.Rmd
)
and HTML (docs/MHWs_categorisation.html
) files. If you’ve
configured a remote Git repository (see ?wflow_git_remote
),
click on the hyperlinks in the table below to view the files as they
were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 550ab72 | mlarriere | 2024-04-17 | Cluster analysis test |
html | 4a8157c | mlarriere | 2024-04-16 | Build site. |
Rmd | 5acdc98 | mlarriere | 2024-04-16 | Some explanations on categorisation and beginning of cluster analysis |
html | ad0d737 | mlarriere | 2024-04-16 | Build site. |
Rmd | f22c4b5 | mlarriere | 2024-04-16 | Some explanations on categorisation and beginning of cluster analysis |
Rmd | 2c60853 | mlarriere | 2024-04-15 | Some explanations on categorisation and beginning of cluster analysis |
html | 9910de2 | mlarriere | 2024-04-14 | Build site. |
html | 50596ee | mlarriere | 2024-04-14 | Build site. |
Rmd | ac8de8b | mlarriere | 2024-04-14 | Figures MHWs |
html | 718d84b | mlarriere | 2024-04-14 | Build site. |
Rmd | a2e118c | mlarriere | 2024-04-14 | Figures MHWs |
html | c789e3f | mlarriere | 2024-04-13 | Build site. |
Rmd | acdc838 | mlarriere | 2024-04-13 | Figures MHWs |
html | bbbc1bb | mlarriere | 2024-04-13 | Build site. |
Rmd | b080fc9 | mlarriere | 2024-04-13 | Figures MHWs |
html | 83d1fa3 | mlarriere | 2024-04-13 | Build site. |
Rmd | c8b3f67 | mlarriere | 2024-04-13 | Figures MHWs |
html | 1ab66f1 | mlarriere | 2024-04-13 | Build site. |
Rmd | 25928b0 | mlarriere | 2024-04-13 | Figures MHWs |
html | 5475def | mlarriere | 2024-04-13 | Build site. |
Rmd | e2b710d | mlarriere | 2024-04-13 | build North Atlanatic section |
html | c076fba | mlarriere | 2024-04-12 | Build site. |
Rmd | a52cee0 | mlarriere | 2024-04-08 | adding subsection MHWs categorisation |
html | efc6aab | mlarriere | 2024-04-08 | Build site. |
Rmd | a9ea2a8 | mlarriere | 2024-04-08 | test MHWs cat |
Focusing on 2023 Only core Argo - focus on temperature anomalies
temp_core_va.rds - temperature of core argo floats after vertical alignment.
core_fileid.rds - not used yet
temp_anomaly_va.rds - file containing the temperature anomalies (temp core - climatology).
2023_mhw_raw.csv - CSV file containing the categorization of surface marine heatwaves, in 2023 and in a 0.25°x0.25° grid.
2023_surface_mhws_1x1.rds - file containing the categorization of surface marine heatwaves in a 1°x1° grid, in 2023.
path_emlr_utilities <- "/nfs/kryo/work/jenmueller/emlr_cant/utilities/files/"
path_basin_mask <- "/nfs/kryo/work/datasets/gridded/ocean/interior/reccap2/supplementary/"
path_argo <- '/nfs/kryo/work/datasets/ungridded/3d/ocean/floats/bgc_argo'
path_argo_core <- '/nfs/kryo/work/datasets/ungridded/3d/ocean/floats/core_argo_r_argodata_2024-03-13'
path_argo_core_preprocessed <- paste0(path_argo_core, "/preprocessed_core_data")
path_argo_preprocessed <- paste0(path_argo, "/preprocessed_bgc_data")
path_mhw<- '/net/kryo/work/datasets/gridded/ocean/2d/obs/mhw'
#Aggregate the dataset into 1°x1° grid
argo_grid<-sst_natlantic_2023 %>%
ungroup() %>%
select(lat, lon)
mhw_1x1_natlantic_2023 <- mhw_raw_2023_north_atlantic %>% #----------->long process (few min)
mutate(lat_upscale = floor(lat) + 0.5, #rounding to the lower nearest value and add an offset of 0.5 to match with Argo data grid
lon_upscale = floor(lon) + 0.5,
row_id = row_number() #row identifier - to facilitate comparison with original dataset
) %>%
group_by(lat = lat_upscale, #group the data by lon, lat and time
lon = lon_upscale,
time) %>%
summarise(avg_intensity = mean(intensity), # average intensity
most_freq_category = names(sort(table(category), decreasing = TRUE))[1], #Most frequent category
row_id = first(row_id)
) %>%
ungroup() %>%
arrange(row_id)
test<- mhw_raw_2023_north_atlantic %>% filter(time=="2023-01-01", lat<1, lat>0, lon<1, lon>0)
print(mean(test$intensity))
test1<- mhw_1x1_natlantic_2023 %>% filter(time=="2023-01-01", lat<1, lat>0, lon<1, lon>0)
print(test1)
#Adding biomes value to the surface MHWs
mhw_1x1_natlantic_2023_biomes<-left_join(mhw_1x1_natlantic_2023, biomes_subset, by=c("lat", "lon")) %>%
filter(!is.na(biome_value))
mhw_1x1_natlantic_2023_biomes$month <- format( as.Date(mhw_1x1_natlantic_2023_biomes$time), "%m")#adding month attribute
#Write upscaled MHWs dataset (1°x1°)
mhw_1x1_natlantic_2023_biomes %>% write_rds(file = paste0(path_argo_core_preprocessed,"/", "2023_surface_mhws_1x1.rds"))
#Read upscale data
mhw_1x1_natlantic_2023_biomes <- read_rds(file = paste0(path_argo_core_preprocessed,"/", "2023_surface_mhws_1x1.rds"))
# original_plot <- base_map +
# geom_point(data=mhw_raw_2023_north_atlantic, aes(x = lon, y = lat, color = intensity), size=0.1) +
# scale_color_gradient(low = "blue", high = "red") +
# labs(title = "MHW intensity - Original Data") +
# theme_minimal()
# print(original_plot)
mhw_biomes_plot <- base_map +
geom_point(data= mhw_1x1_natlantic_2023_biomes, aes(x = lon, y = lat, color = avg_intensity)) +
scale_color_gradient(low = "blue", high = "red") +
labs(title = "MHW intensity - Upscaled Data") +
theme_minimal()
print(mhw_biomes_plot)
mhw_season_plot_comparison<-function(original_dataset, upscale_dataset, season_of_interest, name_season){
#Select data in season_of_interest
season_original<-original_dataset %>%
filter(month %in% season_of_interest)
season_1x1<-upscale_dataset %>%
filter(month %in% season_of_interest)
#Plot
plot_original<- base_map +
geom_point(data = season_original, aes(x = lon, y = lat, color = factor(category))) +
scale_color_manual(values = c("I Moderate" = "darkgoldenrod1",
"II Strong" = "darkorange",
"III Severe" = "darkred",
"IV Extreme" = "#21152B"), name = "Category")+
guides(color = guide_legend(override.aes = list(shape = 15, size = 10)))+
labs(title = paste0("Surface MHWs in ", name_season, " 2023 - resolution 0.25°x0.25°"))
plot_upscale<- base_map +
geom_point(data = season_1x1, aes(x = lon, y = lat, color = factor(most_freq_category)), size = 0.3) +
scale_color_manual(values = c("I Moderate" = "darkgoldenrod1",
"II Strong" = "darkorange",
"III Severe" = "darkred",
"IV Extreme" = "#21152B"), name = "Category")+
guides(color = guide_legend(override.aes = list(shape = 15, size = 10)))+
labs(title = paste0("Surface MHWs in ", name_season, " 2023 - resolution 1°x1°"))
combined_plot <- grid.arrange(plot_original, plot_upscale, ncol = 2)
print(combined_plot)
}
mhw_season_plot_comparison(mhw_raw_2023_north_atlantic, mhw_1x1_natlantic_2023_biomes, c("03", "04", "05"), "spring")
mhw_season_plot_comparison(mhw_raw_2023_north_atlantic, mhw_1x1_natlantic_2023_biomes, c("06", "07", "08"), "summer")
mhw_season_plot_comparison(mhw_raw_2023_north_atlantic, mhw_1x1_natlantic_2023_biomes, c("09", "10", "11", "12"), "autumn")
mhw_season_plot_comparison(mhw_raw_2023_north_atlantic, mhw_1x1_natlantic_2023_biomes, c("01", "02"), "winter")
mhw_season_plot<-function(upscale_dataset, months){
months<-unique(format(as.Date(upscale_dataset$time), "%m"))
print(months)
#Plot
plot_upscale<- base_map +
geom_point(data = upscale_dataset, aes(x = lon, y = lat, color = factor(most_freq_category)), size = 0.3) +
scale_color_manual(values = c("I Moderate" = "darkgoldenrod1",
"II Strong" = "darkorange",
"III Severe" = "darkred",
"IV Extreme" = "#21152B"), name = "Category")+
guides(color = guide_legend(override.aes = list(shape = 15, size = 10)))+
labs(title = paste0("Surface MHWs in 2023"),
subtitle = paste0("Months: ", paste(months, collapse = ", ") ,"\nresolution 1°x1°"))
return(plot_upscale)
}
#Select data in season_of_interest
spring_1x1<-mhw_1x1_natlantic_2023_biomes %>%
filter(month %in% c("03", "04", "05"))
summer_1x1<-mhw_1x1_natlantic_2023_biomes %>%
filter(month %in% c("06", "07", "08"))
autumn_1x1<-mhw_1x1_natlantic_2023_biomes %>%
filter(month %in% c("09", "10", "11", "12"))
winter_1x1<-mhw_1x1_natlantic_2023_biomes %>%
filter(month %in% c("01", "02"))
#Plot MHWs
spring_plot_1x1<-mhw_season_plot(spring_1x1, "spring")
[1] "03" "04" "05"
summer_plot_1x1<-mhw_season_plot(summer_1x1, "summer")
[1] "06" "07" "08"
autumn_plot_1x1<-mhw_season_plot(autumn_1x1, "autumn")
[1] "09" "10" "11" "12"
winter_plot_1x1<-mhw_season_plot(winter_1x1, "winter")
[1] "01" "02"
combined_plot <- grid.arrange(winter_plot_1x1, spring_plot_1x1, summer_plot_1x1, autumn_plot_1x1, ncol = 2, nrow=2)
print(combined_plot)
TableGrob (2 x 2) "arrange": 4 grobs
z cells name grob
1 1 (1-1,1-1) arrange gtable[layout]
2 2 (1-1,2-2) arrange gtable[layout]
3 3 (2-2,1-1) arrange gtable[layout]
4 4 (2-2,2-2) arrange gtable[layout]
We classify marine heat waves according to their intensity and propagation over the water column:
When the temperature anomaly is equal to or greater than 1°C, we consider the anomaly to be big, otherwise it is considered as small.
Then we look at the vertical propagation of the MHWS: - Shallow MHWs: When a big anomaly is detected between 0 and 100 meters depth.
- Medium MHWs: When a big anomaly is detected between 0 and 200 meters depth.
- Deep MHWs: When a big anomaly is detected between 0 and 600 meters depth.
#reorganize dataset
argo_data_2023 <- sst_with_biomes_2023[, c("file_id",
"depth", "lat", "lon", "date",
"profile_range", "biome_value", "temp")]
#Time in the same format in the 2 dataframes
argo_data_2023 <- argo_data_2023 %>%
mutate(time = as.Date(date))
mhw_1x1_natlantic_2023_biomes <- mhw_1x1_natlantic_2023_biomes %>%
mutate(time = as.Date(time))
#Associating mhws category to the argo profiles
argo_mhws_categ<-left_join(mhw_1x1_natlantic_2023_biomes, argo_data_2023, by=c("lat", "lon", "time")) %>%
filter(!is.na(file_id)) %>% #select only locations where there is an argo float
rename(biome_value=biome_value.x) %>%
select(file_id,
depth, lat, lon, time,
avg_intensity, most_freq_category,
biome_value, temp) #Cleaning dataset
#Adding temperature anomaly
temp_anomaly_600m_2023 <- temp_anomaly_va_biomes_2023 %>%
filter(profile_range==1) %>% #only profile until 600m
mutate(time = as.Date(date))
temp_anomaly_filtered_2023<- temp_anomaly_600m_2023[, c("file_id",
"depth", "lat", "lon", "time",
"biome_value", "anomaly")]
#Datasets for each surface MHWs category
mhws_surface_categorisation<- function(argo_categ_dataset, anomaly_dataset, category){
argo_surf_cat<-filter(argo_categ_dataset, most_freq_category==category)
argo_anomaly_cat<- left_join(anomaly_dataset, argo_surf_cat, by=c("file_id","lat", "lon", "depth", "time", "biome_value")) %>%
filter(!is.na(anomaly), !is.na(most_freq_category))
return(argo_anomaly_cat)
}
argo_anomaly_moderate<- mhws_surface_categorisation(argo_mhws_categ,temp_anomaly_filtered_2023, category='I Moderate')
argo_anomaly_strong<- mhws_surface_categorisation(argo_mhws_categ,temp_anomaly_filtered_2023, category='II Strong')
argo_anomaly_severe<- mhws_surface_categorisation(argo_mhws_categ,temp_anomaly_filtered_2023, category='III Severe')
argo_anomaly_extreme<- mhws_surface_categorisation(argo_mhws_categ,temp_anomaly_filtered_2023, category='IV Extreme')
distribution_anomaly <- function(argo_anomaly){
#from oct to dec (most extreme floats) and only the first 100m
argo_anomaly<- argo_anomaly %>%
filter(depth<=100, format(time, "%m")==c("10","11","12"))
# Calculate mean and 99th percentile of anomaly values
mean_anomaly <- mean(argo_anomaly$anomaly)
n_floats<-length(unique(argo_anomaly$file_id))
# Create histogram of anomaly values
p <- ggplot(argo_anomaly, aes(x = anomaly)) +
geom_histogram(binwidth = 0.2, fill = "skyblue", color = "black") +
geom_vline(aes(xintercept = mean_anomaly, linetype = "Mean"), color = "red") +
labs(title = "Distribution of Anomaly",
subtitle=paste0("Surface MHWs = ", unique(argo_anomaly$most_freq_category),
"\nDepth: 0-100m, Oct-Nov-Dec 2023 \nNumber of floats: ", n_floats),
x = "Anomaly",
y = "Frequency",
linetype = "Statistic") +
scale_linetype_manual(values = c("Mean" = "dashed"),
name = "Statistic",
labels = c(paste0("Mean = ", round(mean_anomaly, 2)))) +
scale_color_manual(values = "red", name = "Statistic") +
theme_minimal() +
theme(legend.position = "top",
legend.box.background = element_rect(color = "black", size = 0.5))
p
}
distribution_moderate<-distribution_anomaly(argo_anomaly_moderate)
distribution_strong<-distribution_anomaly(argo_anomaly_strong)
distribution_severe<-distribution_anomaly(argo_anomaly_severe)
distribution_extreme<-distribution_anomaly(argo_anomaly_extreme)
combined_stat<- grid.arrange(distribution_moderate, distribution_strong, distribution_severe,distribution_extreme, ncol = 2, nrow=2)
print(combined_stat)
TableGrob (2 x 2) "arrange": 4 grobs
z cells name grob
1 1 (1-1,1-1) arrange gtable[layout]
2 2 (1-1,2-2) arrange gtable[layout]
3 3 (2-2,1-1) arrange gtable[layout]
4 4 (2-2,2-2) arrange gtable[layout]
# Defining the anomaly class as a function of anomaly value and depth
threshold <- argo_anomaly_moderate %>%
filter(anomaly >= 1) %>% # Look only at positive anomaly values
group_by(depth) %>%
summarise(depth_threshold = max(depth))
argo_anomaly_dataset <- argo_anomaly_moderate %>%
mutate(anomaly_class = ifelse(anomaly >= 1 & depth <= threshold$depth_threshold, "Big", "Small")) %>%
mutate(anomaly_class = factor(anomaly_class, levels = c("Big", "Small")))
# Group the data by float identifiers
max_depth_by_float <- argo_anomaly_moderate %>%
filter(anomaly >= 1) %>%
group_by(file_id, lat, lon) %>%
summarise(max_depth = max(depth))
# Define mhw_class based on the maximum depth
max_depth_by_float <- max_depth_by_float %>%
mutate(mhw_class = case_when(
max_depth <= 100 ~ "Shallow",
max_depth <= 200 ~ "Medium",
TRUE ~ "Deep"
))
#Combining datasets
final_mhw_argo_cat<-left_join(max_depth_by_float, argo_anomaly_dataset, by=c("file_id", "lat","lon") )
plot_anomaly_categorisation <- function(anomaly_data) {
anomaly_classes <- anomaly_data %>%
distinct(depth, anomaly_class)
ggplot(anomaly_data) +
geom_rect(data = anomaly_data %>% distinct(depth, anomaly_class),
aes(xmin = -Inf, xmax = Inf, ymin = lag(depth), ymax = depth, fill = anomaly_class),
inherit.aes = FALSE) +
geom_path(aes(x = anomaly , y = depth)) +
geom_vline(xintercept = 0) +
scale_fill_manual(values = c("Big" = "lightblue", "Small" = "lightyellow"),
name = "Anomaly Class", labels = c("Big Anomaly", "Small Anomaly")
) +
scale_y_reverse() +
coord_cartesian(xlim = c(-4.5, 6)) +
scale_x_continuous(breaks = c(-4, -2, 0, 2, 4, 6)) +
labs(title = paste0('Anomaly profile in ', month.name[unique(month(anomaly_data$time))], ' 2023'),
subtitle = paste0('Location: (', unique(anomaly_data$lat), ',', unique(anomaly_data$lon),')\n',
'Type of surface MHW: ', unique(anomaly_data$most_freq_category),"\n",
'Type of argo MHW: ', unique(anomaly_data$mhw_class)),
x = "Temperature anomaly (°C)", y = 'depth (m)')
}
shallow<-plot_anomaly_categorisation(final_mhw_argo_cat %>% filter(file_id==20))
medium<-plot_anomaly_categorisation(final_mhw_argo_cat %>% filter(file_id==10))
deep<-plot_anomaly_categorisation(final_mhw_argo_cat %>% filter(file_id==6396))
combined_plot <- grid.arrange(shallow, medium, deep, ncol = 3)
print(combined_plot)
TableGrob (1 x 3) "arrange": 3 grobs
z cells name grob
1 1 (1-1,1-1) arrange gtable[layout]
2 2 (1-1,2-2) arrange gtable[layout]
3 3 (1-1,3-3) arrange gtable[layout]
To define the optimal number of cluster we use the elbow method. Then we apply a K-mean clustering on the final_mhw_argo_cat dataset.
# code adapted from cluster_analysis_extreme.Rmd
plot_anomaly_clusters <- function(data_input, inum_clusters = elbow_optimal,
opt_max_iterations = 8, opt_n_start = 15) {
#-------Preprocessing
# wide table with each depth becoming a column
anomaly_va_wide <- data_input %>%
select(file_id, depth, anomaly) %>%
pivot_wider(names_from = depth, values_from = anomaly)
# Drop any rows with missing values N/A caused by gaps in climatology data
anomaly_va_wide <- anomaly_va_wide %>%
drop_na()
# Table for cluster analysis
points <- anomaly_va_wide %>%
column_to_rownames(var = "file_id")
#-------Clustering
kclusts <- tibble(k = inum_clusters) %>%
mutate(
kclust = map(k, ~ kmeans(points, .x, iter.max = opt_max_iterations, nstart = opt_n_start)),
tidied = map(kclust, tidy),
glanced = map(kclust, glance),
augmented = map(kclust, augment, points)
)
profile_id <- kclusts %>%
unnest(cols = c(augmented)) %>%
select(file_id = .rownames,
cluster = .cluster) %>%
mutate(file_id = as.numeric(file_id),
cluster = as.character(cluster))
data_output <- full_join(data_input, profile_id)
data_output <- data_output %>%
filter(!is.na(cluster))
# Summarize data for plotting
anomaly_cluster_mean <- data_output %>%
group_by(cluster, depth) %>%
summarise(
count_cluster = n(),
anomaly_mean = mean(anomaly, na.rm = TRUE),
anomaly_sd = sd(anomaly, na.rm = TRUE)
) %>%
ungroup()
#-----Plotting
#defining colors
num_colors <- min(5, inum_clusters) # 5 colors maximum (max number of cluster=5)
cluster_palette <- paletteer::paletteer_d("colorBlindness::Blue2DarkRed12Steps")
cluster_colors<-cluster_palette[1:num_colors]
ggplot(anomaly_cluster_mean, aes(x = anomaly_mean, y = depth, color = factor(cluster))) +
geom_path() +
geom_ribbon(aes(xmax = anomaly_mean + anomaly_sd,
xmin = anomaly_mean - anomaly_sd,
y = depth, fill = factor(cluster)), alpha = 0.3, color=NA) +
geom_vline(xintercept = 0) +
scale_y_reverse() +
labs(title = paste0('Anomaly Profiles by Cluster -- 2023'),
subtitle = paste0('Months: ', paste(substr(month.abb[unique(month(data_input$time))], 1, 3)
[order(unique(month(data_input$time)))], collapse = ", "),
"\nBiomes: ", paste(unique(data_input$biome_value), collapse = ", ")),
x = "Mean Anomaly", y = "Depth (m)") +
scale_fill_manual(name = "Cluster", values = cluster_colors) +
scale_color_manual(name = "Cluster", values = cluster_colors) +
theme_minimal() +
theme(legend.position = "bottom") +
facet_wrap(~cluster, nrow = 1) #1 subplot per cluster
}
#Clustered anomaly profiles
cluster_SPSS<-plot_anomaly_clusters(final_mhw_argo_cat %>%
group_by(file_id, lat, lon) %>%
filter(biome_value==3))
cluster_STSS<-plot_anomaly_clusters(final_mhw_argo_cat %>%
group_by(file_id, lat, lon) %>%
filter(biome_value==2))
cluster_STPS<-plot_anomaly_clusters(final_mhw_argo_cat %>%
group_by(file_id, lat, lon) %>%
filter(biome_value==1))
cluster_subplots_biome<- grid.arrange(cluster_SPSS, cluster_STSS, cluster_STPS, ncol=3, nrow=1)
print(cluster_subplots_biome)
TableGrob (1 x 3) "arrange": 3 grobs
z cells name grob
1 1 (1-1,1-1) arrange gtable[layout]
2 2 (1-1,2-2) arrange gtable[layout]
3 3 (1-1,3-3) arrange gtable[layout]
cluster_winter<-plot_anomaly_clusters(final_mhw_argo_cat %>%
group_by(file_id, lat, lon, biome_value) %>%
filter(format(time, "%m") %in% c("01","02")))
cluster_spring<-plot_anomaly_clusters(final_mhw_argo_cat %>%
group_by(file_id, lat, lon) %>%
filter(format(time, "%m") %in% c("03","04", "05")))
cluster_summer<-plot_anomaly_clusters(final_mhw_argo_cat %>%
group_by(file_id, lat, lon) %>%
filter(format(time, "%m") %in% c("06","07", "08")))
cluster_autumn<-plot_anomaly_clusters(final_mhw_argo_cat %>%
group_by(file_id, lat, lon) %>%
filter(format(time, "%m") %in% c("09","10", "11", "12")))
cluster_subplots<- grid.arrange(cluster_winter, cluster_spring, cluster_summer, cluster_autumn, ncol=2, nrow=2)
print(cluster_subplots)
TableGrob (2 x 2) "arrange": 4 grobs
z cells name grob
1 1 (1-1,1-1) arrange gtable[layout]
2 2 (1-1,2-2) arrange gtable[layout]
3 3 (2-2,1-1) arrange gtable[layout]
4 4 (2-2,2-2) arrange gtable[layout]
#Track 1 argo profile in lat, lon ,depth
test <- final_mhw_argo_cat %>%
filter(file_id==10) %>%
mutate(point_order = row_number())
# Convert most_freq_category to factor
test$most_freq_category <- factor(test$most_freq_category)
test <- test %>%
arrange(desc(depth))
test$depth_reversed <- test$depth * -1
# Create a color palette based on the levels of most_freq_category
color_palette <- c("I Moderate" = "darkgoldenrod1",
"II Strong" = "darkorange",
"III Severe" = "darkred",
"IV Extreme" = "#21152B")
# Create the 3D scatter plot
scatterplot3d(x = test$lon,
y = test$lat,
z = test$depth_reversed,
color = color_palette[as.numeric(test$most_freq_category)],
pch = 16,
type = "p",
main = "3D Scatter Plot of 1 Argo Float",
xlab = "Longitude",
ylab = "Latitude",
zlab = "Depth"
)
# Add legend
legend("topright",
legend = levels(test$most_freq_category),
pch = 16,
col = color_palette,
title = "Most Frequency Category")
#reorganize dataset
argo_data_2023 <- sst_with_biomes_2023[, c("file_id",
"depth", "lat", "lon", "date",
"profile_range", "biome_value", "temp")]
selected_latitude <- 60.5
# Filter data frames
mhw_subset <- mhw_1x1_natlantic_2023_biomes %>%
filter(lat == selected_latitude, month=="02")# most_freq_category ==c ("IV Extreme", "III Severe"))
# argo_subset <- argo_data_2023 %>%
# filter(lat == selected_latitude)
# argo_subset$depth_reversed <- argo_subset$depth * -1
anomaly_subset <- temp_anomaly_va_biomes_2023 %>%
filter(lat == selected_latitude)
# Define color palette for MHWs category
color_palette <- c("I Moderate" = "darkgoldenrod1",
"II Strong" = "darkorange",
"III Severe" = "darkred",
"IV Extreme" = "#21152B")
plot_mhw <- ggplot() +
geom_point(data = anomaly_subset, aes(x = lon, y = depth, fill = anomaly), shape=21, size = 2, color="transparent") +
geom_point(data = mhw_subset, aes(x = lon, y = 0, color = most_freq_category), size = 1) +
scale_fill_continuous(low = "darkblue", high = "lightgreen", name = "Anomaly") +
scale_color_manual(name = "MHWs category", values = color_palette) +
labs(x = "Longitude", y = "Depth", color = "MHWs category") +
ggtitle(paste0("Argo temperature anomaly for latitude=", selected_latitude, "°, in december 2023")) +
theme_minimal() +
scale_y_reverse() +
guides(fill = guide_legend(title = "Anomaly \n climatology-obs"))
plot_mhw
test_anomaly<-temp_anomaly_va_biomes_2023 %>% filter(file_id==6879)
test_mhw<-mhw_subset%>% filter(lon==-59.5)
plot_anomaly_profiles <- function(data, max_depth) {
anomaly_overall_mean <- data %>%
filter(depth <= max_depth) %>%
group_by(depth) %>%
summarise(temp_count = n(),
temp_anomaly_mean = mean(anomaly, na.rm = TRUE),
temp_anomaly_sd = sd(anomaly, na.rm = TRUE))
ggplot(anomaly_overall_mean) +
geom_path(aes(x = temp_anomaly_mean, y = depth)) +
geom_ribbon(aes(xmax = temp_anomaly_mean + temp_anomaly_sd,
xmin = temp_anomaly_mean - temp_anomaly_sd,
y = depth), alpha = 0.2) +
geom_vline(xintercept = 0) +
scale_y_reverse() +
coord_cartesian(xlim = c(-4.5, 6)) +
scale_x_continuous(breaks = c(-4, -2, 0, 2, 4, 6)) +
labs(title = paste0('Mean anomaly profile (lat:60.5°, lon: -59.5) in dec 2023'),
x = "temperature anomaly (°C)", y = 'depth (m)')
}
plot_anomaly_profiles(test_anomaly, "600")
#Temperature VS Depth
# look at the anomaly under catgoery
temp_anomaly_filtered_2023 <- temp_anomaly_va_biomes_2023 %>%
mutate(time = as.Date(date)) %>%
filter(depth==5, lat<35, lat>23, lon<(-20), lon>-40)
mean(temp_anomaly_filtered_2023$anomaly)
base_map <- base_map + lims(x= c(-50, -10), y = c(10, 40))
#Select data in season_of_interest
sept<-mhw_1x1_natlantic_2023_biomes %>%
filter(month %in% c("09"), lat<35, lat>23, lon<(-20), lon>-40)
oct<-mhw_1x1_natlantic_2023_biomes %>%
filter(month %in% c("10"), lat<35, lat>23, lon<(-20), lon>-40)
nov<-mhw_1x1_natlantic_2023_biomes %>%
filter(month %in% c("11"),lat<35, lat>23, lon<(-20), lon>-40)
dec<-mhw_1x1_natlantic_2023_biomes %>%
filter(month %in% c("12"),lat<35, lat>23, lon<(-20), lon>-40)
#Plot MHWs
sept_plot_1x1<-mhw_season_plot(sept, "sept")
oct_plot_1x1<-mhw_season_plot(oct, "oct")
nov_plot_1x1<-mhw_season_plot(nov, "nov")
dec_plot_1x1<-mhw_season_plot(dec, "dec")
combined_plot <- grid.arrange(sept_plot_1x1, oct_plot_1x1, nov_plot_1x1, dec_plot_1x1, ncol = 2, nrow=2)
print(combined_plot)
#Argo float per season/group by month
argo_winter<-filter(argo_mhws_categ, month(argo_mhws_categ$time) %in% c("1","2"))
argo_spring<-filter(argo_mhws_categ, month(argo_mhws_categ$time) %in% c("3","4","5"))
argo_summer<-filter(argo_mhws_categ, month(argo_mhws_categ$time) %in% c("6","7","8"))
argo_autumn<-filter(argo_mhws_categ, month(argo_mhws_categ$time) %in% c("9","10","11", "12"))
argo_categorisation<-function(argo_dataset, chosen_months){
categorisation_map <- base_map +
geom_point(data = argo_dataset, aes(x = lon, y = lat, color = factor(most_freq_category))) +
scale_color_manual(values = c("I Moderate" = "darkgoldenrod1",
"II Strong" = "darkorange",
"III Severe" = "darkred",
"IV Extreme" = "#21152B"), name = "Category")+
guides(color = guide_legend(override.aes = list(shape = 15, size = 10)))+
labs(title = paste0("MHWs Categorization of Argo profiles in 2023"),
subtitle = paste0("months: ", chosen_months))
return(categorisation_map)
}
#Plot Argo distrib
spring_argo<-argo_categorisation(argo_spring, "03, 04, 05")
summer_argo<-argo_categorisation(argo_summer, "06, 07, 08")
autumn_argo<-argo_categorisation(argo_autumn, "09, 10, 11, 12")
winter_argo<-argo_categorisation(argo_winter, "01, 02")
combined_plot <- grid.arrange(winter_argo, spring_argo, summer_argo, autumn_argo, ncol = 2, nrow = 2)
print(combined_plot)
#Defining are of interest spatially and temporally
month_interest=c("9", "10", "11", "12")
area_extent <- c(-45, 0, 20, 40)
argo_mhws_categ_focus<-argo_mhws_categ %>%
filter(month(time) %in% month_interest, lat>20, lat<40, lon>-45, lon<0, most_freq_category %in% c("III Severe", "IV Extreme"))
extreme_float<-argo_mhws_categ_focus %>%
filter(most_freq_category=="IV Extreme")
print(unique(extreme_float$file_id))
base_map <- base_map + lims(x= c(-50, 5), y = c(10, 50))
argo_focus_map<-argo_categorisation(argo_mhws_categ_focus, "09, 10, 11, 12")
# devtools::install_github("tylermorganwall/rayshader")
# install.packages("rnaturalearth")
# library(scatterplot3d)
surface_argo5m<-temp_anomaly_va_biomes_2023 %>%
filter(depth==5)
library(marmap)
library(rayshader)
library(ggplot2)
#Bathymetric data
north_atlantic_bathymetry <- getNOAA.bathy(lon1 = 30, lon2 = -100,
lat1 = 0, lat2 = 80, resolution = 10)
#Creating a custom palette of blues
blues <- c("lightsteelblue4", "lightsteelblue3","lightsteelblue2", "lightsteelblue1")
# Plotting the bathymetry with different colors for land and sea
plot(north_atlantic_bathymetry, image = TRUE, land = TRUE, lwd = 0.1,
bpal = list(c(0, max(north_atlantic_bathymetry), "grey"),
c(min(north_atlantic_bathymetry),0,blues)))
# Making the coastline more visible
plot(north_atlantic_bathymetry, deep = 0, shallow = 0, step = 0,
lwd = 0.4, add = TRUE)
scaleBathy(north_atlantic_bathymetry, deg = 2, x = "bottomleft", inset = 5) #adding scale
# points(surface_argo5m$lon, surface_argo5m$lat, pch = 19, cex = 0.3, asp = 1)
sessionInfo()
R version 4.2.2 (2022-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.5
Matrix products: default
BLAS: /usr/local/R-4.2.2/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.2.2/lib64/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] broom_1.0.5 paletteer_1.6.0 cluster_2.1.6
[4] gridExtra_2.3 scatterplot3d_0.3-44 viridis_0.6.2
[7] viridisLite_0.4.1 ggOceanMaps_1.3.4 ggspatial_1.1.7
[10] oce_1.7-10 gsw_1.1-1 lubridate_1.9.0
[13] timechange_0.1.1 forcats_0.5.2 stringr_1.5.0
[16] dplyr_1.1.3 purrr_1.0.2 readr_2.1.3
[19] tidyr_1.3.0 tibble_3.2.1 ggplot2_3.4.4
[22] tidyverse_1.3.2 workflowr_1.7.0
loaded via a namespace (and not attached):
[1] googledrive_2.0.0 colorspace_2.0-3 ellipsis_0.3.2
[4] class_7.3-20 rprojroot_2.0.3 fs_1.5.2
[7] rstudioapi_0.15.0 proxy_0.4-27 farver_2.1.1
[10] fansi_1.0.3 xml2_1.3.3 codetools_0.2-18
[13] cachem_1.0.6 knitr_1.41 jsonlite_1.8.3
[16] dbplyr_2.2.1 rgeos_0.5-9 compiler_4.2.2
[19] httr_1.4.4 backports_1.4.1 assertthat_0.2.1
[22] fastmap_1.1.0 gargle_1.2.1 cli_3.6.1
[25] later_1.3.0 htmltools_0.5.8.1 tools_4.2.2
[28] gtable_0.3.1 glue_1.6.2 maps_3.4.1
[31] Rcpp_1.0.10 cellranger_1.1.0 jquerylib_0.1.4
[34] RNetCDF_2.6-1 raster_3.6-11 vctrs_0.6.4
[37] lwgeom_0.2-10 xfun_0.35 ps_1.7.2
[40] rvest_1.0.3 lifecycle_1.0.3 ncmeta_0.3.5
[43] googlesheets4_1.0.1 terra_1.7-65 getPass_0.2-2
[46] scales_1.2.1 hms_1.1.2 promises_1.2.0.1
[49] parallel_4.2.2 rematch2_2.1.2 prismatic_1.1.2
[52] yaml_2.3.6 sass_0.4.4 stringi_1.7.8
[55] highr_0.9 e1071_1.7-12 rlang_1.1.1
[58] pkgconfig_2.0.3 evaluate_0.18 lattice_0.20-45
[61] sf_1.0-9 labeling_0.4.2 processx_3.8.0
[64] tidyselect_1.2.0 magrittr_2.0.3 R6_2.5.1
[67] generics_0.1.3 DBI_1.2.2 pillar_1.9.0
[70] haven_2.5.1 whisker_0.4 withr_2.5.0
[73] units_0.8-0 stars_0.6-0 abind_1.4-5
[76] sp_1.5-1 modelr_0.1.10 crayon_1.5.2
[79] KernSmooth_2.23-20 utf8_1.2.2 tzdb_0.3.0
[82] rmarkdown_2.18 grid_4.2.2 readxl_1.4.1
[85] callr_3.7.3 git2r_0.30.1 reprex_2.0.2
[88] digest_0.6.30 classInt_0.4-8 httpuv_1.6.6
[91] munsell_0.5.0 bslib_0.4.1