Last updated: 2024-05-14
Checks: 7 0
Knit directory:
bgc_argo_r_argodata/analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20211008)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 91e6028. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .Rproj.user/
Untracked files:
Untracked: analysis/draft.Rmd
Untracked: load_argo_core_output.txt
Unstaged changes:
Deleted: analysis/MHWs_categorisation.Rmd
Modified: analysis/_site.yml
Modified: analysis/child/cluster_analysis_base.Rmd
Modified: analysis/coverage_maps_North_Atlantic.Rmd
Modified: analysis/load_broullon_DIC_TA_clim.Rmd
Modified: code/Workflowr_project_managment.R
Modified: code/start_background_job.R
Modified: code/start_background_job_load.R
Modified: code/start_background_job_partial.R
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown (analysis/extreme_temp_core.Rmd
) and
HTML (docs/extreme_temp_core.html
) files. If you’ve
configured a remote Git repository (see ?wflow_git_remote
),
click on the hyperlinks in the table below to view the files as they
were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | af6594f | mlarriere | 2024-05-13 | Build site. |
html | af44bcd | mlarriere | 2024-04-26 | Build site. |
html | 780276c | mlarriere | 2024-04-19 | Build site. |
html | 1a72545 | mlarriere | 2024-04-12 | Build site. |
html | c076fba | mlarriere | 2024-04-12 | Build site. |
html | 91f08a6 | mlarriere | 2024-04-07 | Build site. |
html | db21f55 | mlarriere | 2024-04-06 | Build site. |
html | c0a5b90 | mlarriere | 2024-04-01 | Build site. |
Rmd | 42a66ee | mlarriere | 2024-04-01 | extreme_temp and temp_core building test |
html | f9de50e | ds2n19 | 2024-01-01 | Build site. |
html | 07d4eb8 | ds2n19 | 2023-12-20 | Build site. |
html | fa6cf38 | ds2n19 | 2023-12-14 | Build site. |
Rmd | 64fd104 | ds2n19 | 2023-12-14 | revised coverage analysis and SO focused cluster analysis. |
html | f110b74 | ds2n19 | 2023-12-13 | Build site. |
Rmd | fa9795c | ds2n19 | 2023-12-12 | dependencies listed are start of markdown files. |
html | e60ebd2 | ds2n19 | 2023-12-07 | Build site. |
html | cf5dd20 | ds2n19 | 2023-12-04 | Build site. |
Rmd | 3cb4b17 | ds2n19 | 2023-12-04 | Cluster under surface extreme. |
Rmd | fa1083d | ds2n19 | 2023-12-01 | Additional analysis to cluster process. |
html | cec2a2a | ds2n19 | 2023-11-24 | Build site. |
Rmd | 3dc557d | ds2n19 | 2023-11-24 | Switched to new profile details. |
Rmd | 59f5cc4 | ds2n19 | 2023-11-23 | Moved spatiotemporal analysis to use aligned profiles. |
html | 80c16c2 | ds2n19 | 2023-11-15 | Build site. |
html | 7004f76 | ds2n19 | 2023-10-17 | Build site. |
Rmd | 86e3764 | ds2n19 | 2023-10-17 | standard range v climatology, season order resolved and count labels to |
html | f9c091b | ds2n19 | 2023-10-17 | Build site. |
Rmd | 74dd8f8 | ds2n19 | 2023-10-17 | revised order of seasons |
html | d0535b5 | ds2n19 | 2023-10-17 | Build site. |
Rmd | c218546 | ds2n19 | 2023-10-17 | revised order of seasons |
html | 4b55c43 | ds2n19 | 2023-10-12 | Build site. |
html | c16000b | ds2n19 | 2023-10-12 | Build site. |
Rmd | 723c772 | ds2n19 | 2023-10-12 | refresh coverage and analysis after full core load 2013 - 2023 |
Rmd | 1ae81b3 | ds2n19 | 2023-10-11 | reworked core load process to work initially by year and then finally create consolidated all years files. |
Rmd | 44f5720 | ds2n19 | 2023-10-09 | manual commit |
Rmd | ce19a66 | ds2n19 | 2023-10-04 | Revised version of OceanSODA product -v2023 |
html | 7b3d8c5 | pasqualina-vonlanthendinenna | 2022-08-29 | Build site. |
Rmd | 8e81570 | pasqualina-vonlanthendinenna | 2022-08-29 | load and add in core-argo data (1 month) |
Compare Argo depth profiles of normal core-temperature and of extreme core-temperature, as identified in the surface OceanSODA data product, in extreme_temp.Rmd
temp_core_va.rds - core preprocessed folder, created by temp_core_align_climatology.
temp_anomaly_va.rds - core preprocessed folder, created by temp_core_align_climatology.
OceanSODA_SST_anomaly_field_01.rds (or _02.rds) - bgc preprocessed folder, extreme_temp.
theme_set(theme_bw())
HNL_colors <- c("H" = "#b2182b",
"N" = "#636363",
"L" = "#2166ac")
HNL_colors_map <- c('H' = 'red3',
'N' = 'transparent',
'L' = 'blue3')
# opt_min_profile_range
# profiles with profile_range >= opt_min_profile_range will be selected 1 = profiles of at least 600m, 2 = profiles of at least 1200m, 3 = profiles of at least 1500m
opt_min_profile_range = 3
# opt_extreme_determination
# 1 - based on the trend of de-seasonal data - we believe this results in more summer extremes where variation tend to be greater.
# 2 - based on the trend of de-seasonal data by month. grouping is by lat, lon and month.
opt_extreme_determination <- 2
path_argo <- '/nfs/kryo/work/updata/bgc_argo_r_argodata'
path_argo_preprocessed <- paste0(path_argo, "/preprocessed_bgc_data")
path_argo_core <- '/nfs/kryo/work/updata/core_argo_r_argodata_2024-03-13'
path_argo_core_preprocessed <- paste0(path_argo_core, "/preprocessed_core_data")
path_emlr_utilities <- "/nfs/kryo/work/jenmueller/emlr_cant/utilities/files/"
path_updata <- '/nfs/kryo/work/updata'
path_argo_clim_temp <- paste0(path_updata, "/argo_climatology/temperature")
path_argo <- '/nfs/kryo/work/datasets/ungridded/3d/ocean/floats/bgc_argo'
path_argo_preprocessed <- paste0(path_argo, "/preprocessed_bgc_data")
path_argo_core <- '/nfs/kryo/work/datasets/ungridded/3d/ocean/floats/core_argo_r_argodata'
path_argo_core_preprocessed <- paste0(path_argo_core, "/preprocessed_core_data")
nm_biomes <- read_rds(file = paste0(path_argo_preprocessed, "/nm_biomes.rds"))
# WOA 18 basin mask
basinmask <-
read_csv(
paste(path_emlr_utilities,
"basin_mask_WOA18.csv",
sep = ""),
col_types = cols("MLR_basins" = col_character())
)
basinmask <- basinmask %>%
filter(MLR_basins == unique(basinmask$MLR_basins)[1]) %>%
select(-c(MLR_basins, basin))
# load validated and vertically aligned temp profiles,
full_argo <-
read_rds(file = paste0(path_argo_core_preprocessed, "/temp_core_va.rds")) %>%
filter(profile_range >= opt_min_profile_range) %>%
mutate(date = ymd(format(date, "%Y-%m-15")))
# # load in core-temperature data with profile QC flags of A and B
# full_argo <- read_rds(file = paste0(path_argo_core_preprocessed, "/core_temp_flag_A.rds"))
#
# full_argo <- full_argo %>%
# mutate(year = year(date),
# month = month(date)) %>%
# mutate(date = ymd(format(date, '%Y-%m-15')))
# OceanSODA extremes detected
if (opt_extreme_determination == 1){
OceanSODA_temp_SO_extreme_grid <- read_rds(file = paste0(path_argo_preprocessed, "/OceanSODA_SST_anomaly_field_01.rds"))
} else if (opt_extreme_determination == 2){
OceanSODA_temp_SO_extreme_grid <- read_rds(file = paste0(path_argo_preprocessed, "/OceanSODA_SST_anomaly_field_02.rds"))
}
# base map for plotting
map <-
read_rds(paste(path_emlr_utilities,
"map_landmask_WOA18.rds",
sep = ""))
# restrict base map to Southern Ocean
map <- map +
lims(y = c(-85, -30))
# Note: While reducing lon x lat grid,
# we keep the original number of observations
full_argo_2x2 <- full_argo %>%
mutate(
lat_raw = lat,
lon_raw = lon,
lat = cut(lat, seq(-90, 90, 2), seq(-89, 89, 2)),
lat = as.numeric(as.character(lat)),
lon = cut(lon, seq(20, 380, 2), seq(21, 379, 2)),
lon = as.numeric(as.character(lon))) # re-grid to 2x2
# revert OceanSODA to regular 1x1 grid
OceanSODA_temp_SO_extreme_grid <- OceanSODA_temp_SO_extreme_grid %>%
select(-c(lon, lat)) %>%
rename(OceanSODA_temp = temperature,
lon = lon_raw,
lat = lat_raw) %>%
filter(year >=2013)
# 925 056 obs
# combine the argo profile data to the surface extreme data
profile_temp_extreme <- inner_join(
full_argo %>%
select(c(year, month, date, lon, lat, depth,
temp,
file_id)), # 567 327 obs
OceanSODA_temp_SO_extreme_grid %>%
select(c(year, month, date, lon, lat,
OceanSODA_temp, temp_extreme,
clim_temp, clim_diff,
basin_AIP, biome_name)))
# profile_temp_extreme <- profile_temp_extreme %>%
# unite('platform_cycle', platform_number:cycle_number, sep = '_', remove = FALSE)
OceanSODA_temp_SO_extreme_grid %>%
group_split(month) %>%
# head(1) %>%
map(
~ map +
geom_tile(
data = .x,
aes(x = lon,
y = lat,
fill = temp_extreme),
alpha = 0.5
) +
scale_fill_manual(values = HNL_colors_map) +
new_scale_fill() +
geom_tile(
data = profile_temp_extreme %>%
distinct(lon, lat, file_id, year, month),
aes(
x = lon,
y = lat,
fill = 'argo\nprofiles',
height = 1,
width = 1
),
alpha = 0.5
) +
scale_fill_manual(values = "springgreen4",
name = "") +
facet_wrap(~ year, ncol = 1) +
lims(y = c(-85, -30)) +
labs(title = paste('month:', unique(.x$month))
)
)
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
[[7]]
[[8]]
[[9]]
[[10]]
[[11]]
[[12]]
Argo profiles plotted according to the surface OceanSODA temperature
L profiles correspond to a low surface temperature event, as recorded in OceanSODA
H profiles correspond to an event of high surface temperature, as recorded in OceanSODA
N profiles correspond to normal surface OceanSODA temperature
profile_temp_extreme %>%
group_split(biome_name, basin_AIP, year) %>%
head(6) %>%
map(
~ ggplot() +
geom_path(data = .x %>% filter(temp_extreme == 'N'),
aes(x = temp,
y = depth,
group = file_id,
col = temp_extreme),
linewidth = 0.3) +
geom_path(data = .x %>% filter(temp_extreme == 'H' | temp_extreme == 'L'),
aes(x = temp,
y = depth,
group = file_id,
col = temp_extreme),
linewidth = 0.5)+
scale_y_reverse() +
scale_color_manual(values = HNL_colors) +
facet_wrap(~ month, ncol = 6) +
labs(
x = 'Argo temperature (ºC)',
y = 'depth (m)',
title = paste(
unique(.x$basin_AIP),
"|",
unique(.x$year),
"| biome:",
unique(.x$biome_name)
),
col = 'OceanSODA temp \nanomaly'
)
)
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
# Temperature extreme:
# Atlantic biome 1, 2018, months 2 and 3
OceanSODA_temp_SO_extreme_grid_2017 <- OceanSODA_temp_SO_extreme_grid %>%
filter(date == '2017-10-15')
map+
geom_tile(data = OceanSODA_temp_SO_extreme_grid_2017,
aes(x = lon,
y = lat,
fill = temp_extreme))+
scale_fill_manual(values = HNL_colors_map)+
labs(title = 'October 2017',
fill = 'OceanSODA SST \nextreme')
profile_temp_Atl_2017 <- profile_temp_extreme %>%
filter(date == '2017-10-15',
basin_AIP == 'Atlantic',
biome_name == 'STSS')
profile_temp_Atl_2017 %>%
ggplot(aes(x = temp,
y = depth,
group = file_id,
col = temp_extreme))+
geom_path(data = profile_temp_Atl_2017 %>% filter(temp_extreme == 'N'),
aes(x = temp,
y = depth,
group = file_id,
col = temp_extreme),
linewidth = 0.3)+
geom_path(data = profile_temp_Atl_2017 %>% filter(temp_extreme == 'H'| temp_extreme == 'L'),
aes(x = temp,
y = depth,
group = file_id,
col = temp_extreme),
linewidth = 0.5)+
scale_y_reverse()+
scale_color_manual(values = HNL_colors)+
labs(title = 'Atlantic, STSS biome, October 2017',
col = 'OceanSODA SST\nextreme',
x = 'Argo temperature (ºC)')
rm(profile_temp_Atl_2017, OceanSODA_temp_SO_extreme_grid_2017)
# cut depth levels at 10, 20, .... etc m
# add seasons
# Dec, Jan, Feb <- summer
# Mar, Apr, May <- autumn
# Jun, Jul, Aug <- winter
# Sep, Oct, Nov <- spring
profile_temp_extreme <- profile_temp_extreme %>%
# mutate(
# depth = Hmisc::cut2(
# depth,
# cuts = c(10, 20, 30, 50, 70, 100, 300, 500, 800, 1000, 1500, 2000, 2500),
# levels.mean = TRUE,
# digits = 3
# ),
# depth = as.numeric(as.character(depth))
# ) %>%
mutate(
season = case_when(
between(month, 3, 5) ~ 'autumn',
between(month, 6, 8) ~ 'winter',
between(month, 9, 11) ~ 'spring',
month == 12 | 1 | 2 ~ 'summer'
),
season_order = case_when(
between(month, 3, 5) ~ 2,
between(month, 6, 8) ~ 3,
between(month, 9, 11) ~ 4,
month == 12 | 1 | 2 ~ 1
),
.after = date
)
profile_temp_extreme_mean <- profile_temp_extreme %>%
group_by(temp_extreme, depth) %>%
summarise(temp_mean = mean(temp, na.rm = TRUE),
temp_std = sd(temp, na.rm = TRUE)) %>%
ungroup()
profile_temp_extreme_mean %>%
arrange(depth) %>%
ggplot(aes(y = depth)) +
geom_ribbon(aes(xmin = temp_mean - temp_std,
xmax = temp_mean + temp_std,
fill = temp_extreme),
alpha = 0.2)+
geom_path(aes(x = temp_mean,
col = temp_extreme))+
scale_color_manual(values = HNL_colors) +
scale_fill_manual(values = HNL_colors)+
labs(title = "Overall mean",
col = 'OceanSODA\ntemp anomaly \n(mean ± st dev)',
fill = 'OceanSODA\ntemp anomaly \n(mean ± st dev)',
y = 'depth (m)',
x = 'mean Argo temperature (ºC)') +
scale_y_continuous(trans = trans_reverser("sqrt"),
breaks = c(10, 100, 250, 500, seq(1000, 5000, 500)))
rm(profile_temp_extreme_mean)
Number of profiles
profile_temp_count_mean <- profile_temp_extreme %>%
distinct(temp_extreme, file_id) %>%
count(temp_extreme)
profile_temp_count_mean %>%
ggplot(aes(x = temp_extreme, y = n, fill = temp_extreme))+
geom_col(width = 0.5)+
scale_y_continuous(trans = 'log10')+
labs(y = 'log(number of profiles)',
title = 'Number of profiles')
# rm(profile_temp_count_mean)
Surface Core-Argo temperature vs surface OceanSODA temperature (20 m)
# calculate surface-mean argo SST, for each profile
surface_temp_mean <- profile_temp_extreme %>%
filter(depth <= 20) %>%
group_by(temp_extreme, file_id) %>%
summarise(argo_surf_temp = mean(temp, na.rm = TRUE),
OceanSODA_surf_temp = mean(OceanSODA_temp, na.rm = TRUE))
surface_temp_mean %>%
group_by(temp_extreme) %>%
group_split() %>%
# head(1) %>%
map(
~ggplot(data = .x, aes(x = OceanSODA_surf_temp,
y = argo_surf_temp))+
geom_bin2d(data = .x, aes(x = OceanSODA_surf_temp,
y = argo_surf_temp), linewidth = 0.3, bins = 60) +
scale_fill_viridis_c()+
geom_abline(slope = 1, intercept = 0)+
coord_fixed(ratio = 1,
xlim = c(-3, 28),
ylim = c(-3, 28))+
labs(title = paste('temp extreme:', unique(.x$temp_extreme)),
x = 'OceanSODA temp',
y = 'Argo temp')
)
[[1]]
[[2]]
[[3]]
rm(surface_temp_mean)
profile_temp_extreme_biome <- profile_temp_extreme %>%
group_by(season_order, biome_name, temp_extreme, depth) %>%
summarise(temp_biome = mean(temp, na.rm = TRUE),
temp_std_biome = sd(temp, na.rm = TRUE)) %>%
ungroup()
facet_label <- as_labeller(c("1"="summer",
"2"="autumn",
"3"="winter",
"4"="spring",
"ICE" = "ICE",
"SPSS" = "SPSS",
"STSS" = "STSS",
"Atlantic" = "Atlantic",
"Indian" = "Indian",
"Pacific" = "Pacific"
))
profile_temp_extreme_biome %>%
ggplot(aes(
x = temp_biome,
y = depth,
group = temp_extreme,
col = temp_extreme
)) +
geom_ribbon(aes(xmax = temp_biome + temp_std_biome,
xmin = temp_biome - temp_std_biome,
group = temp_extreme,
fill = temp_extreme),
col = NA,
alpha = 0.2)+
geom_path() +
scale_color_manual(values = HNL_colors) +
scale_fill_manual(values = HNL_colors)+
labs(col = 'OceanSODA\ntemp anomaly \n(mean ± st dev)',
fill = 'OceanSODA\ntemp anomaly \n(mean ± st dev)',
y = 'depth (m)',
x = 'biome mean Argo temperature (ºC)') +
scale_y_continuous(trans = trans_reverser("sqrt"),
breaks = c(10, 100, 250, 500, seq(1000, 5000, 500))) +
lims(x = c(-3, 18))+
facet_grid(season_order ~ biome_name, labeller = facet_label)
rm(profile_temp_extreme_biome)
Number of profiles per season per Mayot biome
profile_temp_count_biome <- profile_temp_extreme %>%
distinct(season_order, biome_name, temp_extreme, file_id) %>%
group_by(season_order, biome_name, temp_extreme) %>%
count(temp_extreme)
profile_temp_count_biome %>%
ggplot(aes(x = temp_extreme, y = n, fill = temp_extreme))+
geom_col(width = 0.5)+
facet_grid(season_order ~ biome_name, labeller = facet_label)+
scale_y_continuous(trans = 'log10')+
labs(y = 'log(number of profiles)',
title = 'Number of profiles season x Mayot biome')
# rm(profile_temp_count_biome)
Surface Core-Argo temp vs surface OceanSODA temp season x Mayot biome (20 m)
surface_temp_biome <- profile_temp_extreme %>%
filter(depth <= 20) %>%
group_by(season_order, biome_name, temp_extreme, file_id) %>%
summarise(argo_surf_temp = mean(temp, na.rm=TRUE),
OceanSODA_surf_temp = mean(OceanSODA_temp, na.rm = TRUE))
surface_temp_biome %>%
group_by(temp_extreme) %>%
group_split(temp_extreme) %>%
map(
~ggplot(data = .x, aes(x = OceanSODA_surf_temp,
y = argo_surf_temp))+
geom_bin2d(data = .x, aes(x = OceanSODA_surf_temp,
y = argo_surf_temp)) +
scale_fill_viridis_c()+
geom_abline(slope = 1, intercept = 0)+
coord_fixed(ratio = 1,
xlim = c(-3, 25),
ylim = c(-3, 25))+
facet_grid(season_order~biome_name, labeller = facet_label) +
labs(title = paste( 'Temp extreme:', unique(.x$temp_extreme)),
x = 'OceanSODA temp',
y = 'Argo temp')
)
[[1]]
[[2]]
[[3]]
rm(surface_temp_biome)
profile_temp_extreme_basin <- profile_temp_extreme %>%
group_by(season_order, basin_AIP, temp_extreme, depth) %>%
summarise(temp_basin = mean(temp, na.rm = TRUE),
temp_basin_std = sd(temp, na.rm = TRUE)) %>%
ungroup()
profile_temp_extreme_basin %>%
ggplot(aes(x = temp_basin,
y = depth,
group = temp_extreme,
col = temp_extreme))+
geom_ribbon(aes(xmin = temp_basin - temp_basin_std,
xmax = temp_basin + temp_basin_std,
group = temp_extreme,
fill = temp_extreme),
col = NA,
alpha = 0.2)+
geom_path()+
scale_color_manual(values = HNL_colors)+
scale_fill_manual(values = HNL_colors)+
labs(col = 'OceanSODA\ntemp anomaly\n(mean ± st dev)',
fill = 'OceanSODA\ntemp anomaly\n(mean ± st dev)',
y = 'depth (m)',
x = 'basin-mean Argo temperature (ªC)')+
scale_y_continuous(trans = trans_reverser("sqrt"),
breaks = c(10, 100, 250, 500, seq(1000, 5000, 500))) +
facet_grid(season_order~basin_AIP, labeller = facet_label)
rm(profile_temp_extreme_basin)
Number of profiles season x basin
profile_temp_count_basin <- profile_temp_extreme %>%
distinct(season_order, basin_AIP, temp_extreme, file_id) %>%
group_by(season_order, basin_AIP, temp_extreme) %>%
count(temp_extreme)
profile_temp_count_basin %>%
ggplot(aes(x = temp_extreme, y = n, fill = temp_extreme))+
geom_col(width = 0.5)+
facet_grid(season_order~basin_AIP, labeller = facet_label)+
scale_y_continuous(trans = 'log10')+
labs(y = 'log(number of profiles)',
title = 'Number of profiles season x basin')
# rm(profile_temp_count_basin)
Surface Argo temperature vs surface OceanSODA temperature (20 m) season x basin
# calculate surface-mean argo pH to compare against OceanSODA surface pH (one value)
surface_temp_basin <- profile_temp_extreme %>%
filter(depth <= 20) %>%
group_by(season_order, basin_AIP, temp_extreme, file_id) %>%
summarise(surf_argo_temp = mean(temp, na.rm=TRUE),
surf_OceanSODA_temp = mean(OceanSODA_temp, na.rm = TRUE))
surface_temp_basin %>%
group_by(temp_extreme) %>%
group_split(temp_extreme) %>%
map(
~ggplot(data = .x, aes(x = surf_OceanSODA_temp,
y = surf_argo_temp))+
geom_bin2d(data = .x, aes(x = surf_OceanSODA_temp,
y = surf_argo_temp)) +
scale_fill_viridis_c()+
geom_abline(slope = 1, intercept = 0)+
coord_fixed(ratio = 1,
xlim = c(-3, 25),
ylim = c(-3, 25))+
facet_grid(season_order~basin_AIP, labeller = facet_label) +
labs(title = paste('Temp extreme:', unique(.x$temp_extreme)),
x = 'OceanSODA temp',
y = 'Argo temp')
)
[[1]]
[[2]]
[[3]]
rm(surface_temp_basin)
profile_temp_extreme_season <- profile_temp_extreme %>%
group_by(season_order, season, biome_name, basin_AIP, temp_extreme, depth) %>%
summarise(temp_mean = mean(temp, na.rm = TRUE),
temp_std = sd(temp, na.rm = TRUE)) %>%
ungroup()
profile_temp_extreme_season %>%
arrange(depth) %>%
group_split(season_order) %>%
# head(1) %>%
map(
~ ggplot(
data = .x,
aes(x = temp_mean,
y = depth,
group = temp_extreme,
col = temp_extreme)) +
geom_ribbon(aes(xmax = temp_mean + temp_std,
xmin = temp_mean - temp_std,
group = temp_extreme,
fill = temp_extreme),
col = NA,
alpha = 0.2)+
geom_path() +
scale_color_manual(values = HNL_colors) +
scale_fill_manual(values = HNL_colors) +
labs(title = paste("season:", unique(.x$season)),
col = 'OceanSODA\ntemp anomaly \n(mean ± st dev)',
fill = 'OceanSODA\ntemp anomaly \n(mean ± st dev)',
y = 'depth (m)',
x = 'mean Argo temperature (ºC)') +
scale_y_continuous(
trans = trans_reverser("sqrt"),
breaks = c(10, 100, 250, 500, seq(1000, 5000, 500))
) +
facet_grid(basin_AIP ~ biome_name)
)
[[1]]
[[2]]
[[3]]
[[4]]
Number of profiles season x Mayot biome x basin
profile_temp_count_season <- profile_temp_extreme %>%
distinct(season_order, season, biome_name, basin_AIP,
temp_extreme, file_id) %>%
group_by(season_order, season, biome_name, basin_AIP, temp_extreme) %>%
count(temp_extreme)
profile_temp_count_season %>%
group_by(season_order) %>%
group_split(season_order) %>%
map(
~ggplot()+
geom_col(data =.x,
aes(x = temp_extreme,
y = n,
fill = temp_extreme),
width = 0.5)+
facet_grid(basin_AIP ~ biome_name)+
scale_y_continuous(trans = 'log10')+
labs(y = 'log(number of profiles)',
title = paste('season:', unique(.x$season)))
)
[[1]]
[[2]]
[[3]]
[[4]]
# rm(profile_temp_count_season)
Surface Core-Argo temperature vs surface OceanSODA temperature (20m) in each season, Mayot biome, basin
# calculate surface-mean argo pH, for each season x biome x basin x ph extreme
surface_temp_season <- profile_temp_extreme %>%
filter(depth <= 20) %>%
group_by(season_order,
season,
basin_AIP,
biome_name,
temp_extreme,
file_id) %>%
summarise(surf_argo_temp = mean(temp, na.rm=TRUE),
surf_OceanSODA_temp = mean(OceanSODA_temp, na.rm = TRUE))
surface_temp_season %>%
group_by(season_order, temp_extreme) %>%
group_split(season_order, temp_extreme) %>%
map(
~ggplot(data = .x, aes(x = surf_OceanSODA_temp,
y = surf_argo_temp))+
geom_bin2d(data = .x, aes(x = surf_OceanSODA_temp,
y = surf_argo_temp)) +
scale_fill_viridis_c()+
geom_abline(slope = 1, intercept = 0)+
coord_fixed(ratio = 1,
xlim = c(-3, 25),
ylim = c(-3, 25))+
facet_grid(basin_AIP ~ biome_name) +
labs(title = paste('season:', unique(.x$season),
'| temp extreme:', unique(.x$temp_extreme)),
x = 'OceanSODA temp',
y = 'Argo temp')
)
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
[[7]]
[[8]]
[[9]]
[[10]]
[[11]]
[[12]]
rm(surface_temp_season)
profile_temp_extreme_season %>%
filter(basin_AIP == 'Atlantic',
biome_name == 'SPSS',
season == 'winter') %>%
arrange(depth) %>%
ggplot(aes(x = temp_mean,
y = depth,
group = temp_extreme,
col = temp_extreme)) +
geom_ribbon(aes(xmax = temp_mean + temp_std,
xmin = temp_mean - temp_std,
group = temp_extreme,
fill = temp_extreme),
col = NA,
alpha = 0.2)+
geom_path() +
scale_color_manual(values = HNL_colors) +
scale_fill_manual(values = HNL_colors) +
labs(title = 'Atlantic basin, SPSS biome, winter',
col = 'OceanSODA\ntemp anomaly \n(mean ± st dev)',
fill = 'OceanSODA\ntemp anomaly \n(mean ± st dev)',
y = 'depth (m)',
x = 'mean Argo temperature (ºC)') +
scale_y_continuous(
trans = trans_reverser("sqrt"),
breaks = c(10, 100, 250, 500, seq(1000, 5000, 500)))
profile_temp_extreme_season %>%
filter(basin_AIP == 'Atlantic',
biome_name == 'STSS',
season == 'spring') %>%
arrange(depth) %>%
ggplot(aes(x = temp_mean,
y = depth,
group = temp_extreme,
col = temp_extreme)) +
geom_ribbon(aes(xmax = temp_mean + temp_std,
xmin = temp_mean - temp_std,
group = temp_extreme,
fill = temp_extreme),
col = NA,
alpha = 0.2)+
geom_path() +
scale_color_manual(values = HNL_colors) +
scale_fill_manual(values = HNL_colors) +
labs(title = 'Atlantic basin, STSS biome, spring',
col = 'OceanSODA\ntemp anomaly \n(mean ± st dev)',
fill = 'OceanSODA\ntemp anomaly \n(mean ± st dev)',
y = 'depth (m)',
x = 'mean Argo temperature (ºC)') +
scale_y_continuous(
trans = trans_reverser("sqrt"),
breaks = c(10, 100, 250, 500, seq(1000, 5000, 500)))
rm(profile_temp_extreme_season)
Plot the H/L/N profiles as anomalies relative to the CSIO-MNR Argo temperature climatology
# profile_temp_extreme_binned <- profile_temp_extreme %>%
# group_by(lon, lat, year, month, file_id,
# biome_name, basin_AIP, temp_extreme,
# depth) %>%
# summarize(temp_adjusted_binned = mean(temp_adjusted, na.rm = TRUE)) %>%
# ungroup()
# boa_temp_clim <- read_rds(file = paste0(path_argo_preprocessed, '/boa_temp_clim.rds'))
#
# # compatibility with profile_temp_extreme_jan
# boa_temp_clim_SO <- boa_temp_clim %>%
# filter(lat <= -30) %>%
# mutate(depth_boa = depth)
#
# # grid average climatological temp into the argo depth bins
# boa_temp_clim_SO <- boa_temp_clim_SO %>%
# mutate(
# depth = cut(
# depth_boa,
# breaks = c(0, 10, 20, 30, 50, 70, 100, 300, 500, 800, 1000, 1500, 2000),
# include.lowest = TRUE,
# labels = as.factor(unique(profile_temp_extreme$depth))[1:12]
# ),
# depth = as.numeric(as.character(depth))
# )
#
#
# # calculate mean climatological pH per depth bin
# boa_temp_clim_SO_binned <- boa_temp_clim_SO %>%
# group_by(lon, lat, depth, month) %>%
# summarise(clim_temp_binned = mean(clim_temp, na.rm = TRUE)) %>%
# ungroup()
#
#
# # join climatology and ARGO profiles
#
# remove_clim <- inner_join(profile_temp_extreme_binned,
# boa_temp_clim_SO_binned)
remove_clim <-
read_rds(file = paste0(path_argo_core_preprocessed, "/temp_anomaly_va.rds")) %>%
filter(profile_range >= opt_min_profile_range) %>%
mutate(date = ymd(format(date, "%Y-%m-15")))
remove_clim <- inner_join(
remove_clim %>%
select(
file_id,
year,
month,
date,
lon,
lat,
depth,
temp,
clim_temp,
anomaly
),
OceanSODA_temp_SO_extreme_grid %>%
select(
year,
month,
date,
lon,
lat,
OceanSODA_temp,
temp_extreme,
biome_name,
basin_AIP
)
)
remove_clim <- remove_clim %>%
mutate(
season = case_when(
between(month, 3, 5) ~ 'autumn',
between(month, 6, 8) ~ 'winter',
between(month, 9, 11) ~ 'spring',
month == 12 | 1 | 2 ~ 'summer'
),
season_order = case_when(
between(month, 3, 5) ~ 2,
between(month, 6, 8) ~ 3,
between(month, 9, 11) ~ 4,
month == 12 | 1 | 2 ~ 1
),
.after = date
)
Points are the climatological temperature, lines are the depth-binned Argo profiles colored by H/N/L classification
remove_clim %>%
group_split(biome_name, basin_AIP, year) %>%
head(6) %>%
map(
~ ggplot() +
geom_path(
data = .x %>%
filter(temp_extreme == 'N'),
aes(
x = temp,
y = depth,
group = file_id,
col = temp_extreme
),
size = 0.3
) +
geom_path(
data = .x %>%
filter(temp_extreme == 'H' | temp_extreme == 'L'),
aes(
x = temp,
y = depth,
group = file_id,
col = temp_extreme
),
size = 0.5
) +
geom_point(
data = .x,
aes(x = clim_temp,
y = depth,
col = temp_extreme),
size = 0.5
) +
scale_y_reverse() +
scale_color_manual(values = HNL_colors) +
labs(
x = 'Argo temperature (ºC)',
y = 'depth (m)',
title = paste(
"Biome:",
unique(.x$biome_name),
"| basin:",
unique(.x$basin_AIP),
" | ",
unique(.x$year)
),
col = 'OceanSODA temp \nanomaly'
)
)
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
# calculate the difference between the binned climatological argo and in-situ argo for each depth level and grid cell
# remove_clim <- remove_clim %>%
# mutate(argo_temp_anomaly = temp_adjusted_binned - clim_temp_binned,
# season = case_when(between(month, 3, 5) ~ 'autumn',
# between(month, 6, 8) ~ 'winter',
# between(month, 9, 11) ~ 'spring',
# month == 12 | 1 | 2 ~ 'summer'),
# season_order = case_when(between(month, 3, 5) ~ 2,
# between(month, 6, 8) ~ 3,
# between(month, 9, 11) ~ 4,
# month == 12 | 1 | 2 ~ 1))
remove_clim %>%
group_split(month) %>%
#head(6) %>%
map(
~ggplot()+
geom_path(data = .x %>% filter(temp_extreme == 'N'),
aes(x = anomaly,
y = depth,
group = file_id,
col = temp_extreme),
size = 0.2)+
geom_path(data = .x %>% filter(temp_extreme == 'H'| temp_extreme == 'L'),
aes(x = anomaly,
y = depth,
group = file_id,
col = temp_extreme),
size = 0.3)+
geom_vline(xintercept = 0)+
scale_y_continuous(trans = trans_reverser("sqrt"),
breaks = c(10, 100, 250, 500, seq(1000, 5000, 500)))+
scale_color_manual(values = HNL_colors)+
scale_fill_manual(values = HNL_colors)+
facet_grid(basin_AIP~biome_name)+
labs(title = paste0('month: ', unique(.x$month)))
)
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
[[7]]
[[8]]
[[9]]
[[10]]
[[11]]
[[12]]
remove_clim_overall_mean <- remove_clim %>%
group_by(temp_extreme, depth) %>%
summarise(temp_anomaly_mean = mean(anomaly, na.rm = TRUE),
temp_anomaly_sd = sd(anomaly, na.rm = TRUE))
remove_clim_overall_mean %>%
ggplot()+
geom_path(aes(x = temp_anomaly_mean,
y = depth,
group = temp_extreme,
col = temp_extreme))+
geom_ribbon(aes(xmax = temp_anomaly_mean + temp_anomaly_sd,
xmin = temp_anomaly_mean - temp_anomaly_sd,
y = depth,
group = temp_extreme,
fill = temp_extreme),
col = NA,
alpha = 0.2)+
geom_vline(xintercept = 0)+
scale_y_continuous(trans = trans_reverser("sqrt"),
breaks = c(10, 100, 250, 500, seq(1000, 5000, 500)))+
scale_color_manual(values = HNL_colors)+
scale_fill_manual(values = HNL_colors)+
# geom_text_repel(data = profile_temp_count_mean,
# aes(x = 1,
# y = 1500,
# label = paste0(n),
# col = temp_extreme),
# size = 7,
# segment.color = 'transparent')+
geom_text(data = profile_temp_count_mean[2,],
aes(x = -4.0,
y = 1200,
label = paste0(n),
col = temp_extreme),
size = 6)+
geom_text(data = profile_temp_count_mean[1,],
aes(x = -4.0,
y = 1400,
label = paste0(n),
col = temp_extreme),
size = 6)+
geom_text(data = profile_temp_count_mean[3,],
aes(x = -4.0,
y = 1600,
label = paste0(n),
col = temp_extreme),
size = 6)+
coord_cartesian(xlim = c(-4.5, 4.5))+
scale_x_continuous(breaks = c(-4, -2, 0, 2, 4))+
labs(title = 'Overall mean anomaly profiles')
rm(remove_clim_overall_mean, profile_temp_count_mean)
remove_clim_biome_mean <- remove_clim %>%
group_by(temp_extreme, depth, season_order, season, biome_name) %>%
summarise(temp_anomaly_mean = mean(anomaly, na.rm = TRUE),
temp_anomaly_sd = sd(anomaly, na.rm = TRUE))
remove_clim_biome_mean %>%
ggplot(aes(x = temp_anomaly_mean,
y = depth,
group = temp_extreme,
col = temp_extreme))+
geom_path()+
geom_ribbon(aes(xmax = temp_anomaly_mean + temp_anomaly_sd,
xmin = temp_anomaly_mean - temp_anomaly_sd,
group = temp_extreme,
fill = temp_extreme),
col = NA,
alpha = 0.2)+
geom_vline(xintercept = 0)+
scale_y_continuous(trans = trans_reverser("sqrt"),
breaks = c(10, 100, 250, 500, seq(1000, 5000, 500)))+
scale_fill_manual(values = HNL_colors)+
scale_color_manual(values = HNL_colors)+
labs(title = 'Biome-mean anomaly profiles')+
# geom_text_repel(data = profile_temp_count_biome,
# aes(x = 3,
# y = 1500,
# label = paste0(n),
# col = temp_extreme),
# size = 4,
# segment.color = 'transparent')+
geom_text(data = profile_temp_count_biome %>% filter (temp_extreme == 'N'),
aes(x = -3.5,
y = 800,
label = paste0(n),
col = temp_extreme),
size = 4)+
geom_text(data = profile_temp_count_biome %>% filter (temp_extreme == 'H'),
aes(x = -3.5,
y = 1200,
label = paste0(n),
col = temp_extreme),
size = 4)+
geom_text(data = profile_temp_count_biome %>% filter (temp_extreme == 'L'),
aes(x = -3.5,
y = 1600,
label = paste0(n),
col = temp_extreme),
size = 4)+
coord_cartesian(xlim = c(-4.5, 4.5))+
scale_x_continuous(breaks = c(-4, -2, 0, 2, 4))+
facet_grid(season_order~biome_name, labeller = facet_label)
Version | Author | Date |
---|---|---|
c0a5b90 | mlarriere | 2024-04-01 |
f9de50e | ds2n19 | 2024-01-01 |
cf5dd20 | ds2n19 | 2023-12-04 |
cec2a2a | ds2n19 | 2023-11-24 |
80c16c2 | ds2n19 | 2023-11-15 |
7004f76 | ds2n19 | 2023-10-17 |
f9c091b | ds2n19 | 2023-10-17 |
d0535b5 | ds2n19 | 2023-10-17 |
c16000b | ds2n19 | 2023-10-12 |
7b3d8c5 | pasqualina-vonlanthendinenna | 2022-08-29 |
rm(remove_clim_biome_mean, profile_temp_count_biome)
remove_clim_basin_mean <- remove_clim %>%
group_by(basin_AIP, temp_extreme, depth, season_order, season) %>%
summarise(temp_anomaly_mean = mean(anomaly, na.rm = TRUE),
temp_anomaly_sd = sd(anomaly, na.rm = TRUE))
remove_clim_basin_mean %>%
ggplot(aes(x = temp_anomaly_mean,
y = depth,
group = temp_extreme,
col = temp_extreme))+
geom_path()+
geom_ribbon(aes(xmax = temp_anomaly_mean + temp_anomaly_sd,
xmin = temp_anomaly_mean - temp_anomaly_sd,
group = temp_extreme,
fill = temp_extreme),
col = NA,
alpha = 0.2)+
geom_vline(xintercept = 0)+
facet_grid(season_order~basin_AIP, labeller = facet_label)+
scale_y_continuous(trans = trans_reverser("sqrt"),
breaks = c(10, 100, 250, 500, seq(1000, 5000, 500)))+
scale_color_manual(values = HNL_colors)+
scale_fill_manual(values = HNL_colors)+
# geom_text_repel(data = profile_temp_count_basin,
# aes(x = 2,
# y = 1500,
# label = paste0(n),
# col = temp_extreme),
# size = 4,
# segment.color = 'transparent')+
geom_text(data = profile_temp_count_basin %>% filter (temp_extreme == 'N'),
aes(x = -3.5,
y = 800,
label = paste0(n),
col = temp_extreme),
size = 4)+
geom_text(data = profile_temp_count_basin %>% filter (temp_extreme == 'H'),
aes(x = -3.5,
y = 1200,
label = paste0(n),
col = temp_extreme),
size = 4)+
geom_text(data = profile_temp_count_basin %>% filter (temp_extreme == 'L'),
aes(x = -3.5,
y = 1600,
label = paste0(n),
col = temp_extreme),
size = 4)+
coord_cartesian(xlim = c(-4.5, 4.5))+
scale_x_continuous(breaks = c(-4, -2, 0, 2, 4))+
labs(title = 'Basin-mean anomaly profiles')
Version | Author | Date |
---|---|---|
c0a5b90 | mlarriere | 2024-04-01 |
f9de50e | ds2n19 | 2024-01-01 |
cf5dd20 | ds2n19 | 2023-12-04 |
cec2a2a | ds2n19 | 2023-11-24 |
80c16c2 | ds2n19 | 2023-11-15 |
7004f76 | ds2n19 | 2023-10-17 |
f9c091b | ds2n19 | 2023-10-17 |
d0535b5 | ds2n19 | 2023-10-17 |
c16000b | ds2n19 | 2023-10-12 |
7b3d8c5 | pasqualina-vonlanthendinenna | 2022-08-29 |
rm(remove_clim_basin_mean, profile_temp_count_basin)
remove_clim_basin_biome_mean <- remove_clim %>%
group_by(basin_AIP, biome_name, temp_extreme, season_order, season, depth) %>%
summarise(temp_anomaly_mean = mean(anomaly, na.rm = TRUE),
temp_anomaly_sd = sd(anomaly, na.rm = TRUE))
remove_clim_basin_biome_mean %>%
group_by(season_order) %>%
group_split(season_order) %>%
map(
~ggplot(data = .x,
aes(x = temp_anomaly_mean,
y = depth,
group = temp_extreme,
col = temp_extreme))+
geom_path()+
geom_ribbon(data = .x,
aes(xmax = temp_anomaly_mean + temp_anomaly_sd,
xmin = temp_anomaly_mean - temp_anomaly_sd,
group = temp_extreme,
fill = temp_extreme),
col = NA,
alpha = 0.2)+
geom_vline(xintercept = 0)+
facet_grid(basin_AIP~biome_name)+
scale_y_continuous(trans = trans_reverser("sqrt"),
breaks = c(10, 100, 250, 500, seq(1000, 5000, 500)))+
scale_color_manual(values = HNL_colors)+
scale_fill_manual(values = HNL_colors)+
# geom_text_repel(data = profile_temp_count_season,
# aes(x = 1,
# y = 1400,
# label = paste0(n),
# col = temp_extreme,
# group = temp_extreme),
# size = 4,
# segment.color = 'transparent')+
geom_text(data = profile_temp_count_season %>% filter (temp_extreme == 'N' & season == unique(.x$season)),
aes(x = -3.5,
y = 800,
label = paste0(n),
col = temp_extreme),
size = 4)+
geom_text(data = profile_temp_count_season %>% filter (temp_extreme == 'H' & season == unique(.x$season)),
aes(x = -3.5,
y = 1200,
label = paste0(n),
col = temp_extreme),
size = 4)+
geom_text(data = profile_temp_count_season %>% filter (temp_extreme == 'L' & season == unique(.x$season)),
aes(x = -3.5,
y = 1600,
label = paste0(n),
col = temp_extreme),
size = 4)+
coord_cartesian(xlim = c(-4.5, 4.5))+
scale_x_continuous(breaks = c(-4, -2, 0, 2, 4))+
labs(title = paste0('biome-basin mean anomaly profiles ', unique(.x$season)))
)
[[1]]
[[2]]
[[3]]
[[4]]
rm(remove_clim_basin_biome_mean, profile_temp_count_season)
sessionInfo()
R version 4.2.2 (2022-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.5
Matrix products: default
BLAS: /usr/local/R-4.2.2/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.2.2/lib64/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] ggnewscale_0.4.8 ggrepel_0.9.2 oce_1.7-10 gsw_1.1-1
[5] ggforce_0.4.1 metR_0.13.0 scico_1.3.1 ggOceanMaps_1.3.4
[9] ggspatial_1.1.7 broom_1.0.5 lubridate_1.9.0 timechange_0.1.1
[13] forcats_0.5.2 stringr_1.5.0 dplyr_1.1.3 purrr_1.0.2
[17] readr_2.1.3 tidyr_1.3.0 tibble_3.2.1 ggplot2_3.4.4
[21] tidyverse_1.3.2 workflowr_1.7.0
loaded via a namespace (and not attached):
[1] googledrive_2.0.0 colorspace_2.0-3 ellipsis_0.3.2
[4] class_7.3-20 rprojroot_2.0.3 fs_1.5.2
[7] rstudioapi_0.15.0 proxy_0.4-27 farver_2.1.1
[10] bit64_4.0.5 fansi_1.0.3 xml2_1.3.3
[13] codetools_0.2-18 cachem_1.0.6 knitr_1.41
[16] polyclip_1.10-4 jsonlite_1.8.3 dbplyr_2.2.1
[19] rgeos_0.5-9 compiler_4.2.2 httr_1.4.4
[22] backports_1.4.1 assertthat_0.2.1 fastmap_1.1.0
[25] gargle_1.2.1 cli_3.6.1 later_1.3.0
[28] tweenr_2.0.2 htmltools_0.5.8.1 tools_4.2.2
[31] gtable_0.3.1 glue_1.6.2 Rcpp_1.0.10
[34] cellranger_1.1.0 jquerylib_0.1.4 raster_3.6-11
[37] vctrs_0.6.4 xfun_0.35 ps_1.7.2
[40] rvest_1.0.3 lifecycle_1.0.3 googlesheets4_1.0.1
[43] terra_1.7-65 getPass_0.2-2 MASS_7.3-58.1
[46] scales_1.2.1 vroom_1.6.0 hms_1.1.2
[49] promises_1.2.0.1 parallel_4.2.2 yaml_2.3.6
[52] memoise_2.0.1 sass_0.4.4 stringi_1.7.8
[55] highr_0.9 e1071_1.7-12 checkmate_2.1.0
[58] rlang_1.1.1 pkgconfig_2.0.3 evaluate_0.18
[61] lattice_0.20-45 sf_1.0-9 labeling_0.4.2
[64] bit_4.0.5 processx_3.8.0 tidyselect_1.2.0
[67] magrittr_2.0.3 R6_2.5.1 generics_0.1.3
[70] DBI_1.2.2 pillar_1.9.0 haven_2.5.1
[73] whisker_0.4 withr_2.5.0 units_0.8-0
[76] sp_1.5-1 modelr_0.1.10 crayon_1.5.2
[79] KernSmooth_2.23-20 utf8_1.2.2 tzdb_0.3.0
[82] rmarkdown_2.18 grid_4.2.2 readxl_1.4.1
[85] data.table_1.14.6 callr_3.7.3 git2r_0.30.1
[88] reprex_2.0.2 digest_0.6.30 classInt_0.4-8
[91] httpuv_1.6.6 munsell_0.5.0 viridisLite_0.4.1
[94] bslib_0.4.1