Last updated: 2024-04-07

Checks: 7 0

Knit directory: bgc_argo_r_argodata/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211008) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 53f0344. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/

Unstaged changes:
    Modified:   analysis/_site.yml
    Modified:   analysis/load_broullon_DIC_TA_clim.Rmd
    Modified:   code/Workflowr_project_managment.R
    Modified:   code/start_background_job.R
    Modified:   code/start_background_job_load.R
    Modified:   code/start_background_job_partial.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/argo_temp_core.Rmd) and HTML (docs/argo_temp_core.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html db21f55 mlarriere 2024-04-06 Build site.
html 57d0d77 mlarriere 2024-04-01 Build site.
Rmd 1cb8ce9 mlarriere 2024-04-01 argo_temp_core building test
html f9de50e ds2n19 2024-01-01 Build site.
html 07d4eb8 ds2n19 2023-12-20 Build site.
html fa6cf38 ds2n19 2023-12-14 Build site.
Rmd 64fd104 ds2n19 2023-12-14 revised coverage analysis and SO focused cluster analysis.
html f110b74 ds2n19 2023-12-13 Build site.
Rmd fa9795c ds2n19 2023-12-12 dependencies listed are start of markdown files.
html e60ebd2 ds2n19 2023-12-07 Build site.
html cec2a2a ds2n19 2023-11-24 Build site.
Rmd 59f5cc4 ds2n19 2023-11-23 Moved spatiotemporal analysis to use aligned profiles.
html 80c16c2 ds2n19 2023-11-15 Build site.
html c16000b ds2n19 2023-10-12 Build site.
Rmd 723c772 ds2n19 2023-10-12 refresh coverage and analysis after full core load 2013 - 2023
Rmd 1ae81b3 ds2n19 2023-10-11 reworked core load process to work initially by year and then finally create consolidated all years files.
Rmd 44f5720 ds2n19 2023-10-09 manual commit
html 7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29 Build site.
Rmd 8e81570 pasqualina-vonlanthendinenna 2022-08-29 load and add in core-argo data (1 month)

Task

Explore the core-Argo temperature data (not only BGC)

Dependencies

temp_core_observed.rds - core preprocessed folder, created by temp_core_align_climatology. Not this file is written BEFORE the vertical alignment stage.

path_argo_core <- '/nfs/kryo/work/updata/core_argo_r_argodata'
path_argo <- '/nfs/kryo/work/updata/bgc_argo_r_argodata'
path_emlr_utilities <- "/nfs/kryo/work/jenmueller/emlr_cant/utilities/files/"
path_basin_mask <- "/nfs/kryo/work/updata/reccap2/"
path_argo_core_preprocessed <- paste0(path_argo_core, "/preprocessed_core_data")
path_argo_preprocessed <- paste0(path_argo, "/preprocessed_bgc_data")

path_argo <- '/nfs/kryo/work/datasets/ungridded/3d/ocean/floats/bgc_argo'
path_argo_preprocessed <- paste0(path_argo, "/preprocessed_bgc_data")

path_argo_core <- '/nfs/kryo/work/datasets/ungridded/3d/ocean/floats/core_argo_r_argodata_2024-03-13'
path_argo_core_preprocessed <- paste0(path_argo_core, "/preprocessed_core_data")

Load Core-SST data

Using only core-temperature flag A profiles

# read validated temperature profile and restrict to the top 20 m 
sst <-
  read_rds(file = paste0(path_argo_core_preprocessed, "/temp_core_observed.rds")) %>%
  filter(between(depth, 0, 20))

# load in biome separations 
nm_biomes <- read_rds(file = paste0(path_argo_preprocessed, "/nm_biomes.rds"))

Southern Ocean SST

sst_SO <- sst %>% 
  filter(lat <= -30)

SST offset with depth

Difference between the in-situ measured sst (20 m) and the profile-mean 20m temperature

# calculate the mean sst for each surface profile 
mean_profile_sst <- sst_SO %>% 
  group_by(file_id) %>% 
  mutate(mean_prof_sst = mean(temp_adjusted, na.rm = TRUE), 
         .before = depth) %>% 
  ungroup() %>% 
  mutate(offset = temp_adjusted-mean_prof_sst,   
         .after = mean_prof_sst) # subtract the mean profile sst from the measured in situ sst

mean_profile_sst %>%
  ggplot()+
  geom_point(aes(x = offset, y = depth, col = as.character(year)), size = 0.3, pch = 19) +
  scale_y_reverse()+
  geom_vline(xintercept = 0, col = 'red', linewidth = 0.6)+
  labs(x = 'offset (ºC)',
       y = 'depth (m)',
       col = 'year',
       title = 'in situ sst - mean profile sst')

Version Author Date
57d0d77 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cec2a2a ds2n19 2023-11-24
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

Bin the sst data into 2m-depth intervals and calculate the offset for each sst observation in each depth interval relative to the profile-mean sst

# bin the sst values into 2m bins and calculate the offset for each 2m bin 

mean_profile_sst_binned <- sst_SO %>% 
  mutate(depth = cut(depth, seq(0, 20, 2), seq(1, 19, 2)),
         depth = as.numeric(as.character(depth))) %>% 
  group_by(file_id) %>% 
  mutate(mean_prof_sst = mean(temp_adjusted, na.rm = TRUE),
         .before = depth) %>% 
  ungroup() %>% 
  mutate(offset = temp_adjusted-mean_prof_sst, 
         .after = mean_prof_sst) 

# plot the offset of the depth-binned values 
mean_profile_sst_binned %>%
  ggplot()+
  geom_point(aes(x = offset, y = depth, col = as.character(year)), size = 0.3, pch = 19) +
  scale_y_reverse()+
  geom_vline(xintercept = 0, col = 'red', linewidth = 0.6)+
  labs(x = 'offset (ºC)',
       y = 'depth (m)',
       col = 'year',
       title = 'in situ sst - mean profile sst (2m depth bins)')

Version Author Date
57d0d77 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cec2a2a ds2n19 2023-11-24
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

Mean binned offset

# bin the ph values into 2m bins and calculate the offset for each 2m bin 
profile_sst_binned_ave <- sst_SO %>% 
  mutate(depth = cut(depth, seq(0, 20, 2), seq(1, 19, 2)),
         depth = as.numeric(as.character(depth))) %>% 
  group_by(file_id) %>% 
  mutate(mean_prof_sst = mean(temp_adjusted, na.rm = TRUE),
         .before = depth) %>% 
  ungroup() %>% 
  mutate(offset = temp_adjusted-mean_prof_sst, 
         .after = mean_prof_sst) %>% 
  group_by(depth) %>% 
  summarise(mean_offset = mean(offset))

# plot the offset of the depth-binned values 
profile_sst_binned_ave %>%
  ggplot()+
  geom_point(aes(x = mean_offset, y = depth), size = 1, pch = 19) +
  geom_line(aes(x = mean_offset, y = depth))+
  scale_y_reverse()+
  geom_vline(xintercept = 0, col = 'red', linewidth = 1)+
  labs(x = 'mean offset (ºC)',
       y = 'depth (m)',
       col = 'year',
       title = 'in situ sst - mean profile sst (2m depth bins)')

Version Author Date
57d0d77 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cec2a2a ds2n19 2023-11-24
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

Monthly climatological SST (core-Argo)

Map of monthly climatological Argo temperature (core-Argo floats, flag A profiles only), January 2013-April 2022 (January 1st - February 1st 2013 only for test purposes)

# average pH values in the top 20 m for each month in each 2 x 2º longitude/latitude grid 
sst_clim_SO <- sst_SO %>%
  group_by(lat, lon, month) %>%
  summarise(sst_clim_month = mean(temp_adjusted))

# read in the map from updata
map <-
  read_rds(paste(path_emlr_utilities,
                 "map_landmask_WOA18.rds",
                 sep = ""))

# map a monthly climatology of pH (April 2014 - August 2021)
map +
  geom_tile(data = sst_clim_SO,
            aes(lon, lat, fill = sst_clim_month)) +
  lims(y = c(-85, -25)) +
  scale_fill_viridis_c() +
  labs(x = 'lon',
       y = 'lat',
       fill = 'SST',
       title = 'Monthly climatological \nArgo SST (Jan 2013 - 2022)') +
  theme(legend.position = 'right') +
  facet_wrap(~month, ncol = 2)

Version Author Date
57d0d77 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cec2a2a ds2n19 2023-11-24
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29
basemap(limits = -32, data = sst_clim_SO) +   # change to polar projection 
  geom_spatial_tile(data = sst_clim_SO, 
            aes(x = lon,
                y = lat,
                fill = sst_clim_month),
            linejoin = 'mitre',
            col = 'transparent',
            detail = 60)+
  scale_fill_viridis_c()+
  theme(legend.position = 'bottom')+
  labs(x = 'lon',
       y = 'lat',
       fill = 'SST',
       title = 'monthly climatological \nArgo SST')+
  facet_wrap(~month, ncol = 2)

Monthly timeseries

Timeseries of monthly SST values, for each Mayot biome

# plot the region separations on a map 

map +
  geom_raster(data = nm_biomes, 
              aes(x = lon, 
                  y = lat, 
                  fill = biome_name)) +
  labs(title = 'Southern Ocean Mayot biomes', 
       fill = 'biome')

Version Author Date
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29
# plot a timeseries of monthly values over the whole southern ocean south of 30ºS

sst_SO <- inner_join(sst_SO, nm_biomes)

sst_month_SO <- sst_SO %>%
  group_by(year, month, biome_name) %>%
  summarise(sst_ave = mean(temp_adjusted, na.rm = TRUE))

# timeseries of monthly pH values over 2014-2021 (separate panels for each month)
sst_month_SO %>%
  ggplot(aes(x = year, 
             y = sst_ave, 
             group = biome_name, 
             col = biome_name)) +
  facet_wrap(~month) +
  geom_line() +
  geom_point() +
  labs(x = 'year', 
       y = 'SST (ºC)', 
       title = 'monthly mean Argo SST (Southern Ocean)', 
       col = 'region')

Version Author Date
57d0d77 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cec2a2a ds2n19 2023-11-24
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29

Monthly average Southern Ocean SST, for each biome

# timeseries of monthly sst values for each year (separate years on the same plot)
sst_month_SO %>%
  # filter(year != 2014) %>%    # remove the year that is missing data 
  ggplot(aes(x = month, 
             y = sst_ave, 
             group = year,
             col = as.character(year)))+
  geom_line()+
  geom_point()+
  scale_x_continuous(breaks = seq(1, 12, 2))+
  facet_wrap(~biome_name)+
  labs(x = 'month',
       y = 'SST (ºC)',
       title = 'monthly mean Argo SST (Southern Ocean regions)',
       col = 'year')

Version Author Date
57d0d77 mlarriere 2024-04-01
f9de50e ds2n19 2024-01-01
cec2a2a ds2n19 2023-11-24
c16000b ds2n19 2023-10-12
7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29
# calculate a yearly average SST (one SST value per year, for the whole biome)
sst_year_SO <- sst_SO %>%
  group_by(year, biome_name) %>%
  summarise(sst_ave = mean(temp_adjusted, na.rm = TRUE))

# plot a timeseries of the yearly average SST value (one value per year)
sst_year_SO %>%
  ggplot(aes(x = year, y = sst_ave, group = biome_name, col = biome_name))+
  geom_line()+
  geom_point()+
  labs(x = 'year',
       y = 'SST (ºC)',
       title = 'yearly mean Argo SST (south of 30ºS)', 
       col = 'region')

sessionInfo()
R version 4.2.2 (2022-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.5

Matrix products: default
BLAS:   /usr/local/R-4.2.2/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.2.2/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] ggOceanMaps_1.3.4 ggspatial_1.1.7   oce_1.7-10        gsw_1.1-1        
 [5] lubridate_1.9.0   timechange_0.1.1  forcats_0.5.2     stringr_1.5.0    
 [9] dplyr_1.1.3       purrr_1.0.2       readr_2.1.3       tidyr_1.3.0      
[13] tibble_3.2.1      ggplot2_3.4.4     tidyverse_1.3.2   workflowr_1.7.0  

loaded via a namespace (and not attached):
 [1] fs_1.5.2            sf_1.0-9            httr_1.4.4         
 [4] rprojroot_2.0.3     tools_4.2.2         backports_1.4.1    
 [7] bslib_0.4.1         utf8_1.2.2          R6_2.5.1           
[10] KernSmooth_2.23-20  rgeos_0.5-9         DBI_1.1.3          
[13] colorspace_2.0-3    raster_3.6-11       sp_1.5-1           
[16] withr_2.5.0         tidyselect_1.2.0    processx_3.8.0     
[19] compiler_4.2.2      git2r_0.30.1        cli_3.6.1          
[22] rvest_1.0.3         xml2_1.3.3          labeling_0.4.2     
[25] sass_0.4.4          scales_1.2.1        classInt_0.4-8     
[28] callr_3.7.3         proxy_0.4-27        digest_0.6.30      
[31] rmarkdown_2.18      pkgconfig_2.0.3     htmltools_0.5.3    
[34] highr_0.9           dbplyr_2.2.1        fastmap_1.1.0      
[37] rlang_1.1.1         readxl_1.4.1        rstudioapi_0.15.0  
[40] farver_2.1.1        jquerylib_0.1.4     generics_0.1.3     
[43] jsonlite_1.8.3      googlesheets4_1.0.1 magrittr_2.0.3     
[46] Rcpp_1.0.10         munsell_0.5.0       fansi_1.0.3        
[49] lifecycle_1.0.3     terra_1.7-65        stringi_1.7.8      
[52] whisker_0.4         yaml_2.3.6          grid_4.2.2         
[55] parallel_4.2.2      promises_1.2.0.1    crayon_1.5.2       
[58] lattice_0.20-45     haven_2.5.1         hms_1.1.2          
[61] knitr_1.41          ps_1.7.2            pillar_1.9.0       
[64] codetools_0.2-18    reprex_2.0.2        glue_1.6.2         
[67] evaluate_0.18       getPass_0.2-2       modelr_0.1.10      
[70] vctrs_0.6.4         tzdb_0.3.0          httpuv_1.6.6       
[73] cellranger_1.1.0    gtable_0.3.1        assertthat_0.2.1   
[76] cachem_1.0.6        xfun_0.35           broom_1.0.5        
[79] e1071_1.7-12        later_1.3.0         viridisLite_0.4.1  
[82] class_7.3-20        googledrive_2.0.0   gargle_1.2.1       
[85] units_0.8-0         ellipsis_0.3.2