Last updated: 2021-10-21
Checks: 7 0
Knit directory: bgc_argo_r_argodata/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20211008)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version b55928d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Untracked files:
Untracked: code/creating_dataframe.R
Untracked: code/creating_map.R
Unstaged changes:
Modified: code/Workflowr_project_managment.R
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/coverage_maps.Rmd
) and HTML (docs/coverage_maps.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | 62d8519 | pasqualina-vonlanthendinenna | 2021-10-20 | Build site. |
html | b8feac2 | pasqualina-vonlanthendinenna | 2021-10-20 | Build site. |
html | 701fffa | pasqualina-vonlanthendinenna | 2021-10-20 | Build site. |
Rmd | b88a839 | pasqualina-vonlanthendinenna | 2021-10-20 | adding revised code |
Map the location of oxygen, pH, and nitrate observations recorded by BGC-Argo floats
library(tidyverse)
── Attaching packages ─────────────────────────────────────── tidyverse 1.3.0 ──
✓ ggplot2 3.3.5 ✓ purrr 0.3.4
✓ tibble 3.1.3 ✓ dplyr 1.0.5
✓ tidyr 1.1.3 ✓ stringr 1.4.0
✓ readr 1.4.0 ✓ forcats 0.5.0
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
library(argodata)
library(ggplot2)
library(lubridate)
Attaching package: 'lubridate'
The following objects are masked from 'package:base':
date, intersect, setdiff, union
library(sf)
Linking to GEOS 3.6.2, GDAL 3.0.4, PROJ 7.0.0
library(rnaturalearth)
library(rnaturalearthdata)
# load in coastline data (uses sf and rnaturalearthdata packages)
world = ne_coastline(scale = 'medium', returnclass = 'sf')
Read the files created in loading_data.html:
path_argo_preprocessed <- paste0(path_argo, "/preprocessed_bgc_data")
bgc_subset <-
read_rds(file = paste0(path_argo_preprocessed, "/bgc_subset.rds"))
bgc_metadata <-
read_rds(file = paste0(path_argo_preprocessed, "/bgc_metadata.rds"))
bgc_data <-
read_rds(file = paste0(path_argo_preprocessed, "/bgc_data.rds"))
bgc_merge <-
read_rds(file = paste0(path_argo_preprocessed, "/bgc_merge.rds"))
bgc_profile_counts_year <- bgc_metadata %>%
select(platform_number, cycle_number, date, longitude, latitude,
profile_doxy_qc, profile_ph_in_situ_total_qc, profile_nitrate_qc) %>%
pivot_longer(profile_doxy_qc:profile_nitrate_qc,
names_to = "parameter",
values_to = "profile_flag",
names_prefix = "profile_") %>%
mutate(year = year(date),
latitude = round(latitude, digits = 0),
longitude = round(longitude, digits = 0)) %>%
filter(!is.na(profile_flag),
profile_flag != "") %>%
count(latitude, longitude, year, parameter) # count the number of profiles per year in each lon/lat grid for each parameter
bgc_profile_counts_flag <- bgc_metadata %>%
select(platform_number, cycle_number, date, longitude, latitude,
profile_doxy_qc, profile_ph_in_situ_total_qc, profile_nitrate_qc) %>%
pivot_longer(profile_doxy_qc:profile_nitrate_qc,
names_to = "parameter",
values_to = "profile_flag",
names_prefix = "profile_") %>%
mutate(year = year(date),
latitude = round(latitude, digits = 0),
longitude = round(longitude, digits = 0)) %>%
filter(!is.na(profile_flag),
profile_flag != "") %>%
count(latitude, longitude, parameter, profile_flag) # count the number of profiles for each profile QC flag in each lon/lat area and for each parameter
Map of profile locations for each parameter, per year
bgc_profile_counts_year %>%
ggplot() +
geom_sf(data = ne_countries(returnclass = "sf"),
fill = "gray90",
color = NA) +
geom_sf(data = ne_coastline(returnclass = "sf")) +
geom_tile(aes(x = longitude, y = latitude, fill = n)) +
scale_fill_gradient(low="blue", high="red",
trans = "log10") +
theme_bw() +
facet_grid(year ~ parameter)
bgc_profile_counts_year %>%
group_split(parameter) %>%
map(
~ ggplot() +
geom_sf(data = ne_countries(returnclass = "sf"),
fill = "gray90",
color = NA) +
geom_sf(data = ne_coastline(returnclass = "sf")) +
geom_tile(data = .x, aes(x = longitude, y = latitude, fill = n)) +
scale_fill_gradient(low="blue", high="red",
trans = "log10") +
theme_bw() +
labs(x = 'longitude', y = 'latitude', fill = 'number of profiles',
title = paste('Parameter:', unique(.x$parameter)))+
facet_grid(. ~ year)
)
[[1]]
Warning: Removed 3 rows containing missing values (geom_tile).
Version | Author | Date |
---|---|---|
701fffa | pasqualina-vonlanthendinenna | 2021-10-20 |
[[2]]
Warning: Removed 1 rows containing missing values (geom_tile).
Version | Author | Date |
---|---|---|
701fffa | pasqualina-vonlanthendinenna | 2021-10-20 |
[[3]]
Version | Author | Date |
---|---|---|
701fffa | pasqualina-vonlanthendinenna | 2021-10-20 |
Map the profile locations for each profile QC flag of each parameter
bgc_profile_counts_flag %>%
ggplot() +
geom_sf(data = ne_countries(returnclass = "sf"),
fill = "gray90",
color = NA) +
geom_sf(data = ne_coastline(returnclass = "sf")) +
geom_tile(aes(x = longitude, y = latitude, fill = n)) +
scale_fill_gradient(low="blue", high="red",
trans = "log10") +
theme_bw() +
facet_grid(profile_flag ~ parameter)
# create a separate plot for each QC flag (instead of multiple panels in one plot)
bgc_profile_counts_flag %>%
group_split(profile_flag) %>%
map(
~ ggplot() +
geom_sf(data = ne_countries(returnclass = "sf"),
fill = "gray90",
color = NA) +
geom_sf(data = ne_coastline(returnclass = "sf")) +
geom_tile(data = .x, aes(x = longitude, y = latitude, fill = n)) +
scale_fill_gradient(low="blue", high="red",
trans = "log10") +
theme_bw() +
labs(x = 'longitude', y = 'latitude', fill = 'number of profiles',
title = paste('Profile QC flag', unique(.x$profile_flag)))+
facet_grid(. ~ parameter)
)
[[1]]
Warning: Removed 2 rows containing missing values (geom_tile).
Version | Author | Date |
---|---|---|
701fffa | pasqualina-vonlanthendinenna | 2021-10-20 |
[[2]]
Warning: Removed 1 rows containing missing values (geom_tile).
Version | Author | Date |
---|---|---|
701fffa | pasqualina-vonlanthendinenna | 2021-10-20 |
[[3]]
Version | Author | Date |
---|---|---|
701fffa | pasqualina-vonlanthendinenna | 2021-10-20 |
[[4]]
Version | Author | Date |
---|---|---|
701fffa | pasqualina-vonlanthendinenna | 2021-10-20 |
[[5]]
Version | Author | Date |
---|---|---|
701fffa | pasqualina-vonlanthendinenna | 2021-10-20 |
[[6]]
Warning: Removed 2 rows containing missing values (geom_tile).
Version | Author | Date |
---|---|---|
701fffa | pasqualina-vonlanthendinenna | 2021-10-20 |
sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.2
Matrix products: default
BLAS: /usr/local/R-4.0.3/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.0.3/lib64/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] rnaturalearthdata_0.1.0 rnaturalearth_0.1.0 sf_1.0-2
[4] lubridate_1.7.9 argodata_0.0.0.9000 forcats_0.5.0
[7] stringr_1.4.0 dplyr_1.0.5 purrr_0.3.4
[10] readr_1.4.0 tidyr_1.1.3 tibble_3.1.3
[13] ggplot2_3.3.5 tidyverse_1.3.0 workflowr_1.6.2
loaded via a namespace (and not attached):
[1] httr_1.4.2 sass_0.4.0 jsonlite_1.7.2 modelr_0.1.8
[5] bslib_0.2.5.1 assertthat_0.2.1 highr_0.8 sp_1.4-4
[9] blob_1.2.1 cellranger_1.1.0 yaml_2.2.1 pillar_1.6.2
[13] backports_1.1.10 lattice_0.20-41 glue_1.4.2 digest_0.6.27
[17] promises_1.2.0.1 rvest_0.3.6 colorspace_2.0-2 htmltools_0.5.1.1
[21] httpuv_1.6.2 pkgconfig_2.0.3 broom_0.7.9 haven_2.3.1
[25] s2_1.0.6 scales_1.1.1 whisker_0.4 later_1.3.0
[29] git2r_0.27.1 proxy_0.4-26 generics_0.1.0 farver_2.1.0
[33] ellipsis_0.3.2 withr_2.4.2 cli_3.0.1 magrittr_2.0.1
[37] crayon_1.4.1 readxl_1.3.1 evaluate_0.14 fs_1.5.0
[41] fansi_0.5.0 xml2_1.3.2 class_7.3-17 tools_4.0.3
[45] hms_0.5.3 lifecycle_1.0.0 munsell_0.5.0 reprex_0.3.0
[49] compiler_4.0.3 jquerylib_0.1.4 e1071_1.7-8 RNetCDF_2.4-2
[53] rlang_0.4.11 classInt_0.4-3 units_0.7-2 grid_4.0.3
[57] rstudioapi_0.13 rmarkdown_2.10 wk_0.5.0 gtable_0.3.0
[61] DBI_1.1.1 R6_2.5.1 knitr_1.33 rgeos_0.5-5
[65] utf8_1.2.2 rprojroot_2.0.2 KernSmooth_2.23-17 stringi_1.5.3
[69] Rcpp_1.0.7 vctrs_0.3.8 dbplyr_1.4.4 tidyselect_1.1.0
[73] xfun_0.25