Last updated: 2024-05-13

Checks: 7 0

Knit directory: bgc_argo_r_argodata/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211008) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 91e6028. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/

Untracked files:
    Untracked:  analysis/draft.Rmd
    Untracked:  load_argo_core_output.txt

Unstaged changes:
    Deleted:    analysis/MHWs_categorisation.Rmd
    Modified:   analysis/_site.yml
    Modified:   analysis/child/cluster_analysis_base.Rmd
    Modified:   analysis/coverage_maps_North_Atlantic.Rmd
    Modified:   analysis/load_broullon_DIC_TA_clim.Rmd
    Modified:   code/Workflowr_project_managment.R
    Modified:   code/start_background_job.R
    Modified:   code/start_background_job_load.R
    Modified:   code/start_background_job_partial.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/oceanSODA_argo_pH.Rmd) and HTML (docs/oceanSODA_argo_pH.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html af6594f mlarriere 2024-05-13 Build site.
html af44bcd mlarriere 2024-04-26 Build site.
html 780276c mlarriere 2024-04-19 Build site.
html 1a72545 mlarriere 2024-04-12 Build site.
html c076fba mlarriere 2024-04-12 Build site.
html 91f08a6 mlarriere 2024-04-07 Build site.
html db21f55 mlarriere 2024-04-06 Build site.
html de83e45 mlarriere 2024-04-01 Build site.
html f9de50e ds2n19 2024-01-01 Build site.
html 07d4eb8 ds2n19 2023-12-20 Build site.
html fa6cf38 ds2n19 2023-12-14 Build site.
Rmd 64fd104 ds2n19 2023-12-14 revised coverage analysis and SO focused cluster analysis.
html f110b74 ds2n19 2023-12-13 Build site.
Rmd fa9795c ds2n19 2023-12-12 dependencies listed are start of markdown files.
html e60ebd2 ds2n19 2023-12-07 Build site.
html cec2a2a ds2n19 2023-11-24 Build site.
Rmd 59f5cc4 ds2n19 2023-11-23 Moved spatiotemporal analysis to use aligned profiles.
html 80c16c2 ds2n19 2023-11-15 Build site.
html 4b55c43 ds2n19 2023-10-12 Build site.
html 1ae81b3 ds2n19 2023-10-11 reworked core load process to work initially by year and then finally create consolidated all years files.
html 44f5720 ds2n19 2023-10-09 manual commit
Rmd ce19a66 ds2n19 2023-10-04 Revised version of OceanSODA product -v2023
html 7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29 Build site.
html bdd516d pasqualina-vonlanthendinenna 2022-05-23 Build site.
html 4173c20 jens-daniel-mueller 2022-05-12 Build site.
html dfe89d7 jens-daniel-mueller 2022-05-12 Build site.
html 710edd4 jens-daniel-mueller 2022-05-11 Build site.
Rmd 2f20a76 jens-daniel-mueller 2022-05-11 rebuild all after subsetting AB profiles and code cleaning

Task

Compare BGC-Argo pH data to pH from the OceanSODA surface data product

Dependencies

OceanSODA.rds - bgc preprocessed folder, created by load_OceanSODA.

pH_bgc_observed.rds - bgc preprocessed folder, created by ph_align_climatology. Not this file is written BEFORE the vertical alignment stage.

Outputs

argo_OceanSODA.rds - bgc preprocessed folder

theme_set(theme_bw())

Load data

Load in surface Argo pH and the OceanSODA pH, gridded to 1x1º

path_argo <- '/nfs/kryo/work/updata/bgc_argo_r_argodata'
path_argo_preprocessed <- paste0(path_argo, "/preprocessed_bgc_data")
path_emlr_utilities <- "/nfs/kryo/work/jenmueller/emlr_cant/utilities/files/"

path_argo <- '/nfs/kryo/work/datasets/ungridded/3d/ocean/floats/bgc_argo'
# /nfs/kryo/work/datasets/ungridded/3d/ocean/floats/bgc_argo/preprocessed_bgc_data
path_argo_preprocessed <- paste0(path_argo, "/preprocessed_bgc_data")
# load in OceanSODA data and Argo pH
OceanSODA <- read_rds(file = paste0(path_argo_preprocessed, "/OceanSODA.rds"))


argo <- read_rds(file = paste0(path_argo_preprocessed, '/pH_bgc_observed.rds')) %>%
  filter(between(depth, 0, 20))
# argo <-
#   read_rds(file = paste0(path_argo_preprocessed, "/bgc_merge_flag_AB.rds")) %>%
#   filter(between(depth, 0, 20)) %>%
#   mutate(year = year(date),
#          month = month(date)) %>%
#   select(-c(
#     temp_adjusted,
#     temp_adjusted_qc,
#     temp_adjusted_error,
#     profile_temp_qc
#   ))

# for plotting later, load in region and coastline information  
# region_masks_all_seamask_2x2 <- read_rds(file = paste0(
#   path_argo_preprocessed, "/region_masks_all_seamask_2x2.rds"))
# 
# region_masks_all_2x2 <- read_rds(file = paste0(path_argo_preprocessed, "/region_masks_all_2x2.rds"))
# 
# region_masks_all_1x1 <- read_rds(file = paste0(path_argo_preprocessed, "/region_masks_all_1x1.rds"))

nm_biomes <- read_rds(file = paste0(path_argo_preprocessed, "/nm_biomes.rds"))
# read in the map from updata
map <-
  read_rds(paste(path_emlr_utilities,
                 "map_landmask_WOA18.rds",
                 sep = ""))

Harmonise the two datasets

Calculate monthly average pH for Argo pH for each lon/lat grid, centered on the 15th of each month, to match the format of OceanSODA

argo_monthly <- argo %>%
  mutate(year_month = format_ISO8601(date, precision = "ym"), .after = 'date') %>%
  group_by(year, month, year_month, date, lat, lon) %>%
  summarise(
    argo_ph_month = mean(ph_in_situ_total_adjusted, na.rm = TRUE)
  ) %>%
  ungroup() %>%
  select(
    date,
    year_month,
    year,
    month,
    lon,
    lat,
    argo_ph_month
  )

Join the two datasets

OceanSODA <- OceanSODA %>% 
  mutate(year_month = format_ISO8601(date, precision = "ym")) %>% 
  rename(date_OceanSODA = date) 
  # change date format in OceanSODA to match argo date (yyyy-mm)

argo_OceanSODA <- left_join(argo_monthly, OceanSODA) %>%
  rename(OceanSODA_ph = ph_total,
         OceanSODA_ph_error = ph_total_uncert) 
argo_OceanSODA %>%
  write_rds(file = paste0(path_argo_preprocessed, "/argo_OceanSODA.rds"))

Southern Ocean surface pH

The focus here is on Southern Ocean surface pH, south of 30ºS, as defined in the RECCAP biome regions

# region_masks_all_1x1_SO <- region_masks_all_1x1 %>%
#   filter(region == 'southern',
#          value != 0)

# keep only Southern Ocean data 
argo_OceanSODA_SO <- inner_join(argo_OceanSODA, nm_biomes)

Monthly climatological OceanSODA pH

Map monthly mean pH from the OceanSODA data product

Climatological OceanSODA pH

# calculate average monthly pH between April 2014 and August 2021 
argo_OceanSODA_SO_clim <- argo_OceanSODA_SO %>%
  group_by(lon, lat, month) %>%
  summarise(
    clim_OceanSODA_ph = mean(OceanSODA_ph, na.rm = TRUE),
    clim_argo_ph = mean(argo_ph_month, na.rm = TRUE),
    offset_clim = clim_OceanSODA_ph - clim_argo_ph
  ) %>%
  ungroup()

# regrid to a 2x2 grid for mapping 
argo_OceanSODA_SO_clim_2x2 <- argo_OceanSODA_SO_clim %>%
  mutate(
    lat = cut(lat, seq(-90, 90, 2), seq(-89, 89, 2)),
    lat = as.numeric(as.character(lat)),
    lon = cut(lon, seq(20, 380, 2), seq(21, 379, 2)),
    lon = as.numeric(as.character(lon))
  ) %>%
  group_by(lon, lat, month) %>%
  summarise(
    clim_OceanSODA_ph = mean(clim_OceanSODA_ph, na.rm = TRUE),
    clim_argo_ph = mean(clim_argo_ph, na.rm = TRUE),
    offset_clim = mean(offset_clim, na.rm = TRUE)
  ) %>%
  ungroup()

map +
  geom_tile(data = argo_OceanSODA_SO_clim_2x2,
            aes(lon, lat, fill = clim_OceanSODA_ph)) +
  lims(y = c(-85, -25)) +
  scale_fill_viridis_c() +
  labs(x = 'lon',
       y = 'lat',
       fill = 'pH',
       title = 'Monthly climatological \nOceanSODA pH') +
  theme(legend.position = 'right') +
  facet_wrap(~month, ncol = 2)

Version Author Date
1a72545 mlarriere 2024-04-12
c076fba mlarriere 2024-04-12
f9de50e ds2n19 2024-01-01
cec2a2a ds2n19 2023-11-24
1ae81b3 ds2n19 2023-10-11
44f5720 ds2n19 2023-10-09
710edd4 jens-daniel-mueller 2022-05-11
# plot the climatological monthly OceanSODA pH on a polar projection 
basemap(limits = -32, data = argo_OceanSODA_SO_clim_2x2) +   # change to polar projection
  geom_spatial_tile(data = argo_OceanSODA_SO_clim_2x2,
                    aes(x = lon,
                        y = lat,
                        fill = clim_OceanSODA_ph),
                    linejoin = 'mitre',
                    col = 'transparent',
                    detail = 60)+
  scale_fill_viridis_c()+
  theme(legend.position = 'right')+
  labs(x = 'lon',
       y = 'lat',
       fill = 'pH',
       title = 'monthly climatological \nOceanSODA pH')+
  facet_wrap(~month, ncol = 2)

Climatological monthly Argo pH

Climatological Argo pH

map +
  geom_tile(data = argo_OceanSODA_SO_clim_2x2,
            aes(lon, lat, fill = clim_argo_ph)) +
  lims(y = c(-85, -25)) +
  scale_fill_viridis_c() +
  labs(x = 'lon',
       y = 'lat',
       fill = 'pH',
       title = 'Monthly climatological \nArgo pH') +
  theme(legend.position = 'right') +
  facet_wrap(~month, ncol = 2)

Version Author Date
1a72545 mlarriere 2024-04-12
c076fba mlarriere 2024-04-12
f9de50e ds2n19 2024-01-01
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
1ae81b3 ds2n19 2023-10-11
44f5720 ds2n19 2023-10-09
710edd4 jens-daniel-mueller 2022-05-11
basemap(limits = -32, data = argo_OceanSODA_SO_clim_2x2) +   # change to polar projection
  geom_spatial_tile(data = argo_OceanSODA_SO_clim_2x2,
                    aes(x = lon,
                        y = lat,
                        fill = clim_argo_ph),
                    linejoin = 'mitre',
                    col = 'transparent',
                    detail = 60)+
  scale_fill_viridis_c()+
  theme(legend.position = 'right')+
  labs(x = 'lon',
       y = 'lat',
       fill = 'pH',
       title = 'monthly climatological \nArgo pH')+
  facet_wrap(~month, ncol = 2)

Timeseries of monthly OceanSODA pH

Evolution of monthly surface pH, for the three Southern Ocean RECCAP regions

map +
  geom_raster(data = nm_biomes,
              aes(x = lon,
                  y = lat,
                  fill = biome_name)) +
  labs(title = 'Southern Ocean Mayot biomes',
       fill = 'biome')

Version Author Date
1a72545 mlarriere 2024-04-12
c076fba mlarriere 2024-04-12
710edd4 jens-daniel-mueller 2022-05-11
# plot timeseries of monthly OceanSODA pH
argo_OceanSODA_SO_clim_regional <- argo_OceanSODA_SO %>%
  select(year, month, biome_name, OceanSODA_ph, argo_ph_month) %>% 
  pivot_longer(c(OceanSODA_ph,argo_ph_month),
               values_to = "ph",
               names_to = "data_source") %>% 
  group_by(year, month, biome_name, data_source) %>%  # compute regional mean OceanSODA pH for the three biomes
  summarise(ph = mean(ph, na.rm = TRUE)) %>%
  ungroup()
argo_OceanSODA_SO_clim_regional %>%   
  ggplot(aes(x = year,
             y = ph,
             col = biome_name)) +
  facet_grid(month ~ data_source) +
  geom_line() +
  geom_point() +
  labs(x = 'year',
       y = 'pH in situ (total scale)',
       title = 'monthly mean pH (Southern Ocean)',
       col = 'region')
argo_OceanSODA_SO_clim_regional %>%   
  # filter(year != 2014,
  #        year != 2021) %>%
  ggplot(aes(x = month,
             y = ph,
             group = year,
             col = as.character(year)))+
  geom_line()+
  geom_point()+
  scale_x_continuous(breaks = seq(1, 12, 2))+
  facet_grid(biome_name~data_source)+
  labs(x = 'month',
       y = 'pH in situ (total scale)',
       title = 'monthly mean OceanSODA pH (Southern Ocean)',
       col = 'year')

Version Author Date
1a72545 mlarriere 2024-04-12
c076fba mlarriere 2024-04-12
f9de50e ds2n19 2024-01-01
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
1ae81b3 ds2n19 2023-10-11
44f5720 ds2n19 2023-10-09
710edd4 jens-daniel-mueller 2022-05-11

Comparison between Argo and OceanSODA pH

Calculate the difference between Argo and OceanSODA pH values

Offset between in-situ monthly pH:

argo_OceanSODA_SO <- argo_OceanSODA_SO %>%
  mutate(offset = OceanSODA_ph - argo_ph_month)

argo_OceanSODA_SO %>%
  drop_na() %>%
  ggplot() +
  geom_hline(yintercept = 0, size = 1)+
  geom_point(aes(x = year_month, y = offset, col = biome_name), size = 0.7, pch = 19) +
  scale_x_discrete(breaks = c('2014-01', '2015-01', '2016-01', '2017-01', '2018-01', '2019-01', '2020-01', '2021-01', '2022-01', '2023-01'))+
  labs(title = 'oceanSODA pH - Argo pH',
       x = 'date',
       y = 'offset (pH units)',
       col = 'region')

Version Author Date
1a72545 mlarriere 2024-04-12
c076fba mlarriere 2024-04-12
f9de50e ds2n19 2024-01-01
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
1ae81b3 ds2n19 2023-10-11
44f5720 ds2n19 2023-10-09
710edd4 jens-daniel-mueller 2022-05-11
argo_OceanSODA_SO %>% 
  drop_na() %>% 
  ggplot(aes(x = OceanSODA_ph, y = argo_ph_month))+
  # geom_point(pch = 19, size = 0.7)+
  geom_bin2d(aes(x = OceanSODA_ph, y = argo_ph_month), size = 0.3, bins = 60)+
  scale_fill_viridis_c()+
  lims(x = c(7.8, 8.25), 
       y = c(7.8, 8.25)) +
  geom_abline(slope = 1, intercept = 0)+
  facet_wrap(~biome_name)+
  labs(x = 'OceanSODA pH (total scale)',
       y = 'Argo pH (total scale)',
       title = 'Southern Ocean regional pH')

Version Author Date
1a72545 mlarriere 2024-04-12
c076fba mlarriere 2024-04-12
f9de50e ds2n19 2024-01-01
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
1ae81b3 ds2n19 2023-10-11
44f5720 ds2n19 2023-10-09
710edd4 jens-daniel-mueller 2022-05-11

Mean offset between in-situ OceanSODA pH and in-situ Argo pH

mean_insitu_offset <- argo_OceanSODA_SO %>%
  group_by(year_month, biome_name) %>% 
  summarise(mean_offset = mean(offset, na.rm = TRUE),
            std_offset = sd(offset, na.rm = TRUE))

mean_insitu_offset %>%
  drop_na() %>%
  ggplot() +
  geom_hline(yintercept = 0, size = 1, col = 'red')+
  geom_point(aes(x = year_month, y = mean_offset, group = biome_name, col = biome_name),
             size = 0.7, pch = 19) +
  geom_line(aes(x = year_month, y = mean_offset, group = biome_name, col = biome_name))+
  geom_ribbon(aes(x = year_month, 
                  ymin = mean_offset-std_offset, 
                  ymax = mean_offset+std_offset, 
                  group = biome_name, 
                  fill = biome_name),
              alpha = 0.2)+
  scale_x_discrete(breaks = c('2014-01', '2015-01', '2016-01', '2017-01', '2018-01', '2019-01', '2020-01', '2021-01', '2022-01', '2023-01'))+
  # facet_wrap(~year)+
  labs(title = 'Mean offset (in situ oceanSODA pH - in situ Argo pH)',
       x = 'date',
       y = 'offset (pH units)',
       col = 'region',
       fill = '± 1 std')

Version Author Date
1a72545 mlarriere 2024-04-12
c076fba mlarriere 2024-04-12
f9de50e ds2n19 2024-01-01
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
1ae81b3 ds2n19 2023-10-11
44f5720 ds2n19 2023-10-09
710edd4 jens-daniel-mueller 2022-05-11

Offset between climatological Argo and climatological OceanSODA pH:

# Offset between climatological argo and climatological OceanSODA pH 

argo_OceanSODA_SO_clim <- inner_join(argo_OceanSODA_SO_clim, nm_biomes)
argo_OceanSODA_SO_clim %>% 
  drop_na() %>%
  ggplot() +
  geom_point(aes(x = month, y = offset_clim, col = biome_name), size = 0.7, pch = 19) +
  geom_hline(yintercept = 0, size = 1, col = 'red')+
  scale_x_continuous(breaks = seq(1, 12, 1))+
  labs(title = 'clim oceanSODA pH - clim Argo pH',
       x = 'month',
       y = 'offset (pH units)',
       col = 'region')

Mean offset between climatological OceanSODA pH and climatological Argo pH

mean_clim_offset <- argo_OceanSODA_SO_clim %>% 
  group_by(month, biome_name) %>% 
  summarise(mean_offset_clim = mean(offset_clim, na.rm = TRUE),
            std_offset_clim = sd(offset_clim, na.rm = TRUE))

mean_clim_offset %>% 
  ggplot()+
  geom_point(aes(x = month, y = mean_offset_clim, col = biome_name))+
  geom_line(aes(x = month, y = mean_offset_clim, col = biome_name))+
  geom_hline(yintercept = 0, col = 'red') +
  geom_ribbon(aes(x = month, 
                  ymin = mean_offset_clim - std_offset_clim, 
                  ymax = mean_offset_clim + std_offset_clim,
                  group = biome_name, 
                  fill = biome_name), 
              alpha = 0.2) +
  scale_x_continuous(breaks = seq(1, 12, 1)) +
  labs(x = 'month',
       y = 'mean offset (pH units)',
       title = 'Mean offset (clim OceanSODA pH - clim Argo pH)', 
       col = 'region',
       fill = '± 1 std') 

Version Author Date
1a72545 mlarriere 2024-04-12
c076fba mlarriere 2024-04-12
f9de50e ds2n19 2024-01-01
cec2a2a ds2n19 2023-11-24
80c16c2 ds2n19 2023-11-15
1ae81b3 ds2n19 2023-10-11
44f5720 ds2n19 2023-10-09
710edd4 jens-daniel-mueller 2022-05-11

Mapped offset between climatological OceanSODA pH and climatological Argo pH

# bin the offsets for better plotting  
# plot the offsets on a map of the Southern Ocean

argo_OceanSODA_SO_clim_2x2 <- argo_OceanSODA_SO_clim_2x2 %>% 
  mutate(offset_clim_binned = 
           cut(offset_clim, 
               breaks = c(-Inf, -0.025, -0.005, 0.000, 0.005, 0.025, 0.035, 0.05, Inf))) %>%    # bin the offsets into intervals (create a discrete variable instead of continuous)
         # offset_clim_binned = as.factor(as.character(offset_clim_binned))) %>% 
  drop_na()

map +
  geom_tile(data = argo_OceanSODA_SO_clim_2x2,
            aes(lon, lat, fill = offset_clim_binned)) +
  lims(y = c(-85, -30)) +
  scale_fill_brewer(palette = 'RdBu', drop = FALSE) +
  labs(x = 'lon',
       y = 'lat',
       fill = 'offset (pH units)',
       title = 'clim OceanSODA ph - clim Argo pH') +
  theme(legend.position = 'right')+
  facet_wrap(~month, ncol = 2)

Version Author Date
1a72545 mlarriere 2024-04-12
c076fba mlarriere 2024-04-12
f9de50e ds2n19 2024-01-01
cec2a2a ds2n19 2023-11-24
1ae81b3 ds2n19 2023-10-11
44f5720 ds2n19 2023-10-09
710edd4 jens-daniel-mueller 2022-05-11
basemap(limits = -32, data = argo_OceanSODA_SO_clim_2x2) +   # change to polar projection
  geom_spatial_tile(data = argo_OceanSODA_SO_clim_2x2,
                    aes(x = lon,
                        y = lat,
                        fill = offset_clim_binned),
                    linejoin = 'mitre',
                    col = 'transparent',
                    detail = 60)+
  scale_fill_brewer(palette = 'RdBu', drop = FALSE)+
  theme(legend.position = 'right')+
  labs(x = 'lon',
       y = 'lat',
       fill = 'offset (pH units)',
       title = 'clim Ocean SODA pH - clim Argo pH')+
  facet_wrap(~month, ncol = 2)

Basin separation

Using full OceanSODA data (even where there is no Argo data) Each RECCAP biome (1, 2, 3) is separated into basins (Atlantic, Pacific, Indian)

basinmask <-
  read_csv(paste(path_emlr_utilities,
                 "basin_mask_WOA18.csv",
                 sep = ""),
           col_types = cols("MLR_basins" = col_character()))

basinmask <- basinmask %>% 
  filter(MLR_basins == unique(basinmask$MLR_basins)[1]) %>% 
  select(lon, lat, basin_AIP)

OceanSODA_SO <- inner_join(OceanSODA, nm_biomes)

OceanSODA_SO <- inner_join(OceanSODA_SO, basinmask) %>% 
  mutate(year = year(date_OceanSODA),
         month = month(date_OceanSODA)) %>% 
  mutate(date = format_ISO8601(date_OceanSODA, precision = 'ym')) %>% 
  filter(year >= 2013)
# plot timeseries of monthly OceanSODA pH

OceanSODA_SO_clim_subregional <- OceanSODA_SO %>%
  group_by(year, month, biome_name, basin_AIP) %>%  # compute regional mean OceanSODA pH for the three biomes
  summarise(ph = mean(ph_total, na.rm = TRUE)) %>%
  ungroup()

# plot a timeseries of monthly average OceanSODA pH, per region and per basin
OceanSODA_SO_clim_subregional %>% 
  ggplot(aes(x = month,
             y = ph,
             group = year,
             col = as.character(year)))+
  geom_line()+
  geom_point()+
  scale_x_continuous(breaks = seq(1, 12, 2))+
  facet_grid(biome_name~basin_AIP)+
  labs(x = 'month',
       y = 'pH in situ (total scale)',
       title = 'monthly mean OceanSODA pH (Southern Ocean basins)',
       col = 'year')

Version Author Date
1a72545 mlarriere 2024-04-12
c076fba mlarriere 2024-04-12
cec2a2a ds2n19 2023-11-24
1ae81b3 ds2n19 2023-10-11
44f5720 ds2n19 2023-10-09
710edd4 jens-daniel-mueller 2022-05-11
OceanSODA_SO_clim_subregional %>%  
  ggplot(aes(x = year,
             y = ph,
             col = biome_name)) +
  facet_grid(month ~ basin_AIP) +
  geom_line() +
  geom_point() +
  labs(x = 'year',
       y = 'pH in situ (total scale)',
       title = 'monthly mean pH (Southern Ocean basins)',
       col = 'region')

Version Author Date
1a72545 mlarriere 2024-04-12
c076fba mlarriere 2024-04-12
cec2a2a ds2n19 2023-11-24
1ae81b3 ds2n19 2023-10-11
44f5720 ds2n19 2023-10-09
710edd4 jens-daniel-mueller 2022-05-11

Longitudinal separation

Bin the pH data into 20º longitude bins (20º - 380º)

OceanSODA_SO_lon_binned <- OceanSODA_SO %>%
  mutate(lon = cut(lon, seq(20, 380, 20), seq(30, 370, 20)),
         lon = as.numeric(as.character(lon))
  ) %>%
  group_by(lon, year, month, biome_name) %>%
  summarise(
    OceanSODA_ph_binned = mean(ph_total, na.rm = TRUE)
  ) %>%
  ungroup()
OceanSODA_SO_lon_binned %>%
  drop_na() %>% 
  ggplot(aes(x = month, y = OceanSODA_ph_binned, group = lon, col = as.factor(lon))) +
  geom_line()+
  geom_point()+
  scale_x_continuous(breaks = seq(1, 12, 2))+
  facet_grid(year~biome_name)+
  labs(x = 'month',
       y = 'OceanSODA pH',
       col = 'longitude bin')

Version Author Date
1a72545 mlarriere 2024-04-12
c076fba mlarriere 2024-04-12
1ae81b3 ds2n19 2023-10-11
44f5720 ds2n19 2023-10-09
710edd4 jens-daniel-mueller 2022-05-11

sessionInfo()
R version 4.2.2 (2022-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.5

Matrix products: default
BLAS:   /usr/local/R-4.2.2/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.2.2/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] metR_0.13.0       ggOceanMaps_1.3.4 ggspatial_1.1.7   lubridate_1.9.0  
 [5] timechange_0.1.1  argodata_0.1.0    forcats_0.5.2     stringr_1.5.0    
 [9] dplyr_1.1.3       purrr_1.0.2       readr_2.1.3       tidyr_1.3.0      
[13] tibble_3.2.1      ggplot2_3.4.4     tidyverse_1.3.2   workflowr_1.7.0  

loaded via a namespace (and not attached):
 [1] fs_1.5.2            sf_1.0-9            bit64_4.0.5        
 [4] RColorBrewer_1.1-3  httr_1.4.4          rprojroot_2.0.3    
 [7] tools_4.2.2         backports_1.4.1     bslib_0.4.1        
[10] utf8_1.2.2          R6_2.5.1            KernSmooth_2.23-20 
[13] rgeos_0.5-9         DBI_1.2.2           colorspace_2.0-3   
[16] raster_3.6-11       sp_1.5-1            withr_2.5.0        
[19] tidyselect_1.2.0    processx_3.8.0      bit_4.0.5          
[22] compiler_4.2.2      git2r_0.30.1        cli_3.6.1          
[25] rvest_1.0.3         RNetCDF_2.6-1       xml2_1.3.3         
[28] labeling_0.4.2      sass_0.4.4          checkmate_2.1.0    
[31] scales_1.2.1        classInt_0.4-8      callr_3.7.3        
[34] proxy_0.4-27        digest_0.6.30       rmarkdown_2.18     
[37] pkgconfig_2.0.3     htmltools_0.5.8.1   highr_0.9          
[40] dbplyr_2.2.1        fastmap_1.1.0       rlang_1.1.1        
[43] readxl_1.4.1        rstudioapi_0.15.0   farver_2.1.1       
[46] jquerylib_0.1.4     generics_0.1.3      jsonlite_1.8.3     
[49] vroom_1.6.0         googlesheets4_1.0.1 magrittr_2.0.3     
[52] Rcpp_1.0.10         munsell_0.5.0       fansi_1.0.3        
[55] lifecycle_1.0.3     terra_1.7-65        stringi_1.7.8      
[58] whisker_0.4         yaml_2.3.6          grid_4.2.2         
[61] parallel_4.2.2      promises_1.2.0.1    crayon_1.5.2       
[64] lattice_0.20-45     haven_2.5.1         hms_1.1.2          
[67] knitr_1.41          ps_1.7.2            pillar_1.9.0       
[70] codetools_0.2-18    reprex_2.0.2        glue_1.6.2         
[73] evaluate_0.18       getPass_0.2-2       data.table_1.14.6  
[76] modelr_0.1.10       vctrs_0.6.4         tzdb_0.3.0         
[79] httpuv_1.6.6        cellranger_1.1.0    gtable_0.3.1       
[82] assertthat_0.2.1    cachem_1.0.6        xfun_0.35          
[85] broom_1.0.5         e1071_1.7-12        later_1.3.0        
[88] viridisLite_0.4.1   class_7.3-20        googledrive_2.0.0  
[91] gargle_1.2.1        memoise_2.0.1       units_0.8-0        
[94] ellipsis_0.3.2